
A CRITIC FOR LISP

Gerhard Fischer

Department of Computer Science and Institute of Cognitive Science
University of Colorado, Campus Box 430

Boulder, CO 80309

Abstract

Our goal is to establish the conceptual foundations for using
the computational power that is or will be available on computer
systems. Much of the available computing power is wasted,
however, if users have difficulty understanding and using the full
potential of these systems. Too much attention in the past has been
given to the technology of computer systems and not enough to the
effects of that technology, which has produced inadequate solutions
to real-world problems, imposed unnecessary constraints on users,
and failed to respond to changing needs.

We have designed and implemented a critic for LISP as a
prototype of an intelligent support system. Critics enhance
incremental learning of a system and support learning strategies
such as learning on demand. Our LISP-CRITIC has knowledge about
how to improve LISP programs locally, following a style as defined by
its rules. The advice given is based on the hypothesized knowledge
of the user contained in the system's model of the user. Additional
tools (e.g., a knowledge browser and visualization support) are
available to explain and illustrate the advice.

The LISP-CRITIC has been used by intermediate and expert LISP
programmers and has proven to be a valuable tool for incremental
learning of LISP and for improving programs.

1. Introduction
Our goal is to establish the conceptual foundations for using

the computational power that is or will be available on computer
systems. We believe that Artificial Intelligence methodologies and
technologies provide the unique opportunity to achieve the goal of
improving productivity by addressing, rather than ignoring, human
needs and potential. We are building systems which augment
human intelligence. Winograd and Flores [Winograd, Flores
86] argue that the development of tools for conversation where the
computer serves as a structured dynamic medium for conversation
in systematic domains, is a more realistic and more relevant goal to
successfully exploit information and communication technologies
than the most widely perceived goal of Al "to understand and to
build autonomous, intelligent, thinking machines"[Stefik 86]. In
addition to the fact, that the track record of the latter approach is not
too good (e.g., high quality fully automatic translation, automatic
programming), we believe, that partial autonomous systems pose
greater design challenges than fully automated do (evidence for this
view comes from many sources, e.g., in the development of cockpits

'This paper describes work done in the Department of Computer Science
and the Institute of Cognitive Science at the University of Colorada,
Boulder. It was supported in part by grant No. N00014-85-K-0842 from the
Office of Naval Research, the German Ministry for Research and
Technology, and Triumph Adler Corporation, Nuernberg.

for future aircrafts the pilots assistant is a more challenging goal
than the electronic copilot [Chambers, Nagel 85]).

In this paper we argue that to successfully learn and use
complex computer system, incremental learning, learning on
demand, user and task specific advice has to be supported.
Intelligent support systems are one approach to provide these
support structures. We describe in detail one of these systems, the
LISP-CRITIC, which enhances incremental learning and supports
learning on demand.

2. Incremental Learning

2.1 Facts of Life
The functionality of modern computer systems is constantly

expanding (see Figure 2-1). This increase in functionality is of little
use if we do not find ways for people to take advantage of it. Online
help systems usually do not do much more than present the same
information found in the printed documentation, although the better
ones provide additional assistance like keyword-based access and
bookmarks that leave a trace of an information-seeking session.

The existence of documentation and other support information
does not guarantee that people know how to use it, or that they read
it or understand it. It is a fact of life that people quickly settle on
plateaus of suboptimal behavior. There are two reasons for this.
One is that people do not want to learn. They use computers
because they want to get something accomplished. The positive
side of this behavior is that people focus on their work, the negative
side is that they are not motivated to spend time learning about the
system just to find out what they can do. This phenomena is called
the "production paradox" by Carroll and Rosson [Carroll, Rosson
86]. People have a tendency to stick with what they know best.
When situations occur that could be more effectively handled by
new procedures, they are willing to deal with them in suboptimal
ways that they personally consider to be safe. People intentionally
do things suboptimally; they have a subjective metric for cost-
effectiveness.

Another reason for suboptimal behavior is that learning Is
often restricted. Even if people want to learn, they may not be able
to. For example, if the context for new information is missing, people
often do not understand the relevance and applicability of new
commands. We verified this effect in small-scale experiments with
the editor command "Query-Replace" in EMACS. This command
steps through all occurrences of a string of text, and the user has to
confirm or deny the replacement for each occurrence. It happens
quite frequently that while users are in "Query-Replace mode" they
detect an error in the immediate environment that they would like to
correct. To do so, either they have to make a note to go back to the

Fischer 177

incorrect text after they complete the whole replacement cycle, or
they have to leave the cycle and set it up again to take care of the
rest of the file. An advanced feature provided by EMACS is the
"recursive edit", which allows the user to do some modifications and
then restart the "Query-Replace" cycle. Our experiments show that
people reading through a description of this command do not
understand what recursive edit does, what it is good for and in which
situations it can be used. Only after using the basic command for
some time do people start to appreciate an advanced feature of this
kind. It is within the scope of our active help system [Fischer,
Lemke, Schwab 85] to give a hint about the usefulness of the
recursive edit at a time when the command can be used
successfully.

Our preliminary empirical findings indicate that the following
problems prevent many users from successfully exploiting the
potential of high-functionality systems:

1. Users do not know about the existence of tools (and
therefore they are not able to ask for them);

2. Users do not know how to access tools ;
3. Users do not know when to use these tools;
4. Users do not understand the results that tools produce

for them;
5. Users cannot combine, adapt, and modify a tool to

their specific needs.

A consequence of these problems is that many systems are
underused. We are strongly convinced that what is needed is not

quantitatively more information but qualitatively new ways to
structure and present information.

2.2 Modes of Learning
In our research we want to determine the balance between

supporting an exploratory learning style of learning by doing which is
the basic philosophy behind the interest worlds in LOGO
environments [Papert 80], and a guided learning experience through
coaching assistance, which is the primary strategy supported by
systems in intelligent computer-assisted instruction [Sleeman,
Brown 82]. There are different modes of learning that can
complement each other depending on whether the user's goal is the
completion of an action or the acquisition of new knowledge, and
depending on whether users are inexperienced with a system or
familiar with it and able to help themselves.

Ungulded, active exploration. The advantage of this mode of
learning is that users can fully control what they would like to do and
how they would like to do it. It is important that an environment of
this kind supports safe experimentation (e.g., UNDO mechanisms are
crucial) and that it is intuitively approachable. Examples of systems
that support unguided learning are: Looo-based learning
environments [Papert 80], spreadsheets and construction kits
[Fischer, Lemke 87].

Tutoring. Tutoring is an adequate mode of learning for getting
started learning a new system. One can predesign a sequence of
microworlds (see section 2.3) and lead a user through them
[Anderson et al. 84; Anderson, Reiser 85]. But tutoring is of little
help in supporting learning on demand when intermediate users are
involved in their "own doing". Tutoring is not task-driven because
the total set of tasks cannot be anticipated. Instead, the system
controls the dialogue, and the user has little control over what to do
next.

Asking for Help. In passive help systems, users actively have
to seek for help. In complex systems, even experienced users know
only a minority of the large set of commands available [Fischer 87];
their expertise lies not in having learned enough to solve any
problem immediately, but in having become skilled in gathering
information and supplementing what they know by active use of
external sources of information. But finding information in these
systems is Tar from easy. Help systems have become large systems
in their own right, and finding needed information is a problem
because there is usually a huge gap between the initial mental form
of the query and the corresponding expression required by the
system. Documentation and help are structured at the level of the
system modules (commands) and not at the task level; to
accomplish a specific task may require reading through a substantial
amount of information

Answers first, then Questions. To ask a question, one must
know how to ask it, and one cannot ask questions about knowledge
whose existence is unknown. Owen [Owen 86] has implemented a
program called DYK ("Did You know"), which volunteers information
and supports the acquisition of information by chance. It supports an
unstructured learning process, but there is a fair chance that users
occasionally pick up some relevant piece of knowledge.

Learning on Demand. Active help systems and critics support
learning on demand Users are often unwilling to learn more about a
system or a tool than is necessary for the immediate solution of their
current problem. To be able to successfully cope with new
problems as they arise, users require a consultant that generates
advice tailored to their specific need. This approach provides
information only when It becomes relevant. It eliminates the burden

Number of Computat ional Objects in Systems

EMACS:
• 170 function keys and 462 commands

UNIX:
• more than 700 commands and a large number

of embedded systems

LISP-Systems:
• FRANZ-LISP: 685 functions
• WLISP: 2590 LISP functions and 200 ObjTalk

classes
• SYMBOLICS LISP MACHINES. 23000 functions and

2600 flavors

Amount of Written Documentat ion

Symbolics LISP Machines:
• 12 books with 4400 pages
• does not include any application programs

SUN workstations:
• 15 books with 4600 pages
• additional Beginner's Guides: 8 books totaling

800 pages

Figure 2-1: Quantitative Analysis of Some Systems

178 COGNITIVE MODELING

of learning many things in neutral settings when the user does not
know whether the information will ever be used and when it is
difficult for the learner to imagine an application (see the "Query-
Replace" example in section 2.1). Active help systems and critics
overcome the problem of asking a question. They allow users to do
whatever they want and interrupt only when users' plans, ways of
achieving something or products are considered significantly inferior
to what the program would have recommended. They offer new
information only if it is needed. A potential drawback might be that
they offer help only in related areas; this can be overcome by
accessing knowledge structures that allow the system to present
information in related areas in a goal-directed "DYK" fashion (see
Figure 4-5).

Human Assistance. Human assistance, if available on a
personal level, is in almost all cases the most useful source of
advice and help. The mode of learning can best be characterized as
a cooperative problem-solving process. Learners and advice
seeking persons can ask a question in an infinite variety of ways,
they can articulate their problem in the "situation model" rather than
being required to express their needs in a "system model" [Dijk,
Kintsch 83]. Many systems to support information and advice
seeking (with some notable exceptions like RABBIT [Tou et al.
82] and ARGON [Patel-Schneider, Brachman, Levesque 84]) have
assumed, that persons know what they are looking for. Studying
human advisory dialogues [Webber, Finin 84] has shown, that this
assumption does not hold: the most valuable assistance is often in
formulating the question.

2.3 Increasingly Complex Microworlds: An
Architecture to Support Incremental Learning
Over the last several years we have developed a general

paradigm for instruction that is best described as a sequence of
"Increasingly Complex Microworlds (ICM)" [Fischer 81; Burton,
Brown, Fischer 83].

The ICM paradigm was developed to capture instructional
processes for complex skills that are difficult to learn because the
starting state and goal state are too far apart. The student is
exposed to a sequence of increasingly complex microworlds, which
provide stepping stones and intermediate levels of expertise so that
within each level the student can see a challenging but attainable
goal. Increasingly complex microworlds can also be used to provide
protective shields for novices and prevent them from being dumped
into unfamiliar areas of the system. The paradigm requires a
precise representation of the knowledge that is learned in a specific
microworld and of the method for choosing the next microworld. As
a model, it captures the essence of the incremental learning
processes.

The LISP CRITIC provides a rich environment for pursuing
interesting questions within the ICM paradigm:

1. What is the right grain size for microworlds?
2. How do we generate microworlds? By constructing

tools to eliminate the necessity of learning subskills?
By providing defaults? By constraining the design
space thereby decreasing the objective computability
of the system but increasing the subjective
computability [Fischer, Lemke 87])?

3. What is the right topology of a sequence of
microworlds? For people involved in their own work do
we need multiple start states? For people having
different goals, do we need multiple goal states?

4. What initiates the transition of one microworld to
another one? Does the user initiate it or the system?
Why should a transition take place?

5. How do we identify a user with a microworld? By
taking into account which rules of the LISP-CRITIC (see
section 4.3) fire and how often the user code can be
matched against the right-hand side of rules
(indicating the actual and suggested use of certain
concepts)? By doing a statistical analysis of user's
programs? By self-evaluation of the user? By
instantiating the user's knowledge structures of LISP
and comparing them with stored representations of
expert knowledge [Fischer 87]?

By creating and studying the LISP-CRITIC that is codifying an
idea as a system, we were able to raise issues such as these, which
are difficult to articulate concretely in theoretical terms.

2.4 Goals of Incremental Learning
The major goals we can pursue by supporting incremental

learning are:
• the elimination of suboptimal behavior, thereby

increasing efficiency;
• the enlargement of possibilities, thereby increasing

functionality;
• the support of learning on demand by presenting new

information when it is relevant;
• the structuring of complex systems so that they have no

threshold and no ceiling. It should be easy to get
started; that is, microworlds should provide entry points:
but these systems should also offer a rich functionality
for experienced users;

• the use of models of the user to make systems more
responsive to the needs of individual users and the
tailoring of explanations to the user's conceptualization
of the task.

3. Intelligent Support Systems
In our research work we have used the computational power of

modern computer systems to construct a variety of intelligent
support systems (see Figure 3-1). These support systems are
called intelligent, because they have knowledge about the task,
knowledge about the user and they support communication
capabilities which allow the user to interact with them in a more
"natural" way. They are used to enhance incremental learning
processes, to provide help and documentation, to support the
understanding of existing programs and advice given, to assist in

Figure 3-1: An Architecture for Intelligent Support Systems

Fischer 179

the construction of new systems. They are described in the following
documents:

La documentation system that assists in the
incremental development and understanding of a
program (Fischer, Schneider 84];

2. a passive and an active help system for an EMACS-like
editor [Fischer, Lemke, Schwab 85];

3. components of a "software oscilloscope" that serve as
visualization tools [Boecker, Fischer, Nieper 86];

4. design kits which support and guide the designer in
the construction of complex artifacts [Fischer, Lemke
87];

5. a critic lor LISP that is described in this paper.

4. Descr ipt ion of the LISP-CRITIC

4.1 A Critiquing Model
One model frequently used in human-computer systems (e.g.,

MYCIN [Buchanan, Shortliffe 84]) is the consultation model. From an
engineering point of view, it has the advantage of being clear and
simple: the program controls the dialogue (much as a human
consultant or a tutoring system [Anderson et al. 84; Anderson,
Reiser 85] does) by asking for specific items of data about the
problem at hand. The disadvantages are that it does not support
users in their own doing, it prevents the user from volunteering

relevant information and it sets up the program as an "expert",
leaving the user in the undesirable position of asking a machine for
help. We are in the process of developing a critiquing model which
allows users to pursue their own goals and the program interrupts
only if the behavior of the user is judged to be significantly inferior to
what the program would have done.

The critiquing model will be used to support cooperative
problem solving. When a novice and an expert communicate much
more goes on than just the request for factual information. Novices
may not be able to articulate their questions without the help of the
expert, the advice given by the expert may not be understood and/or
the advisee requests an explanation for it; persons may hypothesize
that their communication partners misunderstood them or the
experts may give advice which they were not explicitly asked for (the
last aspect we have also explored in our work on active help
systems [Fischer, Lemke, Schwab 85]).

4.2 The Functionality of the LISP-CRITIC
The USP-CRITIC suggests how to improve LISP code.

Improvements can make the code either more cognitively efficient
(e.g., more readable and concise) or more machine efficient (e.g.,
smaller and faster). Users can choose the kind of suggestions they
are interested in.

The system is used by two user groups, who have different
purposes. One group consists of intermediate users who want to

Figure 4-1: The LISP-CRITIC In Operation

The "LispCritic" pane provides the basic interface through which the user can initiate an action by
clicking a button. The "FunctionCode" pane displays the text of the program that the LISP-CRITIC works
on. The other three windows show some of the transformations carried out on the program. The M?" in
the title line of the windows is the button for starting the explanation system, which allows the user to
browse through additional knowledge structures.

180 COGNITIVE MODELING

learn how to produce better LISP code. We have tested the
usefulness of the LISP-CRITIC for this purpose by gathering statistical
data on the programs written by students in an introductory LISP
course. The other group consists of experienced users who want to
have their code "straightened out". Instead of doing that by hand
(which in principle, these users can do), they use the LISP-CRITIC to
carefully reconsider the code they have written. The system has
proven especially useful with code that is under development and is
continuously changed and modified.

Figure 4-1 shows the system in Operation. The LISP-CRITIC is
able to criticize a user's code in the following ways:

• replace compound calls of LISP functions by simple calls
to more powerful functions (e.g., (not (evenp a))
may be replaced by (oddp a));

• suggest the use of macros (e.g., (setq a (cons b
a)) may be replaced by (push b a));

• find and eliminate 'dead' code (as in (cond (...) (t
. . .) (dead code)));

• find alternative forms of conditional or arithmetic
expressions that are simpler or faster (see Figure 4-2);

• replace garbage-generating expressions by non-
copying expressions (e.g., (append (explode
word) chars) may be replaced by (nconc
(explode word) chars); see Figure 4-4);

• specialize functions (e.g., replace equal by eq; use
integer instead of floating point arithmetic wherever
possible);

• evaluation or partial evaluation of expressions (e.g.,
(sum a 3 b 4) may be simplified to (sum a b 7)).

4.3 The Architecture of the LISP-CRITIC
The knowledge of the subject domain (concepts, goals,

functions, rules and examples) is represented in a network of
interrelated nodes. The user can selectively browse through the
knowledge. The LISP-CRITIC operates by applying a large set of
transformation rules that describe how to improve code. Figure 4-2
shows two of the rules in the system. The user's code is matched
against these rules, and the transformations suggested by the rules
are given to the user. The modified code is written to a new file, and
the user can inspect the modifications and accept or deny them. On
demand, the system explains and justifies its suggestions.

The structure of the overall system is given in Figure 4-3. The
user's code is simplified and analyzed according to the
transformation rules and two protocol files, "people.PR" and
"machine.PR", are produced. They contain information (see Figure
4-1) that is used together with conceptual knowledge structures
about LISP to generate explanations (see Figure 4-5). The user
model (for a more detailed discussion see [Fischer 87]) obtains
information from the rules that have fired, from the statistical
analyzer and from the knowledge structures that have been visited.
In return, it determines which rules should fire and what kind of
explanations should be generated. The statistical analyzer provides
important Information to the user model, for example, which subset
of built-in functions the user is using, whether the user is using
macros, functional arguments, nonstandard flow of control, etc..

Transform a "COND" Into an "AND"

(rule cond-to-and-1
(cond (?condition Taction))
(and ?condition ?action)
safe (machine people))

Example (see Figures ABBCRITIC and EXPL) :
(cond (value (eq (cadr value) 1.0))) —

the name of the rule
the or ig inal code
the replacement
rule category

-> (and value (eq (cadr value) 1.0))

Replace a Copy ing Func t ion w i th a Destruct ive Funct ion

(rule append/.1-new.cons.cells-to-nconc/.1...
(?foo:(append appendl}

(rest r ic t ?expr
(cons-cell-generating-expr expr))

?b)
((compute-it:

(cdr (assq (get-binding foo)
'((append . nconc)

(appendl . nconcl)))))
?expr ?b)

safe (machine))
Example (see Figure KAESTLE) :

(append (explode word) char) > (nconc (explode word) char)

the name of the rule
the condition
(rule can only be applied
if cons cel ls
are generated by "?expr")

the replacement

rule category

Figure 4-2: Examples of Rules in the LISP-CRITIC

Fischer 181

Figure 4-3: The Architecture of the LISP-CRITIC

4.4 Support for Understanding the Criticism
Our experience with the LISP-CRITIC in our LISP courses has

shown that the criticism it gives is often not understood. Therefore
we use additional system components to illustrate and explain the
LISP-CRITIC'S advice, KAESTLE, a visualization tool that is part of our
software oscilloscope [Boecker, Fischer, Nieper 86], allows us to
illustrate the functioning and validity of certain rules. In Figure 4-4
we use KAESTLE to show why the transformation (append
(explode word) chars) > (nconc (explode word)
chars) is a safe one (because explode is a cons-generating
function; see the rule in Figure 4-2), whereas the transformation
(append chars (explode word)) > (nconc chars
(explode word)) is an unsafe one (because the destructive
change of the value of the first argument by nconc may cause
undesirable side-effects).

In addition to the visualization support, we have developed an
explanation component that operates as a user-directed browser in
the semantic net of LISP knowledge. This component contains:
textual explanations that justify rules, related functions, concepts,
goals, rules and examples (see Figure 4-5). Currently textual
explanations are extracts from a LISP textbook [Wilensky 84]). The
information structures in the explanation component should help the
student to understand the rationale for the advice given by the
LISP-CRITIC, and they should also serve as a starting point for a goal-
directed "Did you know (DYK)" mode of learning (see section 2.2).

4.5 Tutorial Strategies
With these features we can pursue different tutorial strategies

in the framework provided by the LISP-CRITIC. The information
accumulated in the system's model of the user is used to decide
when a user should be criticized, what advice should be given and
how the advice should be given (e.g., as a textual explanation from
the manual, a KAESTLE visualization, or as a convincing example).
These issues are not independent, and have to be perceived from
the user's state of knowledge, not the designer's. We must guess
and determine the knowledge state of the user in order to make
critics such as the LISP CRITIC respond at the user's level of
understanding.

Crucial issues in designing the LISP CRITIC were the distribution
of initiative between the user and the system and the amount of
control over the system. After the LISP-CRITIC has provided an initial
starting point for a learning process, we feel that the user can and
should be able to proceed in a self-directed mode. A specific user
may personally dislike some of the rules and should be able to turn
them off. If the system notices that a user never accepts the
changes suggested by a rule, it could be turned off automatically
[Fischer, Lemke, Schwab 85].

(setq result
(append chars (explode word)))

(setq result
=> (nconc chars (explode word)))

Figure 4-4: Illustration of the Validity of a Rule Using KAESTLE
In the environment shown in the individual screen images, the variable word is bound to

the value this and the variable chars is bound to the list (i s).

182 COGNITIVE MODELING

Figure 4-5: The User Browses through the Knowledge Base

5. Experiences wi th and Evaluation of the LISP-
CRITIC

The LISP-CRITIC has been in operation for two years and has
been useful for many groups of LISP users. Our informal evaluations
indicate that the LISP-CRITIC had an impact on the process of
learning LISP. One study showed that as students gained
experience in LISP programming, the number of rules fired
decreased over time. Students learn new functions, new concepts
and ways of structuring their knowledge about LISP. Instructors can
use the output of the LISP-CRITIC as a basis for personal advice to
their students. Experts also used the LISP-CRITIC to have their code
"straightened our. The rules in the knowledge base of the
LISP-CRITIC generated an ongoing discussion about the merits of
different styles of USP programming. Surprises from our empirical
work were, that our statistical analysis showed that even experts
only use a relatively small fraction of the total number of primitive
LISP functions, and that the LISP-CRITIC suggested many
improvements for the implementation of generally used systems
(e.g., for the LISP implementation of OPS5 and for the system code of
FRANZ-LISP).

To discover suboptimal behavior requires a metric. For our
ACTIVIST system [Fischer, Lemke, Schwab 85], we chose a very
simple metric: the number of keystrokes needed to perform a
specific task. In the LISP-CRITIC, a set of over two hundred rules
defines a metric (currently for the FRANZ-LISP dialect). These rules
state how a LISP program should be written. Like the UNIX Writers
Workbench tools [Cherry 81], they define a style or standard that the
authors believe leads to greater clarity and understandably in a
program or piece of code. It goes without saying that we do not
expect universal agreement on issues of style (we have applied the
UNIX writers workbench tools (e.g., DICTION) to the Gettysburg
address and the system suggested some modifications).

The LISP-CRITIC in its current form is not restricted to a specific
class of LISP functions or domain of application. It accepts any LISP
code. Its generality is the reason for some obvious shortcomings.
The critic operates only on the code; the system does not have any
knowledge of specific application areas or algorithms, and it is
naturally limited to improvements that derive from its low-level
knowledge about LISP. AS we pointed out in section 2.2, human
assistance is by comparison much more powerful than the
LISP-CRITIC, because determining and addressing user's goals can
extend advisory dialogues far beyond the capabilities of the
LISP-CRITIC. Systems like the PROUST system [Johnson, Soloway
84] are able to do a much deeper analysis, but they are very

restricted in the range of problems to which they can be applied to.
We have designed a module to extend the framework of the
LISP-CRITIC by providing expert solutions to problems assigned to
students in a course. Comparison of these expert solutions with the
work of the students provides additional sources of information for
the USP-CRITIC.

The LISP-CRITIC'S understanding has to be extended beyond
lines of code or individual functions. Knowledge structures derived
from programs like MASTERSCOPE [Teitelman, Masinter 81] and a
knowledge-base of cliches (representing intermediate and higher-
level programming constructs [Waters 85; Waters 86] would be
useful for the LISP-CRITIC to operate on.

6. Future Research
To get a better understanding of the empirical consequences of

the many design choices which one faces in building a system of
this sort, more research in studying naturally occurring advisory
situations is urgently needed. The USP-CRITIC has been an
interesting starting point towards our long-range goal to build
intelligent support systems and to support cooperative problem
solving processes between humans and computers. The USP-CRITIC
has a few features, which extend the system beyond a "one-shot
affair": it allows the user to ask for an illustration of the advice given
(see Figure 4-4) and the user can use the advice as a starting point
to explore related concepts, functions and goals (see Figure 4-5).

The LISP-CRITIC is a first operational example of the class of
systems we are interested in. However, we doubt that the general
domain of LISP programming is the best area for a critic. An
preliminary analysis of more restricted domains like our user
interface construction kit WLISP [Fischer, Lemke, Rathke 87] and the
formatting system SCRIBE have lead us to believe that critics may be
even more useful for less general systems where a system has a
better chance to infer the goals of the users.

Acknowledgements
Many people have contributed to the development of the

USP-CRITIC over the last few years. The author would like to thank
especially Heinz-Dieter Boecker, who developed many of the
original ideas, the set of rules and the interpreter for it; Andreas
Lemke, who contributed to the general framework for incremental
learning; Helga Nieper, who developed KAESTLE; Christopher Morel,
who implemented the explanation capabilities; Bart Burns, who
implemented the statistical analysis package; Catherine Cormack,
who analyzed user programs with the statistical package; and Janet
Grassia who assisted in editing this paper.

References

[Anderson et al. 84]
J.R, Anderson, C.F. Boyle, R.G. Farrell, B.J. Reiser,
Cognitive Principles in the Design of Computer Tutors,
Proceedings of the Sixth Annual Conference of the
Cognitive Science Society, Boulder, CO, June 1984, pp.
2-9.

[Anderson, Reiser 85]
J.R. Anderson, B.J. Reiser, The LISP Tutor, BYTE, Vol. 10,
No. 4, April 1985, pp. 159-175.

[Boecker, Fischer, Nieper 86]
H.-D. Boecker, G. Fischer, H. Nieper, The Enhancement of
Understanding through Visual Representations, Human
Factors in Computing Systems. CHI'86 Conference
Proceedings (Boston, MA), ACM, New York, April 1986, pp.
44-50.

Fischer 183

[Buchanan, Shortliffe 84]
B.G. Buchanan, E.H. Shortliffe, Rule-Based Expert
Systems: The MYCIN Experiments of the Stanford
Heuristic Programming Project, Addison-Wesley Publishing
Company, Reading, MA, 1984.

[Burton, Brown, Fischer 831
R.R. Burton, J.S. Brown, G. Fischer, Analysis of Skiing as a
Success Model of Instruction: Manipulating the Learning
Environment to Enhance Skill Acquisition, in Rogoff (ed),
Everyday Cognition: Its Development in Social Context,
Harvard University Press, Cambridge, MA, 1983.

[Carroll, Rosson 86]
J.M. Carroll, M.B. Rosson, Paradox of the Active User,
Technical Report RC 11638, IBM, Yorktown Heights, NY,
1986.

[Chambers, Nagel 85]
A.B. Chambers, D.C. Nagel, Pilots of the Future: Human or
Computer?, Communications of the ACM, Vol. 28, No. 11,
November 1985.

[Cherry 81]
Lorinda Cherry, Computer Aids for Writers, Proceedings of
the ACM SIGPLAN SIGOA Symposion on Text
Manipulation, Portland, Oregon, 1981, pp. 61-67.

[Dijk, Kintsch 83]
T.A. van Dijk, W. Kintsch, Strategies of Discourse
Comprehension, Academic Press, New York, 1983.

[Fischer 81]
G. Fischer, Computational Models of Skill Acquisition
Processes, Computers in Education, Proceedings of the
3rd World Conference on Computers and Education,
R. Lewis, D. Tagg (eds.), Lausanne, Switzerland, July
1981, pp. 477-481.

[Fischer 87]
G. Fischer, Enhancing Incremental Learning Processes
with Knowledge-Based Systems, in H. Mandl, A. Lesgold
(eds.), Learning Issues for Intelligent Tutoring Systems,
Springer-Verlag, Berlin - Heidelberg - New York, 1987.

[Fischer, Lemke 87]
G. Fischer, A.C. Lemke, Constrained Design Processes:
Steps Towards Convivial Computing, in R. Guindon (ed.),
Cognitive Science and its Application for Human-Computer
Interaction, Lawrence Erlbaum Associates, Hillsdale, NJ,
1987.

[Fischer, Lemke, Rathke 87]
G. Fischer, A.C. Lemke, C. Rathke, From Design to
Redesign, Proceedings of the 9th International Conference
on Software Engineering, IEEE, March 1987, pp. 369-376.

[Fischer, Lemke, Schwab 85]
G. Fischer, A.C. Lemke, T. Schwab, Knowledge-Based
Help Systems, Human Factors in Computing Systems,
CHr85 Conference Proceedings (San Francisco, CA),
ACM, New York, April 1985, pp. 161-167.

[Fischer, Schneider 84]
G. Fischer, M. Schneider, Computer-Supported Program
Documentation Systems, Proceedings of INTERACT '84,
IFIP Conference on Human-Computer Interaction, IFIP,
London, September 1984.

[Johnson, Soloway 84)
W.L. Johnson, E. Soloway, PROUST: Knowledge-Based
Program Understanding, Proceedings of the 7th
International Conference on Software Engineering, Orlando
Florida, March 1984, pp. 369-380.

[Owen 86]
D. Owen, Answers First, Then Questions, in D.A. Norman,
S.W. Draper (eds.), User Centered System Design, New
Perspectives on Human-Computer Interaction, Lawrence
Erlbaum Associates. Hillsdale, NJ, 1986, ch. 17.

[Papert 80]
S. Papert, Mindstorms: Children, Computers and Powerful
Ideas, Basic Books, New York, 1980.

[Patel-Schneider, Brachman, Levesque 84]
P.F. Patel-Schneider, R.J. Brachman, H.J. Levesque,
ARGON: Knowledge Representation Meets Information
Retrieval, Fairchild Technical Report 654, Schlumberger
Palo Alto Research, September 1984.

[Sleeman. Brown 82]
D.H. Sleeman, J.S. Brown (eds.)
Systems, Academic Press, Lond
and People Series, 1982.

Tutoring
>n - New York, Computer

[Stefik 86]
M.J. Stefik, The Next Knowledge Medium, Al Magazine,
Vol. 7, No. 1, Spring 1986, pp. 34-46.

[Teltelman Masinter 811
W. Teltelman, L Masinter, The Interlisp Programming
Environment, Computer, April 1981, pp. 25-33.

[Tou et al. 821
F.N.Tou, M.D. Williams, T.W. Malone, R.E. Fikes,
A. Henderson, RABBIT: An Intelligent Interface, Technical
Report, Xerox Palo Alto Research Center, 1982.

[Waters 85]
R.C. Waters, The Programmer's Apprentice: A Session
with KBEmacs, IEEE Transactions on Software
Engineering, Vol. SE-11, No. 11, November 1985, pp.
1296-1320.

[Waters 861
R.C. Waters, KBEmacs: Where's the Al?, Al Magazine,
Vol. 7, No. 1, Spring 1986, pp. 47-56.

[Webber, Finin 841
B.L. Webber, T.W. Finin, In Response: Next Steps in
Natural Language Interaction, in W. Reitman (ed), Artificial
Intelligence Applications for Business, Ablex Publishing
Corporation, Norwood, NJ, 1984, pp. 211-234, ch. 12.

[Wilensky84]
R wllensky, LISPcraft, W.W. Norton & Company, New
York-London, 1984.

[Winograd, Flores 861
T. Winograd, F. Flores, Understanding Computers and
Cognition: A New Foundation for Design, Ablex Publishing
Corporation, Norwood, NJ, 1986.

184 COGNITIVE MODELING

