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ABSTRACT 
The issue of integrating inheritance rules into 

Prolog has recently received some attention in 
l i te ra ture. A Prolog-based interpreter extended 
with a special, bu i l t - i n mechanism for handling 
is_a taxonomies has been bu i l t . The motivation for 
this work stems from two observations: (1) is_a 
hierarchies are common in many domains, and (2) the 
issue of representing in Prolog is_a hierarchies, 
and the inheritance properties related to i t , is 
not so straightforward as it would seem at a f i r s t 
glance, especially whether time and space ef f ic ien­
cy are required. The model underlying the proposed 
extension is shown and compared with relevant 
l i te ra ture. We describe how some new capabil i t ies 
have been added to a standard Prolog interpreter in 
order to implement the extended interpreter. In 
part icular, the unif icat ion algorithm and the 
management of some data areas have been modified. 
The space requirements and time performance of the 
extended interpreter are compared with those of the 
original standard Prolog interpreter, and the 
results of a series of tests are discussed. 

I INTRODUCTION 

Set inclusion and membership are quite general 
and in tu i t ive relations in many applicative 
domains. Some special bu i l t - i n mechanisms for 
handling them were successfully applied to 
automatic theorem proving (5,8,14), and ultimately 
in logic programming (1,2). The concept of property 
inheritance is the basis of such mechanisms. The 
programmer defines a property as a feature of every 
element in a class, instead of defining the 
property for each single element. Classes are 
organized in hierarchies, often called is_a taxon­
omies. The inheritance mechanism makes use of the 
taxonomies and reconstructs the or iginal property. 

At a f i r s t glance, it seems that the Prolog 
resolution rule is suitable for this kind of 
taxonomic reasoning. A straightforward way of 
describing taxonomies in Prolog is the following. 
A class is represented as an one-argument 
predicate symbol. For each is_a arc ( i . e . 
membership) assert in the database a clause: 

cla88_name(object_name). 

where class_name and object_name are the two 
elements connected by the is_a arc. For each s_s 
arc ( i . e . set inclusion) assert a clause: 

classjiame(A) :- subclassjiame(A). 
Clauses for generic properties may refer to 
taxonomic predicates as follows: 

generic_property(..,A,..) : - . . . class_narae(A),.. 
This approach, called top-down, is quite natural, 
but not ef f ic ient if we want to prove a property 
for an instantiated object. The reason is that the 
top-down approach is generative. Prolog searches 
through the taxonomy un t i l it finds the object, 
rather than direct ly access to i t s class and veri fy 
the consistence with the required class. Thus if we 
are using the top-down approach for this kind of 
goals, the search time depends on the order in 
which classes and objects are generated. Moreover, 
if the goal f a i l s , search time is required in order 
to scan the whole taxonomy. 

As an alternative approach - l e t ' s cal l it 
bottom-up - we introduce two (or more) clauses of 
the form: 

claasjnaae (classjnaae) • - 1 -
clasa_narae(A) :- superclass_name(A). - 2 -

with the following (informal) semantics. 
- 1 - class_name is a subclass of i t se l f . - 2 - class_ 
name is a subclass of every class A provided that 
8uperclass_name is a subclass of A. The top class 
of the hierarchy is only subset of i t se l f : 

topclass_name(topclass_name). 
For each object a single clause must be given: 

objectjnarae(A) :- object_classjiame(A). 
that i s , objectjname is an instantiat ion of class 
A, if object^class^name is a subclass of A. 

Membership is tested by asking a goal l i ke : 
?- object_name(te8t_clasB). 

This representation is e f f ic ient for this kind 
of goal. Unfortunately, generative goals are quite 
d i f f i c u l t to formulate in the bottom-up approach. 

A mixed approach is useful, provided that a 
technique is employed in order to distinguish the 
top-down and the bottom-up clauses. The 
disadvantage in the mixed approach is that a lo t of 
memory is required, because of the two different 
sets of clauses. 

It is widely accepted in l i terature that the 
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inher i tance mechanism should be embodied d i r ec t l y 
in to the u n i f i c a t i o n a lgor i thm, rather than in to 
reso lu t ion . The resu l t i ng system is hopeful ly more 
e f f i c i e n t than the standard Prolog, when handling 
taxonomies. An ad-hoc mechanism is also a v iable 
so lu t ion fo r improving declarativeness of logic 
programs, at least as regards the taxonomy 
mechanism. 

In order to support t h i s assert ion with some 
experimental evidence, we have b u i l t Taxlog, a 
Prolog in te rp re te r which uses res t r i c ted variables 
fo r reasoning about classes and objects. Taxlog 
f inds a descr ip t ion of both of them in a user-
defined taxonomy. Taxlog implements a rather 
d i f f e ren t model than LOGIN (1 ) , in order to allow 
the programmer to define taxonomies having a 
class-metaclass s t ructure (6 ,7 ) . We compared the 
performance of Taxlog wi th standard Prolog in a 
series of tes ts in order to measure: 
. the overhead involved by the taxonomic reasoning 

machinery, 
. the time and space advantages that resu l t in an 

intensive usage of the mechanism. 
Section I I of t h i s paper describes our informal 

model of taxonomic reasoning, and Section I I I 
describes the relevant l i t e r a t u r e and discusses the 
di f ferences between Taxlog and other approaches. 
Section IV contains the main implementation 
techniques we adopted fo r extending the 
capab i l i t i es of a standard Prolog in terpre ter and 
fo r bu i l d ing Taxlog. F i na l l y , in Section V we 
report and discuss the resu l ts we obtained in some 
experiments, and compare the performance of the 
standard Prolog in te rp re te r with that of Taxlog. 

II TAXONOMIES AND OBJECTS IN TAXLOG 

Taxlog taxonomies are b u i l t up from nodes, 
which are denoted by constants, and two kinds of 
arcs, is a fo r membership and s_s for set i n ­
c lus ion . Three special p r im i t i ves allow the 
programmer to define taxonomies. 

mkcateg(Class,Level) declares a new Class to 
the system, and re la tes it w i th a Level. The system 
actua l ly uses the class leve l as a simple 
heur is t i cs when an ss - re la t i on must be proved. 

mkisa(Atom,Class) bui lds an is_a arc between 
the Atom and the Class. The Class is not required 
to be a lea f of the s_s network; moreover, if any 
previous is_a arc has been declared, the old edge 
w i l l be deleted and subst i tu ted wi th the new one. 

mkss(Subclass,Class) bu i lds an s_s arc between 
Subclass and Class, assuming that Subclass is a 
spec ia l i za t ion of Class. 

Here fo l lows an example of taxonomy d e f i n i t i o n . 
?- mkcateg(european,100), 

mkcateg (C i t a l i a n , f rench, german, engl ish J,90), 
mkss (C i t a l i an, f rench, german, engl i sh, europeanl \ 
mkisa(me, I ta l ian) . 

Appendix 1 shows a user - f r iend ly syntax fo r 
def in ing taxonomies. Ac tua l l y , t h i s syntax is 
described by Prolog clauses, and is loaded at 
i n i t i a l i z a t i o n t ime. 

Note that the same constant may be considered 
both as an object and a c lass; as an object it can 
be c lass i f i ed in a class by means of an is_a edge. 
Thus, in Taxlog we can bu i ld taxonomies where 
superclasses are d i s t i n c t from metaclasses. In the 
foregoing example, a metaclass may be def ined: 

?- mkcateg(nat ional i ty,100), 
mkisa(Cital ian,french,german,engl ishJ, 

n a t i o n a l i t y ) . 
The issue of extending the Prolog u n i f i c a t i o n 

to an e f f i c i e n t use of taxonomies has been solved 
by introducing res t r i c ted var iab les, that is by 
al lowing variables to be quant i f ied over classes. 
In Prolog terms, an atom and a var iab le r es t r i c t ed 
to a clasB are un i f i ab le only if the atom is a 
member of the c lass. An atom is a member of each 
class l inked wi th it by a chain of exact ly one is_a 
and zero or more s_s arcs. This inher i tance ru le 
avoids some typ ica l problems a r i s ing when no 
d i s t i nc t i on is made between isa and ss arcs ( i n our 
example, "me" is not a " n a t i o n a l i t y " ! ) . 

Taxlog in terpre ts log ic programs whose clauses 
are qui te s imi la r to Prolog ones, except that 
var iables can be res t r i c ted to the classes defined 
in the taxonomy. As an example of Taxlog clause, 
consider the fo l low ing , taken from (1 ) : 

happy(X) :- l i ke (X ,Y) , got(X,Y) 
X isa person. 

The constant person has been declared as a 
c lass. In the clause, X is a var iable r e s t r i c t e d to 
person, and Y is unres t r i c ted . The ' : ' binary 
operator separates a clause from the r e s t r i c t i o n 
declarat ions over the var iab les. The parser can 
recognize the precondit ion part of a clause from 
the r e s t r i c t i o n par t , and bu i ld an in te rna l 
s t ructure for representing res t r i c t ed var iab les . 
See Appendix 2 fo r a b r i e f descr ipt ion of the read 
and wr i te p r im i t i ves . 

The un i f i ca t i on algorithm has been extended, 
and actua l ly covers three new cases: 
. uni fy an atom and a res t r i c ted var iab le : t h i s 

operation succeeds if the atom has boen declared 
as member of e i ther the r e s t r i c t i o n class or a 
spec ia l iza t ion o f i t ; in every other case, i n ­
cluding i f the r e s t r i c t i o n class is a spec ia l -
zat ion of the atom class, the u n i f i c a t i o n f a i l s ; 

. uni fy an unbound var iable and a r es t r i c t ed 
var iab le : the two variables share, and the same 
r e s t r i c t i o n constrains the un i f i ed va r iab le ; 

. uni fy two res t r i c ted var iab les; they are un i f i ed 
in the in tersect ion o f t he i r r e s t r i c t i o n s . 

The user may submit Taxlog any goal containing 
res t r i c t ed var iab les; analogously a Taxlog answer 
can be an atom, a s t ruc tu re , a r e s t r i c t e d va r iab le , 
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or an unrestricted variable. This fact 
distinguishes Taxlog from tradi t ional Prolog 
interpreters, because Taxlog answers can refer to 
classes, not purely to single objects, by means of 
restricted variables. Note that this fact can avoid 
some confusing answers, that arise from an 
uncorrect mixing of classes and objects. Thus even 
in answers we can distinguish properties of each 
object in a class from properties of a class as an 
object. For example, if we declared: 

?- mkisa(doggy1,dog), 
mkisa(doggy2,dog), 
mkisa(dog,animal_species). 

and have the following clauses: 
barks(A) : A isa dog. 
contains(A,zoology_book) : A isa animalj3pecies. 

the goal barks(X) produces the answer: 
X ■ _1 : _1 isa dog. 

while the equivalent Prolog answer is : 
X = doggy1; (ask an other solution) 
X = doggy2 

The Taxlog goal 
?- contains(dog,zoology book). 

succeeds, while the goal 
?- contains(X.zoologybook) : X isa dog. 

f a i l s , because the property "contained into the 
zoology_book" refers to the class of dogs as a 
whole, not to individual dogs. 

There exists a suitable instantiation predi­
cate, which allows the user to take Taxlog answers 
back to Prolog-style. This predicate extends 
DECSystem-10 Prolog current atom(A) predicate (11). 
The goal is successively sat isf ied by instantiating 
the variable A to the atoms in a system-dependent 
order. If A is a restr icted variable, the goal w i l l 
be satisf ied exclusively by the atoms whose class 
satisf ies the given res t r ic t ion . We can use 
current_atom in order to enumerate the atoms which 
are members of a class and of i t s specializations. 
In the "barks" example, a Taxlog goal l i ke : 

?- barks(X), current_atorn(X). 
produces the very same sequence as Prolog, 

There is a discrepancy between Taxlog and 
Prolog answers when some class at the lowest level 
of the taxonomy is empty. The discrepancy may be 
eliminated by applying the current_atom predicate. 
For example, if no object has been declared member 
of the "dog" class, the Taxlog goal barks(X) 
produces the answer: 

X » 1 : _1 isa dog. 
but the Taxlog goal: 

?- barks(X), current_atom(X). 
f a i l s , as well as barks(X) submitted to Prolog. 

I l l RELEVANT LITERATURE 

McSkimin and Minker (8) introduce the TT-a 
clause representation for f i r s t order predicate 
calculus, where a variable quantification method 

over subsets of the universe of objects is used. 
Variable restr ict ions are managed by a semantic 
unif ication algorithm. In a dictionary, semantic 
categories are related to constants, function 
domains and ranges, and predicates by means of 
membership relations. Moreover, three kinds of 
relat ion interconnect semantic categories, that is 
superset, equality and disjointness. 

Walther (13,14) extends the Markgraf Karl Refu­
tation Procedure to a many-sorted theorem prover on 
the basis of i t s many-sorted calculus, where varia­
bles can be declared quantified over a sort. Some 
experimental results are available. Cohn (5) uses a 
sorting function to describe sort restr ict ions 
deriving from the argument positions of the 
function and predicate symbols that it occupies. 

Final ly, Ait-Kaci and Nasr (1) propose psi-term 
unif icat ion as a bu i l t - i n mechanism for handling 
is_a taxonomies within Prolog. 

Our proposal di f fers from Ait-Kaci and Nasr for 
a number of reasons. The main reason is that we 
distinguish is_a and s_s arcs, and thus enable 
metaclasses to be represented. In LOGIN there is no 
way of distinguish the class level from the object 
level , because both are considered as subtypes. 

An other difference between the two approaches 
is that LOGIN allows functor symbols to be unified 
according to the taxonomy, while Taxlog forbids i t . 
It is possible to perform this kind of taxonomic 
reasoning in Taxlog by representing the taxonomic 
factor as an adjunctive argument of a general 
functor symbol, thus enabling the difference 
between type-constructor and functor being used in 
order to preserve the efficiency in uni f icat ion. 
The functor unif ication is performed in Taxlog as 
address comparison, while the inheritance property 
is entrusted to the simpler unif ication algorithm 
for constants. 

We think that the Taxlog proposal may be 
considered, in a sense, complementary to LOGIN. 
Many of the features introduced in LOGIN are quite 
interesting for supplying Prolog with a suitable 
support for programming. In part icular, we think 
that the three main representation improvements, 
non-fixed ar i ty for terms with expl ic i t labeling, 
tagged arguments, and compile time enforcement of 
taxonomic consistency should be effectively used in 
the design of Prolog compilers. Nevertheless, as a 
run time support, we think that Taxlog is quite 
e f f ic ient , and provides the user with a clearer and 
more in tu i t ive semantics. 

IV INTEGRATING TAXONOMIES INTO A PROLOG INTERPRETER 

A prototype version of the Taxlog interpreter 
has been bu i l t by suitably extending an existing 
Prolog interpreter (9), fu l l y compatible with the 
standard described in (4). The prototype is 
written in C language and currently runs on an AT&T 
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3B2 microcomputer under the UNIX(TM)* System V as 
operating system. 

The Taxlog prototype interpreter currently 
implements a l l the functionalit ies described in the 
previous sections, except for the following 
rest r ic t ion to the structure of taxonomies: each 
class is allowed to have only a single father. This 
(actual) l imi tat ion causes taxonomies to have a 
tree structure. 

The following modifications to the Prolog 
interpreter have been done. 

A new system area has been defined for classes, 
besides the tradi t ional execution stacks ( local, 
global, t r a i l stack), and the database. The 
category area contains the class descriptors and a 
representation for is__a and s_s arcs. For each 
class record the following information is stored: 
. a pointer to the generalization class, 
. a pointer to the l i s t of specialization classes, 
. a pointer to the class member l i s t , 
. the class level , 
. a pointer to the atom denoting the class. 

Two f ie lds have been added to the atom internal 
structure, a pointer to the class denoted by the 
same str ing as the atom, and a pointer to the class 
the atom is a member of. 

Restrictions on variables are actually 
represented as pointers to the category area. The 
resolution algorithm is substantially unchanged, 
but the unif ication algorithm has been extended as 
described in Section I I . The stack record internal 
structure has been l e f t unchanged. The t r a i l stack 
mechanism only has been modified: when a restricted 
variable is instantiated, or is restricted to a 
more specific class, the old restr ict ion is saved, 
together with the address of the variable. Much 
care has been taken in order to use as l i t t l e as 
possible space for the t r a i l records. Actually 
Taxlog saves space for unrestricted variables, 
because it does not push on the t r a i l the 
"undefined" value for them. During the backtracking 
phase, a test is performed on the second element on 
the top of the t r a i l : i f i t is a restr ict ion ( i . e . 
a pointer to the category area), then this is the 
old restr ic t ion for the variable whose address is 
stored on the top of the t r a i l . 

Final ly, the clause internal data structure 
contains a representation for restrictions on 
clause variables. Actually, for a number of reasons 
restr icted variables are classif ied as global. The 
clause representation consists thus of an array of 
i n i t i a l values for global variables only. When a 
clause is selected for matching, the system builds 
two new contexts in the local and global stacks, 
and in i t ia l i zes the global stack record to the 
restr ict ions descripted in the clause. If no 
restr icted variable appears, the clause 
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representation is almost identical to Prolog but a 
f lag indicating whether or not an i n i t i a l global 
stack record exists in the clause representation. 
V PERFORMANCE COMPARISON BETWEEN PROLOG AND TAXLOG 

Some considerations and experiments have been 
made in order to compare the performance of Taxlog 
and Prolog and to measure, in terms both of 
required space and computation time, the overhead 
and the advantages involved by the extensions. 
A* Time efficiency 

We carried out two series of experiments for 
measuring time efficiency. Much care has been taken 
in order to exclude data pollutions due to the 
presence of other users in the system. We took the 
tms__utime datum, and obtained it by means of the 
times system ca l l . It represents the CPU time used 
by the cal l ing process in order to execute 
operations in the user space (12). The experiments 
took place with the operating system in single-user 
mode. 

1. Time overhead due to the taxonomy mechanism 

In the f i r s t series of tests the programs do 
not make use of taxonomic reasoning at a l l . Note 
that Taxlog is an extension of Prolog, thus we 
could use the very same source programs in our 
experiments for both the interpreters. 

Table 1 - Average execution times (100 runs) 
(data in lOOths sec.) 

Procedure(Datum) 
nreverse(1ist30) 
qsort(l ist50) 
deriv(timeslO) 
deriv(dividelO) 
deriv(loglO) 
deriv(ops8) 
serialise(palin25) 
dbquery** 
dbquery 

Prolog 
58.51 
91 .90 
5.54 
5.73 
4.17 
4.01 

51.58 
127,33 
743.16 

Taxlog 
60.62 
94.56 
5.64 
6.02 
4.36 
4.20 

53.39 
133.41 
778.71 

Ratio 
1.0361 
1.0289 
1.0181 
1.0506 
1.0456 
1.0474 
1.0351 
1.0477 
1.0478 

We took the test programs from Warren (15): 
• "reverse, which inverts the terms of a l i s t , 

applied to l is t30, a 30 element l i s t ; 
. qsort, a version of the quicksort algorithm, 

applied to the Warren l ist50 l i s t ; 
• deriv, a program for computing symbolic 

derivatives, applied on four different arithmetic 
expressions, named timeslO, dividelO, loglO, and 
ops8; 

. serial ise, which translates a given str ing into a 
l i s t of numbers which represent the character 

**In the dbquery example, the system gives five 
answers. We reported in the table, respectively, 
the time for the f i r s t answer and the time for the 
refutation. 

Mont in i 71 



codes, applied to the str ing palin25; 
. dbquery, which represents a simple query 

application on a l i t t l e geographic database. 
Table 1 summarizes the results of this series of 
tests. For the Warren's examples, the overhead 
fa l ls into the interval between 1.80% and 5.06% of 
the total execution time. 

The overhead does not depend on the total 
execution time. It is due exclusively to the higher 
complexity involved in the unif icat ion, because 
Taxlog considers the case of restricted variables 
even if in these examples they do not appear. 

2. Time advantages in using taxonomies 

In this second series of tests we measured the 
improvement which derives from an extensive use of 
the taxonomic reasoning capabil i ty. The testing 
program represents a simple query on a database. 
Some properties in the database are defined by 
using objects and classes declared in a taxonomy. 
In the query some variables are restr icted. 

Two different versions have been bu i l t for each 
test program. In the standard Prolog version, no 
restricted variable appears, while the Taxlog 
version contains a description of the taxonomy in 
terms of the primitives we introduced. A number of 
d i f f i cu l t i es has been faced in order to make 
signif icant the comparison between the two systems. 
F i rs t , even though the two systems interpret the 
same example, they give a different number of 
answers, because Prolog instantiates variables to 
the constants which satisfy the goal, but Taxlog 
generalizes answers as far as possible to 
categories. In order to have comparable results 
two kinds of measures have been taken: the f i r s t -
answer time, that is the time the system takes in 
order to f ind the f i r s t solution for the goal, and 
the refutation time, i .e . the time the interpreter 
takes to generate a l l solutions and then answer 
"no". 

Second, first-answer times in a Prolog 
interpreter are greatly dependent on the clause 
ordering: in a choice point the interpreter 
examines direct ly the correct branch only if it is 
the f i r s t in the database. First-answer times were 
taken with the database ordered in the most favou­
rable way. Note that the Taxlog interpreter is very 
l i t t l e sensitive to the order of the various parts 
of a taxonomy. Thus, the first-answer time is the 
most favourable measure for Prolog. On the contra­
ry, the refutation time is fu l ly independent from 
the clause ordering in the database for both sys­
tems, provided that no extra-logical feature, such 
as cut, assert, etc. , appears. In general, Taxlog 
capabil it ies are exploited for refutation problems. 

Third, two different kinds of query have been 
taken into consideration. In the f i r s t case there 
is a two-variable query: the interpreter satisf ies 

the goal by finding a suitable combination of 
values for the two variables. In the second case 
two constants appear instead of the variables: the 
interpreter proves that the query is sat isf ied by 
the two constants. Two-variable queries have been 
measured, for Taxlog, in two dif ferent ways: in the 
f i r s t , an answer is given in terms of restr icted 
variables, in the second way the answer is made 
uniform to standard Prolog by f i l t e r i n g it through 
the current_atom primit ive. 

Fourth, the test programs for the two systems 
are not equal: it is therefore possible that 
different implementation techniques for the same 
program require different answer times. With 
respect to standard Prolog, the two solutions, 
top-down and bottom-up, have been considered for 
the problem of searching through a taxonomy. Note 
that for first-answer times with optimal ordering 
of clauses top-down and bottom-up are almost 
equivalent, because no true search is required. 
Thus, only results for top-down are reported. The 
difference between the two approaches may be better 
appreciated for refutation times. 

Final ly, first-answer times for random clause 
ordering range from the first-answer time for 
optimal clause ordering (including i t ) to the 
refutation time (excluding i t ) . Thus the comparison 
of the two measures gives an idea of the answer 
times for increasingly more non-deterministic 
problems. 

In Appendix 3 we report the test program for 
each version. 

First-answer times 

The test has been repeated for increasingly 
deeper taxonomies: the results (see Table 2) show 
that f i rst-order times l inearly depend on the 
taxonomy depth. As the rate is much higher for 
Prolog than for Taxlog, we have proved that a 
single complex unif ication step is far more 
ef f ic ient than a taxonomic deduction with a simple 
unif icat ion algorithm. Note that Taxlog results for 
two-variable queries do not depend on the taxonomy 
size, because only one clause is used, and taxon­
omic information is not required (see Appendix 3). 

Refutation times 

Three groups of tests have been done, in order 
to measure the refutation time rate result ing in 
increasing (uniformly): 
. the number of objects per class, 
. the number of subclasses per class, 
. the depth of the taxonomy. 

A l l experiments for each group of tests make 
use of balanced taxonomies with a uniform number of 
objects per bottom-level class. Table 3 shows the 
results for these tests. 
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Table 2 - Average first-answer times 

Taxonomy 
depth 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

Two constants 
Prolog 

top-down 
0.749 
1.063 
1.362 
1.656 
1.954 
2.251 
2.559 
2.856 
3.155 
3.457 
3.758 
4.063 
4.358 
4.665 
4.963 
5.241 

Taxlog 

0.220 
0.234 
0.251 
0.269 
0.272 
0.292 
0.302 
0.317 
0.326 
0.345 
0.352 
0.367 
0.376 
0.395 
0.405 
0.424 

Twc 
Prolog 

top-down 
0.662 
0.879 
1.099 
1.311 
1.528 
1.747 
1.963 
2.182 
2.396 
2.617 
2.835 
3.051 
3.267 
3.484 
3.701 
3.890 

• variables 
Taxlog 

0.198 
0.198 
0.198 
0.199 
0.194 
0.197 
0.197 
0.199 
0.201 
0.199 
0.197 
0.198 
0.200 
0.195 
0.197 
0.197 

Taxlog 
« 

0.441 
0.457 
0.484 
0.504 
0.531 
0.553 
0.570 
0.595 
0.617 
0.640 
0.657 
0.686 
0.705 
0.726 
0.753 
0.770 

Table 3 - Average refutation times 
Increasing the no. of objects per class. 

Two variables Two constants 
Number of Prolog Taxlog Taxlog Prolog Prolog Taxlog 
objects 
per class 

1 
2 
3 
4 

top 
down 

0.322 
0.701 
1.282 
2.074 

0.201 
0.197 
0,201 
0.199 

0.626 
1.224 
2.063 
3.163 

top 
down 
0.299 
0.398 
0.444 
0.487 

bottom 
up 

1.205 
1.195 
1.193 
1.207 

0.223 
0.223 
0.222 
0.218 

Increasing the no. of subclasses per class. 
Two variables Two constants 

Number of Prolog Taxlog Taxlog Prolog Prolog Taxlog 
subclasses top 
per class 

2 
3 
4 
5 

down 
1.017 
1.941 
3.198 
4.779 

0.202 
0.201 
0.203 
0.201 

1. 
2, 
3, 
4 

♦ 

.282 

.193 

.362 

.805 

top 
down 
0.619 
0.841 
1.069 
1.292 

bottom 
up 

1.140 
1.136 
1.134 
1.133 

0.230 
0.229 
0.229 
0.227 

Increasing the depth of the taxonomy. 
Two variables Two constants 

Depth 
of the 
taxonomy 

1 
2 
3 
4 

Prolog 
top 
down 

0.322 
1.078 
3.989 

15.459 

Taxlog 

0.201 
0.200 
0.199 
0.201 

Taj 

0, 
1. 
3, 

11. 

dog 
# 

.626 

.285 

.507 

.628 

Prolog 
top 
down 
0.299 
0.643 
1.334 
2.711 

Prolog 
bottom 

up 
1.205 
1.365 
1.535 
1.700 

Taxlog 

0.223 
0.231 
0.237 
0.246 

♦The results in these columns refer to answer 
times for queries f i l te red through the current_atom 
primit ive, in order to take Taxlog answers back to 
Prolog sty le. 

B. Memory requirements 
Some considerations arise when the space 

requirements for the two systems, Prolog and 
Taxlog, are compared. We can distinguish between 
stat ic and dynamic space requirements. 

1. Static space requirements 

Actually, Taxlog imposes a space overhead of 
two words per atom, in order to store the two ad­
dit ional pointers (see Section I I I ) . This overhead 
must be payed for each atom in the system, thus 
included a l l atoms which are members of no class. 

In order to store taxonomic relations, we need 
some space for classes, and for s_s and is__a arcs. 
Table 4 summarizes space requirements for Taxlog, 
and for the two approaches, top-down and bottom-up, 
in Prolog. In these measures we do not consider the 
space for storing atoms. Classes are represented in 
Taxlog by enti t ies in the category area, while in 
Prolog they are represented as unary functors. The 
bottom-up approach, moreover, requires some space 
for storing a clause for each category entry. In 
Prolog more space is needed in order to store s__s 
and is_a arcs than in Taxlog because the arcs are 
represented as normal clauses, and thus a 
representation for head, t a i l , and control 
information must be provided. 

Table 4 - Static space requirements for storing a 
taxonomy (in words). 

Stored object 
Class 
s s arc 
is a arc 

Taxlog 

5 
2 
2 

Prolog 
top-down 

7 
10 
8 

Prolog 
bottom-up 

15 
10 
10 

Clauses not involving restricted variables need 
the very same space for both systems. When 
restricted variables appear, instead, the space 
difference between Prolog and Taxlog depends on two 
parameters: T, that is the number of taxonomic 
restr ict ions in a clause (and their equivalent 
representation as predicates in standard Prolog), 
and V, that is the number of global variables in 
the Taxlog clause. For our implementation, a 
formula gives the difference in number of words: 

(Prolog_space - Taxlog__space) » 5 * T - V 
Note that an intensive use of taxonomic 

restr ict ions favours Taxlog, because Prolog 
requires space in order to store the predicate form 
of the taxonomic restr ic t ion and the comma 
separator, while Taxlog stores direct ly the 
restr ic t ion as a pointer to the category area in 
the i n i t i a l environment. But restr icted variables 
are considered global, and, actually, the i n i t i a l 
environment contains a word for each global 
variable. This fact explains why the corrective 
factor appears in the formula. 
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2. Dynamic space requirements 
It is worth noting that Taxlog requires the 

very same dynamic space as Prolog, if the taxonomy 
mechanism is not used. The only stack space waste 
that Taxlog imposes, respect with Prolog, is in 
t r a i l management, because the old variable 
restr ict ions must be stored together with the 
variable addresses, during the uni f icat ion. But the 
careful t r a i l management algorithm we used saves 
this space when unrestricted variables are 
instantiated. 

Surprisingly, even if taxonomies are used, much 
dynamic space is gained, as the data in Table 5 
confirm, because many stack records, that Prolog 
pushes on the local stack for handling the clauses 
describing the taxonomy, are simply not used (and 
thus not stored) by Taxlog. Consequently, more 
space is gained in the t r a i l stack, because there 
is no need of saving the addresses of the taxonomic 
clauses; moreover, less variables exist in the 
system. The increase in the global stack size is 
due to the fact that restr icted variables are 
classif ied as global, and thus are stored in the 
global stack instead of the local stack. 

Table 5 refers to the same examples used for 
first-answer time queries with two variables. Data 
are relat ive to the smallest taxonomy (depth = 2). 
Bigger taxonomies give the same results for Taxlog, 
but a higher space usage for Prolog, due to the 
stack records for the taxonomy clauses. 

Table 5 - Dynamic space requirements for an example 
( in bytes). 

Memory area Taxlog Prolog top-down 
Local Stack S6 244 
Global Stack 16 0 
Trai l Stack 32 52 

VI CONCLUSIONS 
The efficiency of a prototype of the Taxlog 

interpreter has been valued with respect to 
standard Prolog by means of a series of 
measurements. The maximum overhead, due to the 
higher degree of complexity of the extended 
interpreter, is about 5% of the execution times, 
and is fu l l y independent from the size of the test 
problem. An intensive use of taxonomies involves 
considerable improvements in terms of execution 
times. The taxonomic reasoning model employed in 
Taxlog is quite general: this system feels a good 
candidate for many practical applications (3). 
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APPENDIX 1 - USER-FRIENDLY SYNTAX FOR DEFINING 
TAXONOMIES 

A simple, user-friendly syntax has been defined 
for helping the programmer to introduce taxonomies 
into the Taxlog system. A BNF description of the 
grammar is given, together with a Prolog 
description of i t s semantics and an example. 
BNF description: 

Taxonomy^declaration ::= declare Tree. 
Tree ::= Atom 

| Atom :=s List_of_elements 
| Tree -> Tree { , Tree i 

L ist of elements ::= CAtom { , Atom 
Note: {J are the usual Kleene closure operators, 
and indicate zero or more occurrences of a pattern. 
Prolog interpretation: 

?- op(255,fx,declare), 
op(254,xfy. ' -> ') , 
op(200 txfx,•:=•). 

declare Tree :- declare(Tree,1000000,). 
declare((A->B),N,Top) :- !, declare(A,N,Top), 

NmlO is N - 10, 
declaress(Top,B,NmlO). 

declare((A := L),N,A) :- !, mkcateg(A,N), 
mkisa(L,A). 

declare(A,N,A) :- mkcateg(A,N). 
declaress(T,(B,C),N) :- !, declare(B,N,TopB), 

mkss(TopB,T), 
declaress(T,C,N). 

dec1areas(T,B,N) :- declare(B,N,TopB), 
mkss(TopB,T). 

Example: 
?- declare european -> i ta l ian :* fmej , 

french, german, english. 
?- declare nationali ty :« Ci ta l ian, french, 

german, engli sh 3. 

APPENDIX 2 - READING AND WRITING TAXLOG TERMS 

From the syntax point of view, the Taxlog 
interpreter accepts exactly the Prolog constructs. 
The read primit ive f i r s t builds the deep structure 
of the input expression, considering the special 
1:• symbol as a normal syntactic operator*, then 
interprets it and considers i t s second argument as 
a succession of restr ict ions to be applied to the 
variables appearing in the f i r s t argument. The read 
primit ive makes therefore the symbol ' :' and the 
syntactical structure of the restr ict ions 

•Note that in the bootstrapping phase the operators 
are currently defined as follows: 

?- op(255 fxfx, , :»), op(254,xfx,• :-•) , 
op(253,xfy,•,•), etc. 
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transparent to the rest of the system. For example 
if the goal: 

?- read(A), functor(A fF,Arity). 
is given the input sequence: 

structure(Varl,Var2,Var3) : Varl isa ca t l . 
the Taxlog answer is the following: 

A « structure(_l,_2,_3) : _1 isa cat l 
F « structure 
Ari ty *= 3 

while the goal: 
?- read(A), arg(l,A,V). 

with the same input structure as before produces 
the following answer: 

A = structure(_l,_2,_3) : _l isa catl 
V = _1 : _1 isa cat l 

The write primitive writes i t s argument with 
the same syntax as the answers: if in i ts argument 
any restr icted variable appears, the write 
primitive prints the argument denoting each 
variable with a symbol. Then the special •:• 
operator is printed, followed by the restrictions 
on the variables in the format: 

<variable> isa <class> 
The symmetry between read and write has been 

maintained: structures written on a f i l e by Taxlog 
are in the format accepted by the read primit ive. 

APPENDIX 3 - TEST PROGRAMS 

Here follows an example of the test programs 
and taxonomies for time measurement. 
Taxlog 

?- mkcateg(zero,100), mkcateg([a,b3,90), 
mkss(£a,b2,zero), 
mkisa(oa,a)f mkisa(ob,b). 

relation(A,B) : A isa a, B isa b. 
Prolog, top-down 

zero(A) :- a(A). zero(A) :- b(A). 
a(oa). b(ob). 
relation(A.B) :- a(A), b(B). 

Prolog, bottom-up 
zero(zero). 
a(a). b(b). 
a(A) :- zero(A). b(A) :- zero(A). 
oa(A) : - a(A). ob(A) : - b(A). 
relation(A.B) :- isa(A,a), isa(B,b). 
isa(0fC) :- I = . .C 0,C] , I. 

Measurements for first-answer times 
measure :- cpu_time(Tl), 

relation*A,B), /* (1) */ 
cpu_time(T2), 
Tdif f is T2 - T l , 
wr i te(Tdi f f ) . 

For two-constant queries, instead of (1) use: 
relation(oa,ob), 

For Taxlog two-variable queries with current_atom, 
instead of (1) use: 

relation(A,B), current_atom(A), current_atom(B), 

Measurements for refutation times 
measure :- cpu_time(T), r e f u ted ) . 
refute(_) : - relation(A.B), f a i l . / * (2) * / 
refute(Tl) :- cpu_time(T2), Tdi f f is T2 - T l , 

wr i te(Tdi f f ) . 
For two-constant queries, instead of (2) use: 

refute(_) : - relation(oa fob), f a l l . 
For Taxlog two-variable queries with current_atom, 
instead of (2) use: 

refute(_) :- relation(A.B), current_atom(A), 
current_atom(B), f a i l . 
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