
A m a l g a m a t i n g M u l t i p l e P r o g r a m m i n g P a r a d i g m s i n P r o l o g

Yoshiyuki Koseki

C&C Systems Research Laboratories
NEC CORPORATION

4-1-1 Miyazaki, Miyamae-ku
Kawasaki , 213 JAPAN

ABSTRACT

This paper discusses the issues in amalgamating
multiple programming paradigms in the logic program­
ming language, Prolog. It is shown that multiple para­
digms can be incorporated without disturbing logic pro­
gramming language features and efficiency. It also
introduces a new programming paradigm called the
relation-oriented paradigm. The research results are
reflected in the implementation of the Prolog-based
knowledge programming system PEACE, which is used
to realize an expert system in a diagnostic domain.
PEACE provides a relation-oriented programming para­
digm, as well as previously discussed paradigms, such
as object-oriented, data-oriented, and rule-oriented
paradigms. These paradigms are nicely amalgamated
in Prolog language and can be used intermixedly.

1. Introduction

Recently, several knowledge programming sys­
tems, such as [Bobrow83] have been proposed and
implemented with multiple programming paradigms with
the functional language Lisp. The paradigms supported
in these systems so far are: object-oriented, rule-
oriented, data-oriented, and procedure-oriented ones.
In these systems, most inference knowledge is
expressed in a rule-oriented style with an "if-then"
structure, and the target structure is expressed in
hierarchically organized objects (or frames). They pro­
vide an embedded uniform inference mechanism, such
as a forward and backward reasoning engine to reason
on the target objects.

These systems have two basic problems in
representing real-world knowledge. The first drawback
is from having a uniform inference mechanism. This is
because a uniform mechanism prevents the utilization
of multiple inference strategies in an application. The
second problem is that it is hard to read a knowledge
base written in this style, because the inference rules
are described separately from the target object network.

To solve these problems, this paper proposes a
semantic-network based knowledge programming sys­
tem construction. In addition, it introduces another pro­
gramming paradigm called the relation-oriented para­
digm, based on a first order predicate logic language
Prolog [Clocksin84].

Several kinds of knowledge, such as inference,
inheritance and constraint propagation knowledge are
considered to be pertaining to the relations among
objects, not necessarily to the objects themselves.
Therefore, it is natural for knowledge programming sys­
tems to have a capability of describing these kinds of
knowledge in relations between target objects. With
this capability, an entire knowledge base can be
described in a semantic network, in which target
knowledge is represented as object nodes and infer­
ence knowledge is represented as relations between
nodes. By doing so, the problems with the conven­
tional systems may be solved. First, it is possible to
utilize multiple inference strategies in an application.
Second, since the inference rules can be expressed in
relations, inference knowledge and target object
knowledge can be uniformly expressed in a network.

To implement a knowledge programming system
with these features, the logic programming language
Prolog is an appropriate base language. This is
because Prolog is based on first-order predicate logic,
and it is highly effective in representing knowledge in
logical relations among objects.

However, it lacks the capability of expressing
knowledge in object-oriented style. If it were possible
to incorporate other programming paradigms, such as
object-oriented and data-oriented ones in Prolog, a very
efficient system can be obtained.

Recently, several schemes to achieve this incor­
poration in Prolog language have been proposed. One
way is to build an entirely new system with object-
oriented features. ESP is an example of this approach,
designed for the PSI prolog machine at the Institute for
New Computer Technology [Chikayama84]. It

76 ARCHITECTURES AND LANGUAGES

incorporates Flavor-like [Weinreb81] object-oriented
programming with a multiple inheritance mechanism.
However, its object-oriented programming is "added
on", not "amalgamated", since its object implementation
is just mimicking the one on Lisp based tools. For
example, object types in the system are restricted to
class and instance, and it is not allowed to treat rela­
tions among objects as Prolog relations. Therefore, the
relation-oriented programming style is not positively
supported.

Another way is to express a semantic network in a
set of Horn clauses and to use the Prolog interpreter as
an inference mechanism [Koyama85]. Again, this per­
formance is limited, because an entire network is
represented with only one predicate, so that every
clause matching might cause the entire network search
in the worst case.

Alternatively, objects may be expressed in a
nested list structure [Lee86]. But this method can not
utilize Prolog expressiveness and is not efficient.

In this paper, multiple knowledge programming
paradigms are amalgamated in Prolog by the technique
called meta-programming [Bowen82]. Additionally, it
describes a new implementation of the Prolog based
knowledge programming system called PEACE (Prolog
based Engineering Applications Environment). It is
shown that PEACE efficiently supports a semantic net­
work knowledge representation realizing relation-
oriented programming as well as object-oriented pro­
gramming, data-oriented programming and rule-oriented
programming amalgamated in Prolog.

2. Semantic Network Representation In PEACE

The ultimate goal of the authors' project was to
realize a system which behaves like human experts in a
diagnostic domain [Koseki87]. To achieve this goal, it is
necessary to represent various kinds of knowledge,
such as design knowledge about the diagnosed equip­
ment, and maintenance technician's empirical
diagnostic knowledge. To investigate what types of
knowledge representations are suitable in this domain,
a prototype system was developed, using a rule-based
technique similar to the one described in [Shortliffe76].
There, it was found that representing diagnostic
knowledge entirely in a rule-form was not natural and
feasible. It was considered appropriate to incorporate
the structural information of the target equipment. To
represent such a kind of knowledge, network oriented
representation is suitable.

To describe network-shape knowledge representa­

tions, recent knowledge programming systems provides
the object-oriented (or frame-based) paradigm. In those
systems, a knowledge network is described in hierarchi­
cal trees of objects. The objects are usually classified
into class-objects, and instance-objects, and they are
connected by the system-defined relations, such as
class to instance , and super-class to class relations.
Through these relations, an inheritance mechanism is
provided. Still, it is not felt natural to classify real-world
knowledge into these fixed object categories and the
fixed relation categories. To represent various kinds of
knowledge, such as signal paths along functional blocks
of the diagnosed equipment, a more flexible system is
needed which can describe a more flat network.

To meet this goal, PEACE was developed to
describe a semantic network on the first-order predicate
logic language Prolog. It is basically different from con­
ventional object-oriented (or frame-based) systems in
three aspects.

First, there is no distinction among object types.
That is, there is no distinction between class-object and
instance-object, no distinction between class-method
and instance-method, and so on. Instead, the system
only provides a uniform object representation without
any system-defined types. The role of an object is
determined by how it is related to the other objects.
For example, if an object is related to another object
with instance-of relation, it is treated as an instance
object, and the other object is treated as a class object.

Second, the user is allowed to define his own rela­
tion types in his problem domain and to add his own
semantics to them. That is, relations can be defined
freely with their own inheritance specifications and
inverse-relation definitions. Moreover, since the rela­
tions between objects are internally represented in Pro­
log clauses, the user is allowed to express more com­
plex relations by providing Prolog rules.

Third, since it is constructed on Prolog which has a
powerful backtracking and unification mechanism, the
multiple programming paradigms can also utilize these
features. For instance, slots and relations defined in an
object can have multiple values which can be
enumerated by backtracking.

To show how multiple programming paradigms can
be amalgamated in Prolog language, let us see exam­
ple descriptions in PEACE. Figure 1 shows an example
family network structure in a semantic network form.
Each node corresponds to a physical object or concept.
They are simply called object, because the system
gives no distinction in regard to object types. Each arc
between objects corresponds to a semantic relation

Koseki 77

between them. For instance, this network shows the
facts that "Charlotte isa female", "Charlotte and Shirley
are siblings", and "Andy's parent is Shirley, and so is
Wayne's".

2.2. Relation Description
Roles of a relation are described in an object

(relation-object) with the relation name as the object
name. For the example network in Fig. 1, the relation
roles are described in Fig. 2.

;- parent::
$inverse(child).

:- child::
$inverse(parent).

:- sibling ::
$inverse(sibling).

:- isa ::
$inherit_pred(_);
$inheriLsloL value(J;
$inherit_slotJype(J.

Fig. 2 Relation Descriptions

2.1. Object Description
In PEACE, a semantic network is represented as a

network of objects connected by directed binary rela­
tions. An object is represented with its name and a set
of Prolog clauses describing the contents in the format:

object-name ::
relation-name # destination-object;
slot-name : slot-value;
slot-name :? slot-demon;
predicate-name(arguments);
predicate-name(arguments)::- body.

Relation and slot can have basically similar effects,
as long as both are used to point to another object.
The difference is that relation can only point to objects
and provide inheritance, automatic inverse-relation
keeping, and user defined semantics as described in
the following section (Relation oriented programming);
whereas slot can contain any data, including complex
Prolog structures and provide demon invocation as
described in the other section (Data oriented program­
ming). Note that a slot demon is defined separately
and can be inherited through relations separately from
slot value.

Predicates defined in an object can be treated
declaratively or procedurely, as ordinal Prolog predi­
cates can be. In other words, if they are interpreted
declaratively, they can be considered to be facts and
rules or axioms in an object's world. If they are inter­
preted procedurely, they can be considered equivalent
to methods in the object-oriented languages, such as
SMALLTALK-80 [Goldberg83].

The parent and child relation objects describe the
relation that "parent" has inverse-relation "child" and
the relation "child" has inverse-relation "parent". That
is, when 'Andy' has a parent 'Shirley', 'Shirley' has a
child 'Andy' at the same time. This description is inter­
preted when a relation is added to a network, and the
bi-directional relation is kept at all times.

Currently, the following four kinds of inheritance
specifications can be set up in relation-objects, so that
the inheritance can be restricted to certain predicate
names, slot names, and relation names by specifying
the names in the argument.

$inheritpred(predicate-name),
$inherit_slot value(slot-name),
$inherit„ slot_ type(slot-name),
$inherit_relation(relation-name).

For example, in Fig. 2, the relation isa has inheri­
tance specifications which enable any predicates, any
slot values, and any slot types to be inherited. The rea­
son is that, in these inheritance specifications, "_" in an
argument denotes an anonymous value, which
matches anything.

3. Multiple Programming Paradigms
Based on the semantic network representation

described in the previous section, the system can pro­
vide the multiple programming paradigms. These para­
digms are: object-oriented, relation-oriented, data-
oriented, logic-oriented, and rule-oriented ones.

78 ARCHITECTURES AND LANGUAGES

3.1. Object Oriented Programming
Figure 3 shows the object descriptions for the fam­

ily network in Fig. 1.

:- 'Charlotte' ::
isa * female,
possesses * presents,
possesses * presented.

:- 'Shirley'::
Isa # female;
sibling * 'Charlotte'.

;- 'Andy'::
isa # male;
parent* 'Shirley'.

> 'Wayne'::
isa * male;
parent* 'Shirley'.

Fig. 3 Object Descriptions

The symbol "#" denotes a relation. With these
descriptions, a simple query like

?- 'Andy' <- parent # X. (Who is Andy's parent?)

gives an answer,

X - 'Shirley'.

You may look at the content of •Shirley' object by typ­
ing:

?- listobj('Shirley').

And you can see that the system has created two child
relations 'Andy' and 'Wayne' in 'Shirley' object. This is
because the relation child is the inverse relation of
parent as described in Fig. 2.

'Shirley'::
isa * female;
sibling * 'Charlotte';
chi ld* 'Andy';
chi ld* 'Wayne'.

Therefore, a query like

?- 'Shirley'<- chi ld* X. (Who is Shirley's child?)

gives an answer,

X m 'Andy';
X * Wayne'.

Note that the multiple answers could be obtained simply
by causing backtracking (hitting semi-colon).

Next, let us describe objects for female, male and
human object, in Fig. 4.

;- female::
isa * human;
sex(female);
height:? when_empty(160).

:- male ::
isa * human;
sex(male);
height:? when_empty(175).

> human ::
disp_sex ;;- origin <- sex(X), display(X), nl;
weight:? (when^empty(X) ::- origin <- height: Y,

X is / - 115).

Fig. 4 Objects with methods and demons

The predicate sex is an example of the declarative
usage of predicates. The query,

?- 'Shirley' <- sex(X).

generates the answer

X m female

by the inheritance mechanism. When this query is
invoked, the object interpreter (activated by "<-" opera­
tor) tries to satisfy the goal sex(X) predicate in the
object 'Shirley'. Since the interpreter can not find it, it
looks for relation descriptions of 'Shirley' and finds out
the relation isa inherits the predicate sex, because isa
object has $inherit_pred(J which matches the goal
$inherit_pred(sex). Then, it tries the goal sex(X) again
in the female and succeeds in matching X with female.

The predicate disp_sex in human is an example of
the procedural usage of predicates. It denotes a pro­
cedure (method) to print out the object's sex. The
dummy object origin is used in it to point to the ori­
ginating object of the inheritance chain. For example,
the query,

?- 'Shirley' <- disp^sex.

prints out the answer:

female.

After climbing up the inheritance chain of isa relations,
it tries the goal disp^sex in human. In human,
because origin is 'Shirley' in this case,

origin <• sex(X).

Koseki 79

succeeds in matching X to female, and the word
female is printed out.

3.2. Relation Oriented Programming
Since the directed binary relations between objects

are internally represented as Prolog predicates, they
can be used for relation-oriented programming.

A binary relation between objects:

'Andy' ::
parent # 'Shirley'.

is internally represented as two Prolog facts, such as:

'Andy'(parent, 'Shirley').
parent('Andy', 'Shirley').

When Andy's characteristics are requested, that is,
when the relation name "FT is unknown in the query:

?- 'Andy'<- R# X.

the interpreter searches the first kind of internal facts
with a goal 'Andy'(R,X), and gives the result:

R * parent
X » 'Shirley'.

In this way, the number of matchings is restricted to the
number of relations in the object and the search
through the entire objects can be avoided.

On the other hand, when the relation name is
known, it searches the second kind of facts with a goal
parent(X.Y). Again, in this way, the search through the
entire Prolog data base is avoided and the number of
matchings is restricted to the number of related pairs
for the relation in the worst case.

To search a set of the objects, by which relations
can be expressed logically, only the Prolog rules to
express its logic are to be added. For example, to
express relations aunt and sister in the example family
network, you should add two rules:

aunt(X,Z):- parent(X,Y),sister(Y,Z).
(Aunts are parent's sisters)

sister(X,Y):- sibling(X,Y), Y<-sex(female).
(Sisters are any siblings who are female)

The query like,

?- 'Andy' <- aunt # X.

gives an answer,

X • 'Charlotte'.

Using this feature, we can easily define inference
rules pertaining to a certain relation. For example, a

rule "All of aunts give presents to their nephews" can
be described as:

present_rule :-
(aunt(X, Y), %for all of nephew-aunt pairs(X, Y)
Call((Y <- possesses # P, %check ifYhas a present P

P <- instance_of# present,
Y <- possesses #-= P, %get the present P from Y
X <- possesses #+= P, %give the present P to X
0),

fait;true).

The call operator is used to restrict the scope of the cut
(!) operator. By executing this rule, Charlotte's presents
are given to all of her nephews, Andy and Wayne. In
this way, the relation-oriented programming can be
accomplished nicely, in combination with the object-
oriented programming.

3.3. Data Oriented Programming
Slots can have demons. The system provides

several kinds of demons: when^empty, referred, con­
strain, afterjput, removed, and after^add. In the exam­
ple, a query,

?- 'Andy' <- height: X.

gives an answer,

X = 175

This is because when_empty demon in male worked
since there was no height slot found in 'Andy' and isa
inherits any slot types. A query,

?- 'Andy' <- weight: X.

gives an answer,

X = 6 0

since when_empty demon in human calculates weight
by subtracting 115 from its height as a default.

3.4. Logic Oriented Programming
Since the system is built on the logic programming

language Prolog and preserves the features of the
language, such as backtracking and a unification
mechanism, all of the above mentioned programming
paradigms can be incorporated in the logic program­
ming style.

For example, the setof predicate can be used
nicely with object oriented programming. The query to
get all of Charlotte's nephews,

?- setof(X,(aunt(X, 'Charlotte'),X<-sex(male)),S).

80 ARCHITECTURES AND LANGUAGES

gives an answer,

S * ['Andy', Wayne'].

3.5. Rule Oriented Programming
The Prolog interpreter itself works as a backward

chaining rule interpreter with a backtracking mechan­
ism. To realize a forward chaining mechanism on Pro­
log is a relatively easy task. The simplest way to
describe a rule with a Prolog clause is like:

fire_.rule :- premise_1, premise_2t

!,
conclusion^, conclusion^.

But the rule control mechanism must be written by the
user. PEACE provides a special rule interpreter to give
more flexible control. It interprets a set of rules
described in a rule-object which has the format:

rule_$et_name ::
$control(control_specification);
if premise
then conclusion;

The premise and the conclusion are described in
PEACE and Prolog predicates. A Production system

can be realized using the semantic network as a work­
ing memory. The provided control specification types
are do__1, do_all, while_1, and while_.aH.

4. Implementation
PEACE is implemented on engineering work­

stations running standard Prolog interpreters and com­
pilers, including C-Prolog [Pereira84] and others.

The interpreter is realized with the meta-
programming technique [Bowen82, Miyachi84], known
as the Prolog-in-Prolog technique, which is to write the
Prolog interpreter in Prolog itself. This method is also
used in realizing metaProlog [Bowen85]. It gives great
flexibility to the system implementation, but degrades
execution performance. However, the degradation was
permissible in building a diagnostic expert system
[Koseki87].

Object descriptions are parsed when fed to the
system and are stored as Prolog assertions. Slots,
predicates, and relations pertaining to an object are
internally represented as Prolog assertions with the
same functor name as the object name, with different
numbers of arguments. The multiple inheritance
mechanism works interpretively so that dynamic addi­
tions of objects cause no troubles. Therefore, future

efforts toward automatic knowledge acquisition may be
relatively easy.

Since most of the Prolog compilers support the
incremental compiling which enables it to compile a
selected portion of a program, static objects which are
never modified during execution can be compiled for
speed up, without much effort to develop a special
object-compiler. In addition, with the Prolog compiler's
clause-indexing function [Bowen81], the time complexity
for searching a predicate (including slot and relation) in
an object may become constant.

A user-friendly interface is provided with a menu-
driven and mouse-driven environment on commonly-
used engineering workstations. Most of the basic
operations including browsing the knowledge base

network can be done by mouse operations. An exam­
ple user interface screen is shown in Fig. 5.

5. Conclusion
A way to amalgamate multiple programming para­

digms, such as relation-oriented, object-oriented, data-
oriented and rule-oriented ones, was shown with exam­
ples on a Prolog-based knowledge programming sys­
tem PEACE. By combining Prolog's logic programming
capabilities, it was possible to achieve more flexibility in
representing the real world knowledge than when using
conventional knowledge representation systems.

The system has been successfully used in realizing

Koseki 81

an expert system in a diagnostic domain and has
proved to be effective in representing various kinds of
knowledge, such as target equipment structure and the
diagnosis technician's empirical knowledge. In particu­
lar, the relation-oriented programming technique was
effective in representing symptom-hypothesis relations
and the structure of the diagnosed equipment
[Koseki87].

ACKNOWLEDGEMENTS
The author thanks Shin-ichi Wada, the co-worker

on the diagnostic expert system and also thanks
Nobuyasu Wakasugi, Masaki Kondo, and Mitsugu Oishi
for developing PEACE. He also expresses deep appre­
ciation to Hajimu Mori, and Satoshi Goto for continuous
encouragement and support. Finally, he would like to
thank Yasuo Iwashita of the Institute for New Genera­
tion Computer Technology for various kinds of support.

REFERENCES
[Bobrow83]

D. G. Bobrow and M. J. Stefik, "The LOOPS
Manual" Knowledge-based VLSI Design Group
memo KB-VLSI-81-13, XEROX Corp, 1983.

[Bowen81]
D. L. Bowen, DECsystem-10 PROLOG User's
Manual, Dept. of Artificial Intelligence, Univ. of
Edinburgh, 1981.

[Bowen82]
K. A. Bowen and R. A. Kowalski, "Amalgamating
Language and Metalanguage in Logic Program­
ming," Logic Programming, Academic Press, 1982,
pp. 153-172.

[Bowen85]
K. A. Bowen, "Meta-Level Programming and
Knowledge Representation," New Generation
Computing, 3, Ohmsha Ltd, 1985, pp. 359-383.

[Chikayama84]
T. Chikayama, S. Takagi, and K. Takei, "ESP - An
Object Oriented Logic Programming Language,"
ICOT Technical Report TM-0075, Institute for New
Generation Computer Technology, 1984.

[Clocksin84]
W. F. Clocksin and C. S. Mellish, Programming in
Prolog, 2nd ed., Springer-Verlag, Berlin, 1984.

[Goldberg83]
A. Goldberg, and D. Robson, SMALLTALK-80: The
Language and its Implementation, Addison-Wesley,
1983.

[Koseki87]
Y. Koseki, S. Wada, T. Nishida and H. Mori,
"SHOOTX: A Multiple Knowledge Based Diagnosis
Expert System for NEAX61 ESS," Proc. of the
International Switching Symposium 1987, Phoenix,
March 1987, pp. 78-82.

[Koyama85]
H. Koyama, H. Tanaka, "Definite Clause
Knowledge Representation," Proc. of the Logic
Programming Conf. '85, Tokyo, Japan, 1985, pp.
95-106.

[Lee86]
N. S. Lee, "Programming with P-shell," IEEE
Expert, Summer, 1986, pp. 50-63.

[Miyachi84]
T. Miyachi, S. Kunifuji, H. Kitakami and K.
Furukawa, "A Knowledge Assimilation Method for
Logic Databases," Proc. of the 1984 International
Symp. on Logic Programming, Atlantic City, 1984,
pp. 118-125.

[Pereira84]
F. Pereira, C-Prolog User's Manual Version 1.5,
Edinburgh Computer Aided Architectural Design,
Feb. 1984.

[Shortliffe76]
E. J. Shortliffe, Computer Based Medical Consulta­
tions: MYCIN, Elsevier, New York, 1976.

[Weinreb81]
D. Weinreb and D. Moon, LISP Machine Manual,
4th ed., Symbolics, Inc., 1981.

82 ARCHITECTURES AND LANGUAGES

