
G R A P H I C A L DEBUGGING W I T H
T H E TRANSPARENT P R O L O G M A C H I N E (TPM) 1

Marc Eisenstadt and Mike Brayshaw
Human Cognition Research Laboratory

The Open University
Milton Keynes MK7 6AA, UK

Abstract: An augmented and/or tree representation of logic
programs is presented as the basis for an advanced graphical
tracing and debugging facility for Prolog. TPM can be run in
slow-motion/close-up mode for novices or high-speed/long­
distance mode for experts with no attendant conceptual change.
Moreover, it deals correctly both with clause head matching and
with the cut. The current implementation runs on Apollo
workstations, and is written in Prolog.

1 Introduction

In (Eisenstadt, 1985) we developed a model of Prolog execution
which gave detailed symptomatic information so that either the
programmer could home in directly on trouble spots or else a
supervisory program could detect characteristic 'symptom
clusters' in order to spot bugs. The current effort is an attempt
to provide a significant boost to the practical debugging of very
large programs by highly experienced Prolog programmers,
while maintaining conceptual clarity for novices. The
underlying philosophy of 'retrospective zooming' still applies,
but now we include the modern graphical techniques which the
earlier work only hinted at.

Section 2 describes the underlying principles involved in the
design and development of our view of Prolog execution, which
we dub The Transparent Prolog Machine' (TPM). Details of
the running user environment are presented in section 3,
followed by a worked example in section 4. The account which
follows assumes that the reader is an experienced Prolog user.

2 TPM: Underlying principles

2.1 AORTA diagrams

An ordinary node in a traditional and/or tree can be enriched to
become a full-fledged 'status box' which concisely reveals the
execution history of individual clauses. This simple

augmentation, here dubbed the 'AORTA' ('And/OR Tree,
Augmented') diagram, is the focal point of our graphical
debugger. TPM allows both a long-distance view of execution
(displaying several thousand nodes and highlighting 'points of
interest' at the user's request) and a close-up view, using all of
the detailed notation of AORTA diagrams.

To illustrate the close up view, the program below is contrived
to use a large number of AORTA diagram features in a small
space.

party(X):- happy(X), birthday(X). %party if happy & birthday
party(X):- friends(X,Y), sad(Y). % or to cheer up sad friend

happy(X):- hot, humid, !, swimming(X).
happy(X):- cloudy, watchingtv(X).
happy(X):- cloudy, having_fun(X).

cloudy, humid, hot.
having_fun(tom). having_fun(sam).
swimming(john). swimming(sam).
watching_tv(john).
sad(bill). sad(sam).
birthday(tom). birthday(sam).
friends(torn,John). friends(torn,sum).

If 1 pose the query ?- party(Name), the above program
succeeds with the instantiation Name = sam. Figure 1 shows
the AORTA diagram corresponding to the final snapshot of
execution.

Circular nodes are used to depict system primitives (there is one,
the cut, in figure 1). The large rectangular boxes in figure 1 are
called procedure status boxes. The top half of such boxes
shows the status of the goal at the time of viewing. A question
mark indicates a pending goal; a tick ('check') indicates a
successful goal; a cross indicates a failed goal; a tick/cross
combination indicates an initial success followed by subsequent
failure on backtracking. The lower half of the procedure status
box indicates the number of the latest matching clause head.
Thus, in the case of the goal party the tick in the top half of the
box indicates that the goal was successful, and the number 2
below it tells us that was the second clause which succeeded.
The small vertical lines dangling beneath each procedure status
box are known as 'clause branches', and the square boxes at the
end of such lines are 'clause status boxes'. Such boxes use the
same question-mark, tick, cross, and tick/cross combination to
depict the status of individual clauses. If a given clause head
does not unify, then a short horizontal 'dead-end' bar is added
instead of a clause status box (examples may be seen under the
procedure status boxes for sad and birthday in figure 1).
Clause branches correspond to 'or' choices, but are drawn
differently from their traditional counterparts in order to make
the processing of individual clauses obvious at a glance.
We use a family metaphor to describe the lineage of goals. In
figure 1, happy and birthday are sisters, and their mother is
party. Subgoals friends and sad are sisters of one another,
but they have a different lineage from that of happy and
birthday. We can model this relationship by attributing
different paternity to each different clause. In other words,
clause heads CI and C2 (labelled purely for the reader's
convenience in figure 1) represent different fathers for the
different groups of children. Thus, C2 is a step-fat her of
birthday, and birthday and friends are step-sisters. To
reflect the chronology of execution, we also note that happy is
an older sister of birthday, and C2 is & future stepfather of
birthday. The family metaphor enables us to provide a concise
definition of the behaviour of the cut: it freezes older sister goals
and their descendants, eliminates future step-fathers, and then
succeeds.

Returning to our party example, we can see that happy
succeeded initially on clause 1, but unification with either clause
of birthday was not possible. This failure caused the
backtracking into swim, which itself failed upon backtracking
(no further clauses to attempt), as indicated by the tick/cross
combination appearing in the top of its status box. This is also
the case with the ! goal. Notice the frozen cloud around the
cut's older sisters hot and humid and the hashing showing the
elimination of the cut's future step-fathers under the procedure
status box of the parent goal happy. The parent's failure is
further indicated by the tick/cross in the top part of its status
box. The failure of clause one of party leads to clause two
being attempted. The friends goal succeeds on clause one, i.e.
friends(tom, john), but sad(john) fails. This time friends
succeeds on the second clause, namely friends (torn, sam),
and a brand new invocation of the sad goal occurs. To indicate
that there are one or more previous invocations of a goal at the
same point in the search space, a dark-shaded ghost status box
is drawn. This ghost status box is selectable by the user as a
way to observe the state of execution at a particular moment.

To illustrate unification, the relations and arguments next to the
top half of each procedure status box depict the state of play
when the goal was invoked, whereas the relations and
arguments next to the bottom half of each procedure status box
depict the matching clause head found in the data base. User-
chosen variable names are subscripted automatically to indicate
renamed variables. The diagrams use a sideways '=' with
arrowheads to show unification. Up arrows indicate output

variables; down arrows indicate input variables. Right-angled
arrows indicate a variable 'passed across' or shared with a sister
goal. Headless arrows indicate directly-matching terms. Often
there is a direct visual correspondence between a variable and the
arrow showing its instantiation in the diagram (e.g. sam is
directly beneath Y3 in its first occurrence next to the status box
for friends). Whenever the correspondence is 'indirect', i.e.
the instantiation has come 'from elsewhere', we place a small
lozenge beneath the variable to show its instantiation at the
moment of the AORTA 'snapshot' (e.g. sam is in the lozenge
underneath Y3 in its second occurrence next to the status box for
sad). Notice in figure 1 that X3 is instantiated to torn, Y3 is
instantiated to sam and that this instantiation is passed to the
goal sad. The goal sad(Y3), with Y3 instantiated to sam,
matches directly against the fact sad(sam) in the database.

2.2 LDV: The Long Distance View

The long distance view (LDV) is designed to allow the user to
retrospectively analyse the global behaviour of very large
programs. It shows the execution space of the program (as
opposed to the full search space) and the final outcome of
attempted goals. This is done by means of a schematized
AND/OR tree in which individual nodes summarize the outcome
of a call to a particular procedure. Each node is actually a
collapsed 'procedure status box', showing just the top half of
the procedure status box as introduced above. Powerful gestalt
effects are possible even in very long-distance views of large
trees, because familiar 'clusters' of nodes are easy to spot,
particularly for someone who has been developing the associated
code over a period of days, and has become accustomed to the
repetition of certain familiar shapes. Potential items of interest
can, of course, be inspected more closely, even while preserving
a considerable degree of surrounding context. In section 3 we
describe our 'selective highlighting' facility which enables the
programmer to 'light up' (by blinking or changing the colour of)
nodes in the tree which satisfy some particular constraint or
behavioural description.

The LDV automatically incorporates certain convenient
abstractions for simplifying the display. These abstractions are
based upon the concept of a shallow cliche, which is a segment
of code that can be statically analysed to reveal a characteristic
shape or characteristic behaviour. The most prominent shallow
cliche, and the only one we deal with at the moment, is tail
recursion. The LDV depicts tail recursion by showing only the
first two and last two calls, using the equivalent of 'ellipsis dots'
in the diagram for all the intervening calls. The intervening call
details may be 'opened up' for inspection by the user on request.

3 A Working Environment

3.1 The Basic Environment

The user environment provides the user with access to the
normal Prolog interpreter/compiler via command line input as
usual, but extends this by providing menu options to invoke the
TPM trace package on a new query or trace a previously
executed query. Menu options are also present to support the
highlighting and replay options outlined later in this section, as
well as to alter the viewport onto, or scale of, the graphics trace
in the graphics areas. The area displaying the graphics is mouse
sensitive, and clicking on a LDV node produces a 3-ply AORTA
diagram with that node at the centre. Ghost status boxes or
clause status boxes can also be interrogated via the mouse. The
interface provides help documentation for each option associated
with a particular mouse button.

84 ARCHITECTURES AND LANGUAGES

3.2 Selective Highlighting

Frequently a user will wish to ask queries of the form 'where
did X get instantiated to [a, b]' or 'where in the program does
foo get invoked by bar'. To address this problem we provide a
Selective Highlighting option in the LDV display. This option
allows the user to specify a search 'form' corresponding to the
following template:

goal: functor arguments
parent: functor arguments
constraint: term

0 before 0 first 0 success
0 after 0 latest 0 failure

For example, we can request the highlighting of all occurrences
of the principal functor foo with a second argument instantiated
to the list [bar] called by the mother goal gawp. The
arguments of gawp need not be specified (even the functor foo
need not be specified). The constraint pan of the search form
allows us for example to highlight all occurrences of the
principal functor foo with a second argument instantiated to
some list (indicated by a meta-variable such as L) with the
added constraint that the length of L be less man 2. The
result of such requests will be for tnTspecified items to be
highlighted wherever this combination occurs in the LDV. This
facility allows for rapid location and tracing of given functors or
variables. It also allows the user to effectively spy a variable or
a particular variable instantiation and observe its behaviour
retrospectively in the trace.

3.3 Replay

One of the major problems in telling the story of a program's
execution is explaining re-instantiation of variables, multiple
successes or failures, and other facets of backtracking. We deal
with this problem by providing a replay facility whereby the usei
can see the dynamic execution of the program through the LDV
execution space or AORTA diagrams, clearly indicating failure
and subsequent backtracking, re-attempting of goals, subsequent
failure, resatisfaction or retries. The replay facility thus allows
the user to view the execution space at any given time, or at any
particular goal invocation. The user can control the speed of the
replay with slow motion and single step options being available.

Our replay capability is possible only because we store an
exhaustive history of the program's execution. It is our belief
that the rewards offered in terms of rapid debugging easily
outweigh the overheads of history preservation, particularly in
modern (cheap-memory) computing environments. Non-
termination however must clearly be avoided e.g. by interpreter
stack monitoring a la Shapiro (1983).

Just before replay begins (i.e. following a selective highlighting
choice or a request to replay from the beginninc), the LDV is
'wound back' to the user-selected point. The interesting thing
about the LDV at this point is that it shows a 'pre-ordained'
search space, i.e. the LDV shows nodes in the tree which TPM
guarantees will eventually form part of the execution space, but
which at the moment of replay have yet to be traversed.

3.4 Zooming

Zooming allows the user to see a close up AORTA view of any
node chosen from the LDV. Since zooming and highlighting
requests always begin with the LDV, all the perspective
information associated with the LDV is available at the point of
choice, allowing the user clearly to understand the context of the
code which is being observed 'close up'. This approach
removes the 'forest-vs.-trees' problem associated with

conventional 'spy' packages. In such packages, once a spied'
goal is reached it may no longer be clear how you arrived there,
how the instantiations of the variables have been derived, what
state the program is in, what side-effects have taken place,
whether the program has only reached this point on
backtracking, and (if a 'redo' is involved) the nature, cause, and
scope of the backtracking involved.

4 A Worked Example

Consider the following scenario: a pre-stored database describes
the contents of a warehouse, giving the reference number, order
number, item, price, and quantity, all referenced in terms of the
supplier. The database looks like the following:

jones(1609,llla,tyres,12.46,30).

jacks(1620,444>Pumps,23.00,15).
jacks(1621,477a,wheels,9.99,5).

smiths(1640,370,hubcaps,5.49,43).

Now suppose that since the original was drawn up, things like
the old reference number, price, and quantity in stock have
changed. What we wish now to do is to take items which are
currently in stock and check them with the old database,
compiling a new database of items and suppliers. If an item is
new, i.e. not in the old database, then the program will warn us
that a new item is encountered and return the list of known items
so far processed. Items that are included in the new database
already are ignored. Here is the relevant (buggy) program:

search jJb([X|T],[X|Tsl):-
jones(_,_,X, _,_),
store(jones,X),
search db(T,Ts).

search_db([X|Tl,[X|Ts]):-
jacks(_,_,X,_,_),
store(jacks,X),
search_db(T,Ts).

search_db([X|T],[X|Ts]):-
smiths(_,_,Xs,>_,_),
store(smiths,Xs),
search db(T,Ts).

search_db(U,U):
nl,write('AH items are known'),nl.

search_db(lX|J,n):-
write('List contains unknown item: '),
write(X),nI.

store(Manu,Item):-
manufacturer(Manu,Item).

store(ManuJtem):-
assert(manufacturer(Manu,Item)).

Given the query
?- search_db(ltyres,wheels,hubcaps],P).

the program appears to be working correctly, and the following
new facts are asserted:

manufacturer(jones,tyres).
manufacturer(jacks,wheels).
manufacturer(smiths,hubcaps).

Now, if we present it with the query
?- search_db([tyres,wheels,hubcap],P).

we expect the program to print out 'List contains unknown
item: hubcap', and return with the truncated list
P=[tyres,wheels]. Unexpectedly, however, the query
succeeds with P=[tyres,wheels,hubcap]. That is, the
program claims to know all the items, instead of reporting that it
contained an unknown item, namely hubcap. If we ask for an

Eisenatadt and Brayahaw 85

Figure 2 LDV of ?- search_db(Ityres,wheels,hubcap], P)„
which unexpectedly succeeded. The goal searchdb with first argument
(hubcapl 1 is highlighted.

LDV of the execution space we will get the diagram depicted in
figure 2 (but without the highlighting). Since we are interested
in what happened when search db came to deal with hubcap
we can use the Selective Highlighting facility to show us where
in the tree searchjib gets called with first argument
instantiated to [hubcapl]. Figure 2 shows the result of our
highlighting request.

Having located this node we can ask TPM to zoom in on the
goal. As Figure 3 shows, this gives us a three ply 'AORTA'
view of the goal, with the chosen goal in the middle.

From the AORTA diagram we can see that its behaviour prior to
reaching the chosen goal was entirely as predicted. Once entered
it tries to attempt jones(_, ,hubcapv,_J via clause one and
fails. It then attempts to do the same thing, via clause two, for
jacks(_,_,hubcap,_,_) with similar results. This is what is
expected However we can see at a glance that
smiths(_,_,Xs,_,_) succeeds with Xs=hubcaps, the first
item in the "database. This is clearly not what was meant to
happen! The program should have tried to prove
smiths(_,_,hubcap,_,) but was accidentally called with the
uninstanTiated variable Xs as its third argument. This argument
subsequently got instantiated by unification with the first fact
found for smiths, namely smiths(_,_,hubcaps,__♦__). Note
the arrows and lozenges indicating dataflow and variable
instantiation in the three selected clauses. This selection was
done by the user clicking on a status box leading to the status
box 'opening up' to reveal the extra unification information. The
correct code for clause 3 of searchdb is shown below:

search_db([X|Tl,fX|TsJ):-
smiths(_,_,X,_,),
store(verb,X),
search_db(T,Ts).

Given the changed code, the call to smiths will now be
smiths(__,__,hubcap,_,_), which will (correctly) fail. TPM
helped us to find the bugs within two steps: the LDV highlight
and the zoom to the AORTA diagram. Many modern Prolog
implementations will find and report as a warning any single
occurrences of a variable in a clause. However the clause that

was in error here contained all the variables twice. Indeed the
pattern of their occurrence was entirely plausible, since smiths
may have used an output variable which was to be dealt with by
store if the program semantics were different. Either way the
AORTA will show clearly the behaviour of the program. More
detailed worked examples, including the replay facility run on a
simple compiler, and a discussion of the relationship between
TPM and declarative debugging, are presented in (Eisenstadt and
Brayshaw, 1987).

5 Conclusions

Our aim has been to reconcile a global view of Prolog program
execution with the 'truth' about unification and clause selection.
The key ingredients of our approach have been (i) appreciation
of the power of gestalt patterns, (ii) recognition of the need (and
the ability) to display thousands of nodes at a time, (iii)
enhancement of traditional and/or tree branches with individual
clause details, (iv) enhancement of and/or tree nodes with goal
'status boxes' and (v) ability to vary the type of detail being
investigated with the particular grain size, rather than using a
physical 'zoom'. These ingredients combine to yield an
environment which is suitable both for teaching introductory
Prolog programming and for assisting the day-to-day efforts of
highly experienced Prolog programmers.

6 References

Eisenstadt, M. Retrospective Zooming: a knowledge based
tracing and debugging methodology for logic
programming. Proceedings of the Ninth International
Joint Conference on Artificial Intelligence (IJCAI-85).
Los Angeles: Morgan Kaufmann, 1985.

Eisenstadt, M., and Brayshaw, M. The Transparent Prolog
Machine (TPM): an execution model and graphical
debugger for logic programming. Journal ofU)gic
Programming, 1987, in press (also available as Technical
Report no. 21, Human Cognition Research Laboratory,
The Open University, Milton Keynes, 1986.)

Shapiro, E. Algorithmic program debugging. Cambridge,
Massachussets: MIT Press, 1983.

Figure 3. Zoomed view of the goal search_db(thubciip|_J, as chosen
from the LDV.

86 ARCHITECTURES AND LANGUAGES

