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Abstract: An augmented and/or tree representation of logic 
programs is presented as the basis for an advanced graphical 
tracing and debugging facility for Prolog. TPM can be run in 
slow-motion/close-up mode for novices or high-speed/long­
distance mode for experts with no attendant conceptual change. 
Moreover, it deals correctly both with clause head matching and 
with the cut. The current implementation runs on Apollo 
workstations, and is written in Prolog. 

1 Introduction 

In (Eisenstadt, 1985) we developed a model of Prolog execution 
which gave detailed symptomatic information so that either the 
programmer could home in directly on trouble spots or else a 
supervisory program could detect characteristic 'symptom 
clusters' in order to spot bugs. The current effort is an attempt 
to provide a significant boost to the practical debugging of very 
large programs by highly experienced Prolog programmers, 
while maintaining conceptual clarity for novices. The 
underlying philosophy of 'retrospective zooming' still applies, 
but now we include the modern graphical techniques which the 
earlier work only hinted at. 

Section 2 describes the underlying principles involved in the 
design and development of our view of Prolog execution, which 
we dub The Transparent Prolog Machine' (TPM). Details of 
the running user environment are presented in section 3, 
followed by a worked example in section 4. The account which 
follows assumes that the reader is an experienced Prolog user. 

2 TPM: Underlying principles 

2.1 AORTA diagrams 

An ordinary node in a traditional and/or tree can be enriched to 
become a full-fledged 'status box' which concisely reveals the 
execution history of individual clauses. This simple 

augmentation, here dubbed the 'AORTA' ('And/OR Tree, 
Augmented') diagram, is the focal point of our graphical 
debugger. TPM allows both a long-distance view of execution 
(displaying several thousand nodes and highlighting 'points of 
interest' at the user's request) and a close-up view, using all of 
the detailed notation of AORTA diagrams. 

To illustrate the close up view, the program below is contrived 
to use a large number of AORTA diagram features in a small 
space. 

party(X):- happy(X), birthday(X). %party if happy & birthday 
party(X):- friends(X,Y), sad(Y). % or to cheer up sad friend 

happy(X):- hot, humid, !, swimming(X). 
happy(X):- cloudy, watchingtv(X). 
happy(X):- cloudy, having_fun(X). 

cloudy, humid, hot. 
having_fun(tom). having_fun(sam). 
swimming(john). swimming(sam). 
watching_tv(john). 
sad(bill). sad(sam). 
birthday(tom). birthday(sam). 
friends( torn,John). friends( torn,sum). 

If 1 pose the query ?- party(Name), the above program 
succeeds with the instantiation Name = sam. Figure 1 shows 
the AORTA diagram corresponding to the final snapshot of 
execution. 



Circular nodes are used to depict system primitives (there is one, 
the cut, in figure 1). The large rectangular boxes in figure 1 are 
called procedure status boxes. The top half of such boxes 
shows the status of the goal at the time of viewing. A question 
mark indicates a pending goal; a tick ('check') indicates a 
successful goal; a cross indicates a failed goal; a tick/cross 
combination indicates an initial success followed by subsequent 
failure on backtracking. The lower half of the procedure status 
box indicates the number of the latest matching clause head. 
Thus, in the case of the goal party the tick in the top half of the 
box indicates that the goal was successful, and the number 2 
below it tells us that was the second clause which succeeded. 
The small vertical lines dangling beneath each procedure status 
box are known as 'clause branches', and the square boxes at the 
end of such lines are 'clause status boxes'. Such boxes use the 
same question-mark, tick, cross, and tick/cross combination to 
depict the status of individual clauses. If a given clause head 
does not unify, then a short horizontal 'dead-end' bar is added 
instead of a clause status box (examples may be seen under the 
procedure status boxes for sad and birthday in figure 1). 
Clause branches correspond to 'or' choices, but are drawn 
differently from their traditional counterparts in order to make 
the processing of individual clauses obvious at a glance. 
We use a family metaphor to describe the lineage of goals. In 
figure 1, happy and birthday are sisters, and their mother is 
party. Subgoals friends and sad are sisters of one another, 
but they have a different lineage from that of happy and 
birthday. We can model this relationship by attributing 
different paternity to each different clause. In other words, 
clause heads CI and C2 (labelled purely for the reader's 
convenience in figure 1) represent different fathers for the 
different groups of children. Thus, C2 is a step-fat her of 
birthday, and birthday and friends are step-sisters. To 
reflect the chronology of execution, we also note that happy is 
an older sister of birthday, and C2 is & future stepfather of 
birthday. The family metaphor enables us to provide a concise 
definition of the behaviour of the cut: it freezes older sister goals 
and their descendants, eliminates future step-fathers, and then 
succeeds. 

Returning to our party example, we can see that happy 
succeeded initially on clause 1, but unification with either clause 
of birthday was not possible. This failure caused the 
backtracking into swim, which itself failed upon backtracking 
(no further clauses to attempt), as indicated by the tick/cross 
combination appearing in the top of its status box. This is also 
the case with the ! goal. Notice the frozen cloud around the 
cut's older sisters hot and humid and the hashing showing the 
elimination of the cut's future step-fathers under the procedure 
status box of the parent goal happy. The parent's failure is 
further indicated by the tick/cross in the top part of its status 
box. The failure of clause one of party leads to clause two 
being attempted. The friends goal succeeds on clause one, i.e. 
friends(tom, john), but sad(john) fails. This time friends 
succeeds on the second clause, namely friends (torn, sam), 
and a brand new invocation of the sad goal occurs. To indicate 
that there are one or more previous invocations of a goal at the 
same point in the search space, a dark-shaded ghost status box 
is drawn. This ghost status box is selectable by the user as a 
way to observe the state of execution at a particular moment. 

To illustrate unification, the relations and arguments next to the 
top half of each procedure status box depict the state of play 
when the goal was invoked, whereas the relations and 
arguments next to the bottom half of each procedure status box 
depict the matching clause head found in the data base. User-
chosen variable names are subscripted automatically to indicate 
renamed variables. The diagrams use a sideways '=' with 
arrowheads to show unification. Up arrows indicate output 

variables; down arrows indicate input variables. Right-angled 
arrows indicate a variable 'passed across' or shared with a sister 
goal. Headless arrows indicate directly-matching terms. Often 
there is a direct visual correspondence between a variable and the 
arrow showing its instantiation in the diagram (e.g. sam is 
directly beneath Y3 in its first occurrence next to the status box 
for friends). Whenever the correspondence is 'indirect', i.e. 
the instantiation has come 'from elsewhere', we place a small 
lozenge beneath the variable to show its instantiation at the 
moment of the AORTA 'snapshot' (e.g. sam is in the lozenge 
underneath Y3 in its second occurrence next to the status box for 
sad). Notice in figure 1 that X3 is instantiated to torn, Y3 is 
instantiated to sam and that this instantiation is passed to the 
goal sad. The goal sad(Y3), with Y3 instantiated to sam, 
matches directly against the fact sad(sam) in the database. 

2.2 LDV: The Long Distance View 

The long distance view (LDV) is designed to allow the user to 
retrospectively analyse the global behaviour of very large 
programs. It shows the execution space of the program (as 
opposed to the full search space) and the final outcome of 
attempted goals. This is done by means of a schematized 
AND/OR tree in which individual nodes summarize the outcome 
of a call to a particular procedure. Each node is actually a 
collapsed 'procedure status box', showing just the top half of 
the procedure status box as introduced above. Powerful gestalt 
effects are possible even in very long-distance views of large 
trees, because familiar 'clusters' of nodes are easy to spot, 
particularly for someone who has been developing the associated 
code over a period of days, and has become accustomed to the 
repetition of certain familiar shapes. Potential items of interest 
can, of course, be inspected more closely, even while preserving 
a considerable degree of surrounding context. In section 3 we 
describe our 'selective highlighting' facility which enables the 
programmer to 'light up' (by blinking or changing the colour of) 
nodes in the tree which satisfy some particular constraint or 
behavioural description. 

The LDV automatically incorporates certain convenient 
abstractions for simplifying the display. These abstractions are 
based upon the concept of a shallow cliche, which is a segment 
of code that can be statically analysed to reveal a characteristic 
shape or characteristic behaviour. The most prominent shallow 
cliche, and the only one we deal with at the moment, is tail 
recursion. The LDV depicts tail recursion by showing only the 
first two and last two calls, using the equivalent of 'ellipsis dots' 
in the diagram for all the intervening calls. The intervening call 
details may be 'opened up' for inspection by the user on request. 

3 A Working Environment 

3.1 The Basic Environment 

The user environment provides the user with access to the 
normal Prolog interpreter/compiler via command line input as 
usual, but extends this by providing menu options to invoke the 
TPM trace package on a new query or trace a previously 
executed query. Menu options are also present to support the 
highlighting and replay options outlined later in this section, as 
well as to alter the viewport onto, or scale of, the graphics trace 
in the graphics areas. The area displaying the graphics is mouse 
sensitive, and clicking on a LDV node produces a 3-ply AORTA 
diagram with that node at the centre. Ghost status boxes or 
clause status boxes can also be interrogated via the mouse. The 
interface provides help documentation for each option associated 
with a particular mouse button. 
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3.2 Selective Highlighting 

Frequently a user will wish to ask queries of the form 'where 
did X get instantiated to [a, b]' or 'where in the program does 
foo get invoked by bar'. To address this problem we provide a 
Selective Highlighting option in the LDV display. This option 
allows the user to specify a search 'form' corresponding to the 
following template: 

goal: functor arguments 
parent: functor arguments 
constraint: term 

0 before 0 first 0 success 
0 after 0 latest 0 failure 

For example, we can request the highlighting of all occurrences 
of the principal functor foo with a second argument instantiated 
to the list [bar] called by the mother goal gawp. The 
arguments of gawp need not be specified (even the functor foo 
need not be specified). The constraint pan of the search form 
allows us for example to highlight all occurrences of the 
principal functor foo with a second argument instantiated to 
some list (indicated by a meta-variable such as L) with the 
added constraint that the length of L be less man 2. The 
result of such requests will be for tnTspecified items to be 
highlighted wherever this combination occurs in the LDV. This 
facility allows for rapid location and tracing of given functors or 
variables. It also allows the user to effectively spy a variable or 
a particular variable instantiation and observe its behaviour 
retrospectively in the trace. 

3.3 Replay 

One of the major problems in telling the story of a program's 
execution is explaining re-instantiation of variables, multiple 
successes or failures, and other facets of backtracking. We deal 
with this problem by providing a replay facility whereby the usei 
can see the dynamic execution of the program through the LDV 
execution space or AORTA diagrams, clearly indicating failure 
and subsequent backtracking, re-attempting of goals, subsequent 
failure, resatisfaction or retries. The replay facility thus allows 
the user to view the execution space at any given time, or at any 
particular goal invocation. The user can control the speed of the 
replay with slow motion and single step options being available. 

Our replay capability is possible only because we store an 
exhaustive history of the program's execution. It is our belief 
that the rewards offered in terms of rapid debugging easily 
outweigh the overheads of history preservation, particularly in 
modern (cheap-memory) computing environments. Non-
termination however must clearly be avoided e.g. by interpreter 
stack monitoring a la Shapiro (1983). 

Just before replay begins (i.e. following a selective highlighting 
choice or a request to replay from the beginninc), the LDV is 
'wound back' to the user-selected point. The interesting thing 
about the LDV at this point is that it shows a 'pre-ordained' 
search space, i.e. the LDV shows nodes in the tree which TPM 
guarantees will eventually form part of the execution space, but 
which at the moment of replay have yet to be traversed. 

3.4 Zooming 

Zooming allows the user to see a close up AORTA view of any 
node chosen from the LDV. Since zooming and highlighting 
requests always begin with the LDV, all the perspective 
information associated with the LDV is available at the point of 
choice, allowing the user clearly to understand the context of the 
code which is being observed 'close up'. This approach 
removes the 'forest-vs.-trees' problem associated with 

conventional 'spy' packages. In such packages, once a spied' 
goal is reached it may no longer be clear how you arrived there, 
how the instantiations of the variables have been derived, what 
state the program is in, what side-effects have taken place, 
whether the program has only reached this point on 
backtracking, and (if a 'redo' is involved) the nature, cause, and 
scope of the backtracking involved. 

4 A Worked Example 

Consider the following scenario: a pre-stored database describes 
the contents of a warehouse, giving the reference number, order 
number, item, price, and quantity, all referenced in terms of the 
supplier. The database looks like the following: 

jones(1609,llla,tyres,12.46,30). 

jacks( 1620,444>Pumps,23.00,15). 
jacks(1621,477a,wheels,9.99,5). 

smiths( 1640,370,hubcaps,5.49,43). 

Now suppose that since the original was drawn up, things like 
the old reference number, price, and quantity in stock have 
changed. What we wish now to do is to take items which are 
currently in stock and check them with the old database, 
compiling a new database of items and suppliers. If an item is 
new, i.e. not in the old database, then the program will warn us 
that a new item is encountered and return the list of known items 
so far processed. Items that are included in the new database 
already are ignored. Here is the relevant (buggy) program: 

search jJb([X|T],[X|Tsl):-
jones(_,_,X, _,_), 
store(jones,X), 
search db(T,Ts). 

search_db([X|Tl,[X|Ts]):-
jacks(_,_,X,_,_), 
store(jacks,X), 
search_db(T,Ts). 

search_db([X|T],[X|Ts]):-
smiths(_,_,Xs,>_,_), 
store(smiths,Xs), 
search db(T,Ts). 

search_db(U,U): 
nl,write('AH items are known'),nl. 

search_db(lX|J,n):-
write('List contains unknown item: '), 
write(X),nI. 

store(Manu,Item):-
manufacturer(Manu,Item). 

store(ManuJtem):-
assert(manufacturer(Manu,Item)). 

Given the query 
?- search_db(ltyres,wheels,hubcaps],P). 

the program appears to be working correctly, and the following 
new facts are asserted: 

manufacturer(jones,tyres). 
manufacturer(jacks,wheels). 
manufacturer(smiths,hubcaps). 

Now, if we present it with the query 
?- search_db([tyres,wheels,hubcap],P). 

we expect the program to print out 'List contains unknown 
item: hubcap', and return with the truncated list 
P=[tyres,wheels]. Unexpectedly, however, the query 
succeeds with P=[tyres,wheels,hubcap]. That is, the 
program claims to know all the items, instead of reporting that it 
contained an unknown item, namely hubcap. If we ask for an 
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Figure 2 LDV of ?- search_db(Ityres,wheels,hubcap], P)„ 
which unexpectedly succeeded. The goal searchdb with first argument 
(hubcapl 1 is highlighted. 

LDV of the execution space we will get the diagram depicted in 
figure 2 (but without the highlighting). Since we are interested 
in what happened when search db came to deal with hubcap 
we can use the Selective Highlighting facility to show us where 
in the tree searchjib gets called with first argument 
instantiated to [hubcapl ]. Figure 2 shows the result of our 
highlighting request. 

Having located this node we can ask TPM to zoom in on the 
goal. As Figure 3 shows, this gives us a three ply 'AORTA' 
view of the goal, with the chosen goal in the middle. 

From the AORTA diagram we can see that its behaviour prior to 
reaching the chosen goal was entirely as predicted. Once entered 
it tries to attempt jones(_, ,hubcapv,_J via clause one and 
fails. It then attempts to do the same thing, via clause two, for 
jacks(_,_,hubcap,_,_) with similar results. This is what is 
expected However we can see at a glance that 
smiths(_,_,Xs,_,_) succeeds with Xs=hubcaps, the first 
item in the "database. This is clearly not what was meant to 
happen! The program should have tried to prove 
smiths(_,_,hubcap,_, ) but was accidentally called with the 
uninstanTiated variable Xs as its third argument. This argument 
subsequently got instantiated by unification with the first fact 
found for smiths, namely smiths(_,_,hubcaps,__♦__). Note 
the arrows and lozenges indicating dataflow and variable 
instantiation in the three selected clauses. This selection was 
done by the user clicking on a status box leading to the status 
box 'opening up' to reveal the extra unification information. The 
correct code for clause 3 of searchdb is shown below: 

search_db([X|Tl,fX|TsJ):-
smiths(_,_,X,_, ), 
store(verb,X), 
search_db(T,Ts). 

Given the changed code, the call to smiths will now be 
smiths(__,__,hubcap,_,_), which will (correctly) fail. TPM 
helped us to find the bugs within two steps: the LDV highlight 
and the zoom to the AORTA diagram. Many modern Prolog 
implementations will find and report as a warning any single 
occurrences of a variable in a clause. However the clause that 

was in error here contained all the variables twice. Indeed the 
pattern of their occurrence was entirely plausible, since smiths 
may have used an output variable which was to be dealt with by 
store if the program semantics were different. Either way the 
AORTA will show clearly the behaviour of the program. More 
detailed worked examples, including the replay facility run on a 
simple compiler, and a discussion of the relationship between 
TPM and declarative debugging, are presented in (Eisenstadt and 
Brayshaw, 1987). 

5 Conclusions 

Our aim has been to reconcile a global view of Prolog program 
execution with the 'truth' about unification and clause selection. 
The key ingredients of our approach have been (i) appreciation 
of the power of gestalt patterns, (ii) recognition of the need (and 
the ability) to display thousands of nodes at a time, (iii) 
enhancement of traditional and/or tree branches with individual 
clause details, (iv) enhancement of and/or tree nodes with goal 
'status boxes' and (v) ability to vary the type of detail being 
investigated with the particular grain size, rather than using a 
physical 'zoom'. These ingredients combine to yield an 
environment which is suitable both for teaching introductory 
Prolog programming and for assisting the day-to-day efforts of 
highly experienced Prolog programmers. 
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Figure 3. Zoomed view of the goal search_db(thubciip|_J, as chosen 
from the LDV. 
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