
Expla in ing and Repair ing Plans tha t Fai l 

Kristian J. Hammond 

Department of Computer Science 
The University of Chicago 

1100 East 58th Street 
Chicago, IL 60637 

ABSTRACT 
A persistent problem in machine planning is that of repairing 
plans that fail. Two solutions have been suggested to deal with 
this problem: planning critics and met a-planning techniques. 
Unfortunately, both of these suggestions suffer from lack of flex­
ibility due to an extremely restricted view of how to describe 
planning failures. 

This paper presents an alternative approach in which plan 
failures are described in terms of causal explanations of why 
they occurred. These explanations are used to access different 
abstract replanning strategies, which are then turned into spe­
cific changes to the faulty plans. The approach is demonstrated 
using examples from CHEF, a case-based planner that creates 
and debugs plans in the domain of Szee hwan cooking. 

I. THE PROBLEM OF PLAN FAILURE. 
All planners face the problem of plans that fail. As a result, 

most planner's have some mechanism for plan repair or debug­
ging. These have ranged from simple backup and replanning 
algorithms [14] to complex meta-planning techniques [17]. Un­
fortunately, all of these mechanisms have suffered from a very 
restricted view of what is involved in describing a failure. They 
describe failures in terms of the individual states that define 
them but are not concerned with the causes of those states. Be­
cause of this, plan repair techniques have been limited to local 
changes that do not make use of the range of responses that a 
more global understanding of why a failure has occurred would 
allow. 

This paper presents a different kind of approach to plan re­
pair that uses a causal description of why a failure has occurred 
to index to a set of strategies for repairing it. This approach is 
embedded in the computer program CHEF, a case-based plan­
ner that creates new plans in the domain of Szechwan cooking. 
When CHEF encounters a failure in one of its own plans, it ex­
plains why the failure has occurred, using a set of causal rules 
concerning the effects of the actions in its domain under differ­
ent circumstances. This explanation includes a description of 
the steps and states that led to the failure as well as a descrip­
tion of the goals that were being planned for by those steps and 
states. This description is used to index to a set of abstract 
repair strategies appropriate to the general description of the 
problem. CHEF then tries to implement the different strategies 
and chooses the one best suited for the specific problem. Be­
cause the planner has a detailed description of what has gone 
wrong in a situation, it is able to find and make use of strate­
gies that are less general purpose but are more powerful in the 
specific situations. 

*This report describes work done in the Department of Computer Sci­
ence at Yale University and the Computer Science Department at the Uni­
versity of Chicago. It was supported in part by ONR Grant #N00014-85-
K-0108. 

The problem that this technique addresses is one that crops 
up again and again in knowledge intensive systems: the problem 
of the control of knowledge access [2,11,15,16]. In this case, the 
problem takes the form of choosing which plan repair, among 
many, should be applied to a faulty plan. The goal is to have 
a planner that is able to diagnose its own failures as being one 
type or another and then use this diagnosis to choose and apply 
the change (or repair strategy) that will actually result in a 
correct plan. The approach described in this paper, one which 
also reflects the approach taken by human planners, allows a 
planner to do this diagnosis and repair without having to do 
an exhaustive or even extensive search of the possible results 
of applying the different plan changes that the planner knows 
about. 

II . AN OVERVIEW OF CHEF, 
CHEF is a case-based planner that, like other case-based 

reasoning systems [1,3,4,6,7,9,10], builds new plans out of its 
memory of old ones. CHEF's domain is Szechwan cooking and 
its task is to build new recipes on the basis of a user's requests. 
CHEF's input is a set of goals for different tastes, textures, in­
gredients and types of dishes and its output is a single recipe 
that satisfies all of its goals. Its basic algorithm is to find a 
past plan that satisfies as many of the most important goals as 
possible and then modify that plan to satisfy the other goals as 
well. 

Before searching for a plan to modify, CHEF examines the 
goals in its input and predicts any failures that might rise out the 
interactions between the plans for satisfying them. If a failure 
is predicted, CHEF adds a goal to avoid the failure it to it6 list 
of goals to satisfy and this new goal is also used to search for 
a plan. The power of CHEF lies in its ability to predict and 
thus avoid failures it has encountered before. The topic of this 
paper, however, is its ability to repair planning failures when it 
encounters them. 

CHEF consists of six modules: 

• The ANTICIPATOR predicts planning problems on the 
basis of the failures that have been caused by the interac­
tion of goals similar to those in the current input. 

• The RETRIEVER searches CHEF's plan memory for a 
plan that satisfies as many of the current goals as possible 
while avoiding the problems that the ANTICIPATOR has 
predicted. 

• The MODIFIER alters the plan found by the RE­
TRIEVER to achieve any goals from the input that it does 
not satisfy. 

t The REPAIRER is called if a plan fails. It builds up a 
causal explanation of the failure, repairs the plan and then 
hands it to the STORER for indexing. 

Hammond 109 



• The ASSIGNEE, uses the causal explanation built by the 
REPAIRER to determine the features which will predict 
this failure in the future. 

• The STORER places new plans in memory, indexed by 
the goals that they satisfy and the problems that they 
avoid. 

The important module for plan repair is the REPAIRER. 
This module is handed a plan only after it has been run in 
CHEF's version of the real world, a "cook's world" simulation 
in which the effects of actions are symbolically computed. The 
rules used in this simulation are able to describe the results of 
the plan CHEF has created in sufficient detail for it to notice 
the difference between successful and unsuccessful plans. 

The final states of a simulation are placed on a table of results 
that CHEF compares against the goals that it believes that a 
plan should satisfy. Plans that fail in one way or another to 
satisfy all of the goals of a plan are handed to the REPAIRER 
for repair. 

III . CHEF'S REPAIR ALGORITHM. 

CHEF's process of failure repair has five phases to it: 

• Notice the failure. 

• Build a causal explanation of why it happened. 

• Use the explanation to find a planning TOP with repair 
strategies. 

• Apply each of the general repair strategies using the 
specifics of the problem. 

• Choose and implement the best repair. 

The reason behind most of these steps is straightforward. 
CHEF has to notice a failure before it can react to it at all. It 
has to try each of its strategies in order to choose the best one. 
It has to implement one of them to fix the plan. The only steps 
that are not quite as straightforward are the second and third 
steps of building an explanation and using it to find a Thematic 
Organization Packet [13] or TOP. 

The explanation that CHEF builds for a failure is a causal 
description of why that failure occurred. These causal descrip­
tions correspond to planning TOPs. These TOPs are planning 
versions of the understanding structures suggested by Schank to 
store information that relates to complex interactions of goals. 

In CHEF, each TOP stores the repair strategies that will fix 
the faulty plans it describes. These TOP6 are not just descrip­
tions of problems. They are descriptions of problems that are 
paired with the solutions that can be applied to fix the problems. 
The strategies under a TOP are those and only those alterations 
of the causal structure of the problem described by the TOP that 
can solve that problem. The strategies themselves are not spe­
cific repairs, they are the abstract descriptions of changes in the 
causality of the situation that CHEF knows about. Finding a 
TOP that corresponds to a problem means finding the possible 
repairs that can be used to fix that problem. 

Each of CHEF's TOPs is stored in memory, indexed by the 
features of the explanation that describes the problem the TOP 
deals with. To get to the strategies that will deal with a problem, 
then, CHEF has to explain why it happened and then use this 
explanation to find the TOP and strategies that will fix the plan. 
This is a simple idea: the solution to any problem depends on 

(SIZE OBJECT (BEEF2) SIZE (CHUIK)) 
(SIZE OBJECT (BR0CC0LI1) SIZE (CHUMK)) 
(TEXTURE OBJECT (BEEF2) TEXTURE (TEIDER)) 
(TEXTURE OBJECT (BROCCOLI1) TEXTURE (SOGGY)) 
(TASTE OBJECT (BEEF2) 

TASTE (SAVORY IITEISITY (9.))) 
(TASTE OBJECT (BROCCOLI1) 

TASTE (SAVORY IITEISITY (6.))) 
(TASTE OBJECT (DISH) 

TASTE (AID (SALTY IITEISITY (9.)) 
(GARLICY IITEISITY (9.)) 
(SAVORY IKTEISITY (5.)))) 

Figure 1: Section of Plan Result Table. 

the underlying causality of the problem. It makes sense, then, 
to index solutions to problems under the causal descriptions of 
the problem themselves so that these descriptions can be used 
to access the appropriate solutions. 

iv. yfQTiqiNQ THE FAILVRE 

After CHEF has built a plan, it runs a simulation of it. This 
simulation is the program's equivalent of the real world and a 
plan that makes it to simulation is considered to be complete. 
The result of this simulation is a table of statements that char­
acterize the final states of the objects manipulated by the plan. 

For example, after running a plan to make a beef and broccoli 
dish the table of results includes descriptions of the taste, texture 
and size of the different ingredients as well as the tastes includes 
in the dish as a whole (figure 1). 

Once a simulation is over, CHEF checks the states on this 
table against the goals that it believes should be satisfied by the 
plan that it has just run. These goals take the form of state de­
scriptions of the ingredients, the overall dish and the compound 
items that are built along the way. Goals have the same form as 
the states placed on the simulator's result table, allowing CHEF 
to test for their presence after a simulation. CHEF tests for the 
satisfaction of goals by comparing expected states against those 
on the table of results. 

If a plan's goal is not found on the result table it generates 
when run, then the plan has not succeeded in achieving it and is 
considered a failure. This is the first kind of failure that CHEF 
can recognize. It is the failure of a plan to achieve one of its 
goals. Another type of failure is when a state is present on 
the table of results that is itself an objectionable state. These 
"objectionable" states include unwanted textures {e.g., SOGGY 
broccoli and FLAT souffles) and undesirable tastes (e.g., the 
iodine taste of fish and the oily taste of grease). The set of 
states that is considered objectionable is dynamic, changing in 
response to the different types of plans that are created. Some 
of these states are associated with particular types of dishes and 
only checked for when that type of dish is being made while 
others are more general and are always checked for. If one of 
these states is found on the table of results, the fact that it is 
there is also considered a failure of the proper running of the 
plan. 

One example of a failure that is both a failure to satisfy a 
goal and the inclusion of a negative state is a problem that arises 
when CHEF is running a plan it has built for STRAWBERRY-
SOUFFLE. To build this plan, CHEF has modified an existing 
VANILLA-SOUFFLE plan, adding strawberries to the original. 
Unfortunately, the strawberries add extra liquid, which creates 

110 COGNITIVE MODELING 



an imbalance between the liquid in the souffle batter and leav­
ening. This causes the souffte to fall. This fact is recorded by 
the simulation of the plan, and CHEF picks up the failure by 
testing the plan against the goals it is supposed to achieve. 

Checking goals of recipe -> STRAWBERRY-SOUFFLE 

- Checking goal -> 
It should be the cat* that: The batttr is risen. 

The goal: The batter is now risen. 
is not satisfied. 

It is instsad ths cass that: The battsr is f lat . 

- Checking for negative features -> 
Unfortunately: Ths battsr is now a bad texture. 
In that: The batter is now f lat . 

Recipe -> STRAWBERRY-SOUFFLE has failed goals. 

v . EXPLAINING THE FAILVRE 

Once a failure has been recognized, CHEF sets upon the task 
of building a causal explanation of why it has occurred. CHEF 
needs this explanation because the causal descriptions of failures 
are used to access the strategies that can be applied to them. 
The best way to organize plan repairs is under the descriptions 
of the problems that they solve so that the problem itself is a 
pointer to the solution. And the best description in this case is 
a causal explanation of the problem. 

To build its explanations, CHEF uses the trace left by the 
forward chaining of the simulator. Steps are connected to the 
states that follow from them by RESULT links. States lead 
into new steps by filling slots and by satisfying PRECONDI­
TIONS. Failures are traced back from the failed states them­
selves through the steps that caused them, back to the condi­
tions that caused the steps to fail, and so on back to the step 
that caused the unexpected condition itself. 

CHEF's movement through the causal network built up by 
the simulator is controlled by a set of explanation questions. 
These questions tell CHEF when to chain back for causes and 
when to chain forward for goals that might be satisfied by a par­
ticular state or step. These questions are aimed at discovering 
the actual step that caused the failure, the conditions that had 
to be true for it to occur, the cause of those conditions and the 
goals that the various steps and states were trying to satisfy. 

In the example of the failed strawberry souflte, CHEF starts 
with the fact that the batter has ended up flat and chains back 
through the steps and their results to find that the chopped 
strawberries are the actual cause of the problem. On the path 
to this discovery, it finds that the relationship between liquid 
and leavening that is needed to make the souffle rise is out of 
balance and that the goal being served by the the strawberries 
is that of having the overall dish taste like berries. All of these 
facts participate in choosing the abstract strategies that will be 
suggested to repair the plan. 

ASKIIG TEE QUESTIOI: »What is the failure?' 
AISVER-> The failure is: It is not the case that: 

The batter is now risen. 

ASKIIG TEE QUESTIOI: 'What is the preferred state?' 
AISWER-> The preferred state is: 

The batter is now risen. 

ASKIIG TEE QUESTIOI: 'Whet was the plan to achieve 

the preferred stats?1 

AISWER-> The plan was: 
Bake the better for twenty five minutes. 

ASKIIG TEE QUESTIOI: 'What were the conditions that 
led to the failure?1 

AISWER~> The condition was: 
There is an imbalance between the whipped 
stuff and the thin liquid. 

Only one aspect of the imbalance: 
There is an imbalance between the whipped stuff 
and the thin liquid is unexpected. 

The state: 
There is whipped stuff in the bowl from the total 
equaling 60 teaspoons, 

normally participates in the goal: 
The batter is now risen. 

Only the other aspect of the imbalance: 
There is thin liquid in ths bowl from the 
strawberry equaling 2.4 teaspoons 

is an unexpected condition. 

ASKIIG TEE QUESTIOI: 'What caused the conditions 
that led to the failure?' 
AISWER-> There is thin liquid in the bowl from the 

strawberry equaling 2.4 teaspoons, 
was caused by: Pulp the strawberry. 

ASKIIG TEE QUESTIOI: 'Do the conditions that caused 
the failure satisfy any goals?' 
AISWER-> The condition: There is thin liquid in the 

bowl from the strawberry equaling 2.4 
teaspoons 

is a side effect only and meets no goals. 

ASKIIG TEE QUESTIOI: 'What goals does the step that 
caused the condition enabling the failure satisfy?' 
AISWER-> The step: Pulp the strawberry. 

establishes the preconditions for: 
Nix the strawberry with the vanilla, 
egg white, egg yolk, milk, sugar, salt, 
flour and butter. 

This in turn lsads to ths satisfaction of: 
The dish now tastes like berries. 

VI. INDEXING TO THE TOP 

CHEF's repair strategies are all stored under planning TOPs, 
structures that correspond to different planning problems. The 
TOPs themselves are stored in a discrimination network, in­
dexed by the features of the explanations they correspond to. 
The strategies organized under a TOP describe the fixes to the 
failed plans described by the TOP. These fixes are designed to 
repair the failure without interfering with the other goals in 
any plan that the TOP describes. CHEF has sixteen TOPs 
that correspond to different causal situations and store dif­
ferent repair strategies. These TOPs include structures such 
as SIDE-EFFECT:DISABLED-CONDITION:BALANCE and 
SIDE-FEATUREiENABLES-BAD-CONDITION. The strate­
gies include changes such as REORDER steps, REMOVE con­
dition, and SPLIT-AND-REFORM step. 

CHEF uses the answers to each of its explanation questions 
as an index through a discrimination network that organizes its 
TOPs. The features that are important in this discrimination 
include the nature of the violated condition, the temporal rela­
tionship between the steps and the nature of the failure itself. 

Hammond 111 



There are three parts to each of CHEF's repair TOPs: the 
indices used to access it, the repair strategies stored under it 
and the features of the situation that it describes that are to be 
marked as predictive of the problem later on. In this paper, only 
the first two of these are important, the indices and strategies. 
The answers to the explanation questions CHEF has asked are 
used to find a TOP. The choice of a TOP is dependent on the 
causality of the problem and each TOP corresponds to a different 
causal situation. The strategies that are stored under a TOP 
are a reflection of this, in that they are those and only those 
strategies that can be applied to repair the problem described 
by the TOP. The causal description of a problem is used to access 
the TOP that corresponds to it and thus access the strategies 
that can be applied to solve it. 

In the case of the strawberry souffle failure, the fact that the 
condition violated in the plan is a balance requirement between 
two amounts and the fact that the condition that causes the 
imbalance is a side-effect of a step that does not satisfy any 
goals are very important in discriminating down to the TOP that 
corresponds to the situation. If the condition that caused the 
imbalance had not been a side-effect or the requirement had not 
been one for a balance condition, different TOPs, with different 
strategies would have been found. 

Searching for top using following indices: 

Failure « It is not the case that: 
The batter is now risen. 

In i t ia l plan = Bake the batter for twenty five 
minutes. 

Condition enabling failure = There is an 
imbalance between the whipped stuff 
and the thin liquid. 

Cause of condition = Pulp the strawberry. 
The goals enabled by the condition * MIL 
The goals that the step causing the condition 
enables « The dish now tastes like berries. 

Found TOP -> SE:DC:B 
TOP -> SIDE-EFFECT:DISABLED-COIDITIOI:BALAICE 

has 5 strategies associated with i t : 

ALTER-PLAI:SIDE-EFFECT ALTER-PLAI:PRECOIDITIOI 
ADJUMCT-PLAI RECOVER 
ADJUST-BALAICE:UP 

SIDE-EFFECT:DISABLED-CONDITION 
is recognized when one step for satisfying a goal has a side-
effect which disables a satisfaction condition for a later step and 
this satisfaction condition is a balance requirement between two 
states. Each strategy under this TOP suggests an alteration to 
the initial plan that will cause a break in one part of this causal 
chain. Each change suggested by a strategy is, in principle, suf­
ficient to repair the plan. So they are used individually and are 
not designed to be used in concert. Each changes one link in 
the causal chain that leads to the failure. The strategies under 
SIDE-EFFECT:DISABLED-CONDITION:BALANCEare: 

e ALTER-PLAN:SIDE-EFFECT: Replace the step that 
causes the side effect with one that does not. The new 
step must satisfy the goals of the initial step. 

e ALTER-PLAN:PRECONDITION: Replace the step that 
has the violated condition with a step that satisfies the 
same goals but does not have the same condition. 

e ADJUNCT-PLAN: Add a new step that is run concurrent 

with the step that has the violated condition that will allow 
it to satisfy the goal even in the presence of the violation. 

e RECOVER: Add a new step between the step that causes 
the side-effect and the step that it blocks that removes the 
violating condition. 

e ADJUST-BALANCE:UP: Adjust the imbalance between 
conditions by adding more of what the balance lacks. 

Each of these five strategies suggests a change in the causal 
situation that will solve the current problem without affecting 
the other goals of the plan. 

If the features of the problem had been different, the TOP 
and the strategies found would also be different. For example, 
if the condition violated by the side-effect had not been a bal­
ance condition, the TOP found would have been the more gen­
eral SIDE-EFFECT:DISABLED-CONDITION structure that 
lacks the ADJUST-BALANCE:UP strategy. As the situation 
changes, the fixes that can be applied to it change and thus the 
TOP and strategies that are found to deal with it change as well. 

VII- APPLYING THE STRATEGIES 

Once a TOP has been found, the strategies that are stored 
under it are applied to the problem at hand. For CHEF, ap­
plying a strategy means generating the specific change to the 
failed plan that is suggested when the abstract strategy is filled 
in with the specifics of the current situation. The idea here is 
to take an abstract strategy such as RECOVER (figure 2) and 
fill it in with the specific states that it suggests recovery from. 
In this way a general strategy for repairing a plan becomes a 
specific change to the plan at hand. 
(def:strat recover 
bindings 

(♦condition* expanswer-condition 
♦step* expanswer-step) 

question 
(enter-text ("Is there a plan to recover from M 

♦condition*) 
test (search-step-memory *condition* nil) 
exit-text ("There is a plan" *answer*) 
fail-text ("Mo recover plan found")) 

response 
(text ("Response: After doing step: " *step* t 

" Do: " *answer*) 
action (after *step* *answer*))) 

Figure 2: Definition of the RECOVER strategy 

Each strategy has two parts: a test and a response. The 
test under each strategy determines whether or not the strategy 
has an implementation in the current situation. The response is 
the change that is suggested. In most cases, the results of the 
test run by the strategy is used in the response. For example, 
one of CHEF's strategies is RECOVER, which suggests adding 
a new step between two existing ones that removes a side-effect 
of the first before it interferes with the second. The test on 
RECOVER checks for the existence of a step that will work for 
the particular problem. The response is a set of instructions that 
will insert that step between the two existing ones. The action 
that is returned when CHEF searches for the step described by 
RECOVER is used in building the response. The general format 
of the strategies is to build a test and then use the response to 

112 COGNITIVE MODELING 



that test in building the set of instructions that CHEF has to 
follow in order to implement the change directed by the strategy. 

In building the tests and responses during the application of 
a strategy to a particular problem, CHEF uses the answers to its 
explanation questions to fill in the specific steps and states that 
the strategy will test and possible alter. The tests and responses 
are actually empty frames that are filled with the specifics of the 
the current explanation. The strategy RECOVER, for example, 
uses the answer to the question of what condition caused the 
current failure to construct its test and the answer to the ques­
tion of what step caused that condition to build its response. 
This is so it can find a step that will remove the condition and 
run it immediately after the condition arises. The definition of 
each strategy refers to the answers to the explanation questions 
that are important to it, making it possible to build the spe­
cific test and response at the appropriate time. Each definition 
begins with a binding of the existing explanation answers to 
variables that the strategy will then use to construct its query 
and response. When the strategy is actually applied, the specific 
answers are inserted into the appropriate slots in the strategy 
structure. 

In the example of the strawberry souffle, the five strategies 
associated with the TOP end up generating four possible changes 
that will repair the plan. CHEF generates all possible changes so 
that it can compare the specific changes and choose which one 
to actually implement on the basis of the changes themselves 
rather than on the basis of the abstract strategies. 

Applying TOP -> 
SIDE-EFFECT:DISABLED-CONDITION:BALAHCE 
to failure It is not the case that: The batter is 
now risen - in recipe BAD-STRAWBERRY-SOUFFLE 
Asking questions needed lor evaluating strategy: 
ALTER-PLAN:SIDE-EFFECT 

ASKING -> 
Is there an alternative to 
Pulp the strawberry, 

that wi l l enable 
The dish now tastes like berries, 

which does not cause 
There is thin liquid in the bowl from the 
strawberry equaling 2.4 teaspoons 

Response: Instead of doing: Pulp the strawberry 
do: Using the strawberry preserves. 

Asking questions needed for evaluating strategy: 
ALTER-PLAN:PRECONDITION 

ASKING -> 
Is there an alternative to 
Bake the batter for twenty five minutes, 

that wi l l satisfy 
The batter is now risen, 

which does not require 
It is not the case that: There is thin liquid 
in the bowl from the strawberry equaling 2.4 
teaspoons. 

Response: No alternate plan found 

Asking questions needed for evaluating strategy: 
ADJUNCT-PLAN 

ASKING -> 
Is there an adjunct plan that wi l l disable 

There is thin liquid in the bowl from the 
strawberry equaling 2.4 teaspoons 

that can be run with 
Bake the batter for twenty five minutes. 

Response: Before doing step: Pour the egg yolk, 
egg white, vanilla, sugar, strawberry, 
salt, milk, flour and butter into a 
baking-dish. 
Do: Nix the flour with the egg, spices, 
strawberry, salt, milk, flour and butter. 

Asking questions needed for evaluating strategy: 
RECOVER 

ASKING -> 
Is there a plan to recover from 
There is thin liquid in the bowl from the 
strawberry equaling 2.4 teaspoons 

Response: After doing step: Chop the strawberry 
do: Drain the strawberry. 

Asking questions needed for evaluating strategy: 
ADJUST-BALANCE 

ASKING -> 
Can we add more whipped stuff to 
BAD-STRAWBERRY-SOUFFLE 

Response: Increase the amount of egg white used. 

Each of CHEF's strategies generates a change that is a com­
bination of the abstract description of a repair provided by the 
strategy itself and the specifics of the failed plan. Because each 
TOP only stores those strategies that will repair the causal situ­
ation described by it and used to find it, any one of them will fix 
the plan if implemented. Because each TOP does have multiple 
strategies, however, CHEF must have a mechanism for not only 
generating these changes, but also choosing between them. 

VIII. CHOOSING THE REPAIR 

Once all of the possible repairs to a failed plan are generated, 
CHEF has to choose which one it is going to implement. To do 
this CHEF has a set of rules concerning the relative merits of 
different changes. By comparing the changes suggested by the 
different strategies to one another using these heuristics, CHEF 
comes up with the one that it thinks is most desirable. 

This set of heuristics is the compilation of general knowledge 
of planning combined with knowledge from the domain about 
what sort of changes will be least likely to have side-effects. 
Some of these heuristics are closely tied to the domain, such as 
"It is easier to add a preparation step than a cooking step." and 
"It is better to add something that is already in the recipe than 
something new.'1 Others are more domain independent, such as 
"It is better to add a single step than to add many steps." and 
"It is better to replace a step than add a new step." 

Once a change is selected, CHEF actually implements the 
change using its procedural knowledge of how to add new steps, 
split steps into pieces, remove steps and add or increase ingre­
dients. 

In the strawberry souffle example, the final repair that is 
chosen is to add more egg white to the recipe. This change is 
generated by the strategy ADJUST-BALANCE:UP which sug­
gests altering the down side of a relationship between ingredients 
that has been placed out of balance. This repair is picked be­
cause it is the least violent change to the plan that can be made 

Hammond 113 



and has the least likelihood of creating one problem as it solves 
another. 

IX. THE REPAIRS 
The repair strategies used by CHEF owe a great deal to the 

work on plan repair that has preceded it [12,14,15]. CHEF's 
repair rules, however, are somewhat more detailed than those 
that have gone before and make greater use of an organization 
that links the description of a problem to the solutions that can 
be applied to it. 

CHEF uses seventeen general repair rules in the normal 
course of its planning. Each one of these is associated with 
one or more TOPs and suggests a fix to a specific causal prob­
lem. Each one of these rules carries with it a general description 
of a fix to a plan, through reordering of steps, an alteration of 
the objects involved or a change of actions. These general de­
scriptions are filled in with the specific states that the planner 
is concerned with at the time when the repair rule is suggested. 

These strategies are: 

• ALTER-PLAN:SIDE-EFFECT: Replace the step that 
causes the violating condition with one that does not have 
the same side-effect but achieves the same goal. 

• ALTER-PLAN:PRECONDITION: Replace the step with 
the violated precondition with one that does not have the 
same precondition but achieves the same goal. 

• RECOVER: Add a step that will remove the side-effect 
before the step it interferes with is run. 

• REORDER: Reorder the running of two steps with respect 
to each other. 

• ADJUST-BALANCE:UP: Increase the down side of a vi­
olated balance relationship. 

• ADJUST-BALANCE:DOWN: Decrease the up side of a 
violated balance relationship. 

• ADJUNCT-PLAN:REMOVE: Add a new step to be run 
along with a step that causes a side-effect that removes 
the side-effect as it is created. 

• ADJUNCT-PLAN:PROTECT: Add a new step to be run 
along with a step that is affected by an existing condition 
that allows the initial step to run as usual. 

• ALTER-TIME.UP: Increase the duration of a step. 

• ALTER-TIME:DOWN: Decrease the duration of a step. 

• ALTER-ITEM: Replace an existing ingredient with one 
that have the desired features but not an undesired one. 

• ALTER-TOOL: Replace an existing tool with one that has 
the desired effect but does not cause an undesired one. 

• SPLIT-AND-REFORM: Split the step into two separate 
steps and run them independently. 

• ALTER-PLACEMENT:BEFORE: Move an existing step 
to run before another one. 

• ALTER-PLACEMENT:AFTER: Move an existing step to 
run after another one. 

• ALTER-FEATURE: Add a step that will change an unde­
sired attribute to the desired one. 

• REMOVE-FEATURE: Add a step that will remove an in­
herent feature from an item. 

Each of these strategies is associated with one or more plan­
ning TOPs. Each TOP is indexed by a general description of 
the type of plan failure that its strategies can repair. This allows 
the explanation of a failure to be used to access the TOP that 
contains the strategies that can repair it. 

X. CONCLUSIONS 

By explaining plan failures CHEF is able to make use of a 
broad range of plan repairs that a less informed system would not 
be able to apply reliably. The explanation gives the planner the 
knowledge it needs to chose those and only those repairs that will 
fix a plan without introducing new problems to it. As a result, 
strategies with greater power but less general applicability can 
be used with confidence. Further, by dividing the task of plan 
repair into diagnosis and treatment the system has the flexibility 
to try multiple strategies for repairing a single failure and then 
choose the one most appropriate for the particular problem. The 
method as a whole, then, gains in range of different strategies 
that can be applied and the power of individual strategies. 

REFERENCES 

[I] A Herman,R., Adaptive Planning: Refitting old plans to new situ­
ations, in The seventh annual conference of the cognitive Science 
Society, 1985. 

[2] Alterman, R., An Adaptive Planner. AAAI-86, 1986, 65-69. 
[3] Carbonell, J.G., Derivational analogy and its role in problem solv­

ing. AAAI-83, 1983, 64-69. 
[4] Carbonell, J. G , A computational model of analogical problem 

solving. IJCAI 7, 1981. 
[5] Fikes, RM and Nilsson, N., STRIPS: A new approach to the appli­

cation of theorem proving to problem solving, Artificial Intelligence, 
2 (1971). 

[6] Hammond, K., Case-based Planning: An integrated theory of plan­
ning, learning and memory., Ph.D. Thesis, Yale University, 1986. 

[7] Hammond, K., Indexing and Causality: The organization of plans 
and strategies in memory., Yale Department of Computer Science 
Technical Report 351, 1985. 

[8] Hammond, K., CHEF: A model of case-based planning., AAAI-86, 
1986, 267-271. 

[9] Kolodner, J. L. and Simpson, R. L., Experience and problem solv­
ing: a framework. Proceedings of the ninth annual conference of 
the cognitive science society, 1984. 

[10] Kolodner, J. L., Simpson, R. L. and Sycara-Cyranski, K., A pro­
cess model of case-based reasoning in problem solving., IJCAI 9, 
1985. 

[II] McDermott, D., Planning and Acting, Cognitive Science 2, 
(1978), 71-109. 

[12] Sacerdoti, E., A structure for plans and behavior, Technical Re­
port 109, SRI Artificial Intelligence Center, 1975. 

[13] Schank, R., Dynamic memory: A theory of learning in computers 
and people, Cambridge University Press, 1982. 

[14] Sussman, G., Artificial Intelligence Series, Volume 1: A computer 
model of skill acquisition, American Elsevier, New York, 1975. 

[15] Wilensky, R., Planning and Understanding, Addison-Wesley, 
Reading, Mass, 1983. 

114 COGNITIVE MODELING 


