
K n o w l e d g e E n g i n e e r i n g T o o l s a t t h e A r c h i t e c t u r e L e v e l 

T h o m a s G r u b e r a n d P a u l C o h e n * 
Exper imenta l Knowledge Systems Laboratory 

Depar tment of Computer and In format ion Science 
Universi ty of Massachusetts 

Amhers t , Massachusetts 01003 

A B S T R A C T 

A knowledge system architecture is a level of description of 
knowledge systems that specialises general AI implementation 
techniques to suit a class of problem solving tasks. This paper 
presents three complementary views of the architecture level, 
and analyzes their implications for the design of knowledge en­
gineering tools. The analysis is illustrated with an architec­
ture for managing uncertainty by reasoning about actions, and 
with a hierarchy of knowledge engineering tools to support sys­
tem development and knowledge acquisition at the architecture 
level. 

I . I n t r o d u c t i o n 

This paper is about tools for knowledge engineering at the 
architecture level. A knowledge system architecture spe­
cializes common AI problem-solving techniques to a par­
ticular class of tasks. An architecture provides descriptions 
of a particular kind of problem solving (e.g., diagnosis or 
configuration) at a conceptual level that is above the im­
plementation, thus making clear which aspects of a class 
of problems are intrinsic to the problem and which are ar­
tifacts of the implementation. An architectures is a partial 
design of a knowledge system in which some decisions are 
made in advance to support particular task characteristics. 
For example, many medical diagnosis systems first inter­
pret data bottom-up to find "triggered" disease hypothe­
ses, then set top-down goals of acquiring evidence pro and 
con the triggered hypotheses. This "trigger/acquire ev­
idence" cycle is an intrinsic part of any architecture for 
the class of medical diagnosis tasks, though it might be 
implemented in a wide variety of ways. 

Architecture-level tools for knowledge engineers can 
improve the productivity of system development and 
knowledge acquisition because: 

• By supporting the abstraction of representational and 
computational primitives at the architecture level, 
they permit the knowledge engineer and expert to co­
operatively develop systems using a shared language 
of architecture constructs, rather than in terms of the 
underlying implementation. 

• They can incorporate knowledge about the architec­
ture to facilitate system development and knowledge 
acquisition (e.g., by enforcing constraints on the types 
and values of elements in the knowledge base). 

The idea of an architecture level underlies recent work 
on knowledge systems.* Chandrasekaran and his col­
leagues have identified a number of "generic tasks" such 
as hierarchical diagnosis and routine design, and have de­
veloped task-specific representation languages and control 
strategies for them [Chandrasakeran, 1986, Bylander and 
Mittal, 1986, Brown and Chandrasakeran, 1985], McDer-
mott and colleagues have produced several knowledge sys­
tems using architectures that integrate knowledge acqui­
sition tools with the problem solving methods [Kahn tt 
a/., 1984, Eshelman and McDermott, 1986, Marcus, 1987, 
Kahn et a/., 1987]. Clancey has described in detail the 
heuristic classification method embodied in the HERACLES 
architecture [Clancey, 1986). Newell [Newell, 1982) antici­
pated much of this work in his AAAI President's Address 
on the knowledge level, where he distinguished the knowl­
edge of an intelligent agent, which is used to model its be­
havior, from the knowledge representation that describes 
how the knowledge is encoded in a symbol system. 

This paper presents an analysis of the role of knowl­
edge engineering tools at the architecture level. We de­
scribe three complementary views of what is meant by the 
architecture level, and illustrate them in the context of MU. 
MU is an architecture for systems that reason about the ef­
fects of actions to manage uncertainty. We show how the 
architecture-level analysis leads to a hierarchical organi­
zation of knowledge engineering tools to support software 
development and knowledge acquisition for MU systems. 
We conclude with some advantages of this approach to 
knowledge engineering. 

I I . T h r e e v i e w s o f t h e 

a r c h i t e c t u r e l e v e l 

Architectures can be viewed from three perspectives, and 
each suggests roles for architecture-level tools. First, the 
functional view presents an architecture as an application 
of general AI techniques to suit a particular style of prob­
lem solving. Described functionally, the blackboard archi­
tecture, for example, is well-suited to problems with noisy 
data and multiple sources of evidence. A knowledge system 
architecture specializes weak methods to solve a particu-

*This research is funded by National Science Foundation gran*. 
1ST 8409623 and DARPA/RADC Contract F30602-85-C-0014. 

♦The architecture level was a major focus of the AAAI Workshop 
on High-level Tools in October, 1986. An earlier version of this paper 
was presented there. 

100 ARCHITECTURES AND LANGUAGES 



lar class of tasks. Architectures have been developed for 
simple classification (e.g., decision trees), heuristic classi­
fication (e.g., HERACLES [Clancey, 1986); CSRL [Bylander 
and Mittal, 1986]), constructing configurations (e.g., SALT 
[Marcus, 1987]; COAST [Bennett, 1986]), and routine de­
sign (e.g., DSPL [Brown and Chandrasakeran, 1985]; DO­
MINIC [Howe et a/., 1986]). 

The second perspective is structural: an architecture 
is a partial design that includes specifications of knowledge 
representation formalisms, inference mechanisms, and con­
trol strategies. Many of the structural components, such 
as frame and rule systems, are provided by commercially 
available AI programming environments. Architectures, 
however, are not arbitrary combinations of these compo­
nents, but artifacts designed by the knowledge engineer for 
particular tasks. 

A third view of an architecture is that it defines a 
virtual machine. Just as Lisp provides primitives for sym­
bol manipulation that the programmer can use without 
thinking about how they are realized in hardware, a knowl­
edge system architecture presents representational primi­
tives above the level of their implementation. The archi­
tecture provides a language that describes the behavior 
of a system in terms natural for the knowledge engineer 
and expert. For example, most medical diagnosis systems 
provide some kind of support for triggering - making par­
ticular hypotheses "active" when certain events occur, typ­
ically input data. To the expert, triggering might corre­
spond to "bringing a diagnosis to mind." A programmer 
can produce the effect of triggering using implementation-
level primitives (e.g., giving triggered diseases high cer­
tainty factors or agenda priorities). But terms such as 
triggering — not their implementation — are the medium 
of knowledge engineering. Such task-level terms promote 
explanation [Swartout, 1983] and knowledge acquisition 
[Gruber and Cohen, 1987]. Knowledge engineers, experts, 
and users can all understand triggering without thinking 
about how it is implemented. A virtual machine that exe­
cutes triggering as a primitive is easier to program. 

In summary, the functional view of an architecture 
emphasizes the behavior of programs that instantiate it. 
The structural view emphasizes knowledge representa­
tions, inference methods, and other components of the ar­
chitecture. A virtual machine integrates these views: it is 
an abstract device designed to meet the functional needs of 
a class of problem solving tasks. The next section discusses 
how the interactions of these views result in an organiza­
tion of knowledge engineering tools. 

I I I . T o o l s f o r t h e M U 

A r c h i t e c t u r e 

In this section we describe an architecture for systems 
that actively manage uncertainty, called MU [Cohen et o/., 
1987b], with the aim of illustrating how the three views of 
architectures influence the design of knowledge engineering 
tools. MU grew out of experience with MUM (Managing Un­
certainty in Medicine), a system for planning a series of di­
agnostic questions, tests, and treatments for diseases man­
ifesting chest and abdominal pain [Cohen et aL, 1987a). 

The primary aim of MUM is to decide how to act when 
data are insufficient for diagnosis and treatment. Like a 
physician, MUM reasons about tradeoffs between the costs 
of evidence, the marginal utility of potential data given 
what is already known, the effects of treatments and the 
evidence they provide, and so on. MU is an architecture 
for building systems like MUM that reason about uncertain 
situations in deciding how to act. 

Viewed from a functional perspective, MU's task is 
managing uncertainty by taking appropriate actions. The 
task requires knowledge about the effects of actions on 
multiple goals, such as providing evidence for and against 
hypotheses, minimizing cost, and treating the condition. 
Structurally, MU has a large inference network of hypothe­
ses, supporting evidence and intermediate conclusions, and 
actions that produce evidence and provide treatment; a 
working memory of developing hypotheses; inference mech­
anisms for propagating the effects of evidence in working 
memory; and support for strategies that choose among ac­
tions. Viewed as a virtual machine, MU supports knowl­
edge engineering in terms that make sense for diagnostic 
tasks, such as hypothesis and potential-evidence. These 
terms are specialized for specific domains by terms such as 
disease, and further instantiated as specific diseases such 
as angina. 

The interactions of these views of the MU architecture 
are apparent in the design of knowledge engineering tools. 
Figure 1 shows a hierarchy of tools that supports develop­
ment of systems in MU. The foundation is a commercially-
available AI programming environment that includes im­
plementation primitives such as rules and frames, and ba­
sic AI programming techniques such as pattern-matching 
rule interpreters and message-passing. The bottom layer 
in Figure 1 is a structural description of the implementa­
tion of MU. It is not a design for an architecture, because 
no functional description has been given or is implied by 
this collection of implementation primitives, which could 
be instantiated to provide a wide range of behaviors. 

The functional view of an architecture constrains how 
implementation-level primitives and techniques are spe­
cialized for a particular kind of problem-solving. The func­
tional requirements of MU are that it should represent in­
ferential relations among data, intermediate conclusions, 
and hypotheses. It should maintain measures of belief in all 
these objects, decide focus of attention (i.e., which objects 
to seek evidence for), and decide which evidence to seek. 
At the second level of Figure 1, the frames and slots of 
the first level are specialized as hypotheses and inferential 
relations. Inferential relations serve as pathways through 
the inference net. Rules are used to implement combining 
functions that specify how evidence supporting hypothe­
ses is combined when propagated from subordinate nodes. 
Some properties of hypotheses and data-gathering actions 
— a subset of their slot values — are used as control param­
eters, which help determine focus of attention. The value 
propagation mechanism is implemented with the demons 
("active values") and message passing capabilities of the 
frame system. In summary, the structure of the architec­
ture is designed from implementation constructs to meet 
the functional requirements of a particular problem solv­
ing method, resulting in a virtual machine, or task-specific 
shell. 

Gruber and Cohen 101 



Tool Level Objects in User's View Software Support 
Knowledge Domain-specific Terms 
Acquisition diseases, intermediate diagnoses, ques-
Interface tions, clinical tests, triggering symptoms 

for diseases, confirming test results, crit-
icality of diseases, relative costs of tests, 
treatments, efficacy of treatment 

(Meta-) Knowledge-based Utilities 
language-specific editors and form-filling in­
terfaces, inferential consistency analyzer, 
graphical display of the inference net 

Virtual 
Machine 
(shell) 

Task-level Constructs 
hypotheses, intermediate conclusions, 
data-gathering actions, inferential rela­
tions, combining functions, control pa­
rameters, control rules, preference rank­
ings among actions 

Task-specific Reasoning Mechanisms 
value propagation functions, predicates on 
the state of the inference net, rule-based 
planner, decision-making support 

AI Toolbox Implementation Primitives 
(KEE) frames and slots, rules, pattern matching 

language, Lisp objects and functions, win­
dows and graphic objects 

AI Programming Techniques 
knowledge base bookkeeping, rule inter­
preter, inheritance mechanisms, assump­
tion maintenance, demon invocation and 
message passing, window system, network 
grapher 

Figure 1: A hierarchy of knowledge engineering tools to support the MU architecture. 

Figure 2: Fragment of the inference network for MUM 

An architecture is designed not for a specific task 
like diagnosing chest pain, but for a class of tasks such 
as diagnostic reasoning. The knowledge engineer and 
expert instantiate architecture-level primitives for a par­
ticular application just as the architecture designer spe­
cializes implementation-level primitives. Figure 2 is a 
structural view of MUM - the chest pain specialist -
engineered in the MU architecture. Hypotheses are in­
stantiated as diseases such as classic angina; inter­
mediate conclusions are instantiated as clusters such 
as exercise-induced pain; inferential relations are in­
stantiated by specific links between evidence and conclu­
sion, such as the potent ia l evidence link between EKG 
resul ts and classic angina. 

Having instantiated architecture-level constructs such 
as hypotheses with domain-level terms such as diseases, the 
knowledge engineer can build a knowledge-acquisition in­
terface to help elicit knowledge in the terms of the domain. 
Knowledge about the architecture-level terms is provided 
by the knowledge engineer in the shell, and is inherited 
by the domain objects used in an application. Knowl­
edge acquisition utilities, on the top of the hierarchy, use 
meta-knowledge about objects in the knowledge base to 
help the user build a syntactically valid and semantically 
consistent knowledge base. Currently MU supports form-
filling editors for all knowledge base objects, graphical in­
terfaces for acquiring combining functions, and rudimen­
tary consistency-checking abilities. Tools for interactively 
acquiring control knowledge are in progress. 

I V . C o n c l u s i o n s 

Architecture-level knowledge engineering tools have sev­
eral advantages: 

• One can capitalize on the vertical integration of 
implementation-level tools at the architecture level. 
For example, a general-purpose frame editor and net­
work grapher provided at the implementation level 
(such as the KREME interface [Abrett and Burstein, 
1987]) can be customized as a knowledge acquisi­
tion interface for editing architecture-level constructs 
such as hypotheses and their instantiations as dis­
eases. This is possible because the architecture-level 
objects are specializations of implementation-level ob­
jects (i.e., frames), and consequently share their struc­
ture. 

• Declaratively representing architecture-levd con­
structs — the primitive objects of the virtual machine 
— encourages a consistent design shared by a team of 
programmers. For example, once the trigger relation 
has been designed, one need not worry about several 
members of a software project trying to achieve the 
same functionality with different implementations. 

102 ARCHITECTURES AND LANGUAGES 



• Declarative architecture-level constructs also facilitate 
knowledge acquisition because meta-knowledge can be 
attached to objects to check for consistency, provide 
help, generate explanations, and so on. For exam­
ple, a form-filling interface specialized for acquiring 
an instance of a disease can use a declarative descrip­
tion of the properties of diseases, such as the kinds 
of relations they have with data, to offer a menu of 
documented choices [Gruber and Cohen, 1987]. 

• Building a virtual machine at the architecture level 
and then a knowledge acquisition interface on top of 
the virtual machine defines the roles of the knowl­
edge engineer and expert. The knowledge engineer de­
signs an architecture by specializing general-purpose 
implementation-level tools to operationalize the con­
structs suited for the problem solving task, whereas 
the expert instantiates architecture-level constructs 
for the application domain. Virtual machine tools (sic] 
assist the knowledge engineer in customizing an archi­
tecture for a particular application, and knowledge ac­
quisition tools help the expert build, refine, and debug 
the knowledge base. 

V . D i s c u s s i o n 

The hierarchy of tools discussed here reflects a 
power/generality tradeoff. Constructs at the implemen­
tation level are general (e.g., production systems can be 
configured for many kinds of problem solving) but from 
the standpoint of knowledge engineering they are weak. 
To say an object is a disease hypothesis is to imply much 
more knowledge about it than to say it is a frame, even 
though the implementation of the disease hypothesis may 
be no more than a frame. This added knowledge constrains 
the internal structure of the disease frame (e.g., values 
and types of slots, or the kinds of messages it can han­
dle, etc.), constrains its relationships with other frames, 
and so on. Since these constraints facilitate knowledge 
engineering, architecture-level objects like disease frames 
are at the "power" end of the power/generality spectrum. 
Implementation-level objects, lacking constraints, are more 
general but correspondingly less powerful from the stand­
point of knowledge engineering. 

Thus, when one builds an expert system for a task, 
the utility of an architecture level analysis depends entirely 
on how much one knows about the task. The knowledge 
system architecture embodies knowledge about a class of 
problem solving tasks - it is a virtual machine for that class 
- and as such facilitates system development and knowl­
edge acquisition for problem solvers of that class. The 
power/generality tradeoff tells us that we can ameliorate 
the knowledge acquisition bottleneck for restricted classes 
of tasks by designing architectures and building integrated 
"power tools" at the architecture level. 

R e f e r e n c e s 

[Abrett and Burstein, 1987] Abrett, G. & Burstein, M. The 
KREME knowledge editing environment. International 
Journal of Man-machine Studies, in press. 

[Bennett, 1986) Bennett, J. S. COAST: A task-specific tool 
for reasoning about configurations. Technical Report, 
Teknowledge Inc., Palo Alto, CA, 1986. 

(Brown and Chandrasakeran, 1985] Brown, D. C, & Chan-
drasekaran, B. Expert systems for a class of mechanical 
design activity. In J. Gero (Ed.), Knowledge Engineering in 
Computer-aided Design, Amsterdam: North-Holland, 1985. 

[Bylander and Mittal, 1986] Bylander, T. & Mittal, S. CSRL: 
A langauge for classificatory problem solving and uncer­
tainty handling. AI Magazine, 7(3), August, 1986, 66-77. 

[Chandrasakeran, 1986] Chandrasakeran, B. Generic tasks in 
know ledge-based reasoning: high-level building blocks for 
expert system design. IEEE Expert, Fall, 1986, 23-30. 

(Clancey, 1985] Clancey, W. J. Heuristic Classification. Artifi­
cial Intelligence, 27, 1985, 289-350. 

[Clancey, 1986] Clancey, W. J. From GUIDON to 
NEOMYCIN and HERACLES in twenty short lessons. AI 
Magazine, 7(3), 1986, 40 60. 

[Cohen et ai, 1987a] Cohen, P., Day, D., Delisio, J., Green-
berg, M., Kjeldsen, R., Suthers, D., & Berman, P. Manage­
ment of uncertainty in medicine. Proceedings of the IEEE 
Conference on Computers and Communications, Pheonix, 
Arizona, February, 1987, 501-506. 

[Cohen et ai, 1987b] Cohen, P., Greenberg, M., & Delisio, J. 
MU: A development environment for prospective reason­
ing systems. Proceedings of the Sixth National Conference 
on Artificial Intelligence, Seattle, Washington, July, 1987, 
forthcoming. 

[Eshelman and McDermott, 1986] Eshelman, L. & McDer-
mott, J. MOLE: A knowledge acquisition tool that uses 
its head. Proceedings of the Fifth National Conference on 
Artificial Intelligence, Philadelphia, August, 1986, 950-955. 

[Gruber and Cohen, 1987] Gruber, T. R. & Cohen, P. R. Prin­
ciples of Design for Knowledge Acquisition, Proceedings of 
the Third IEEE Artificial Intelligence Applications Confer­
ence, Orlando, Florida, February 23 27, 1987. 

[Howe et ai, 1986| Howe, A. E., Dixon, J. R., Cohen, P. R., 
Simmons, M. K. DOMINIC: A domain-independent pro­
gram for mechanical engineering design. International Jour­
nal for Artificial Intelligence in Engineering, 1(1), July, 
1986, 23-29. 

[Kahn et ai, 1987] Kahn, G. S., Breaux, E H , Joseph, R. L., 
& DeKlerk, P. An intelligent mixed-initiative workbench 
for knowledge acquisition. International Journal of Man-
machine Studies, in press. 

[Kahn et ai, 1984] Kahn, G., Nowlan, S. & McDermott, J. A 
foundation for knowledge acquisition. Proceedings of the 
IEEE Workshop on Principles of Knowledge-base Systems, 
Denver, Colorado, December, 1984, 89-98. 

[Marcus, 1987) Marcus, S. Taking backtracking with acquisi­
tion grain of SALT. International Journal of Man-machine 
Studies, in press. 

[Newell, 1982] Newell, A. The knowledge level. Artificial Intel­
ligence, 18, 1982, 87-127. 

[Swartout, 1983] Swartout, W. XPLAIN: A system for cre­
ating and explaining expert consulting systems. Artificial 
Intelligence, 21(3), 1983, 285-325. 

Gruber and Cohen 103 


