
EFFICIENCY CONSIDERATIONS ON BUILT-IN TAXONONIC REASONING IN PROLOG

Giorgio Montini
Laboratorio Intelligenza A r t i f i c i a le
CSI-Piemonte
C.so U.Sovietica 216 - 10134 TORINO (ITALY)

ABSTRACT
The issue of integrating inheritance rules into

Prolog has recently received some attention in
l i te ra ture. A Prolog-based interpreter extended
with a special, bu i l t - i n mechanism for handling
is_a taxonomies has been bu i l t . The motivation for
this work stems from two observations: (1) is_a
hierarchies are common in many domains, and (2) the
issue of representing in Prolog is_a hierarchies,
and the inheritance properties related to i t , is
not so straightforward as it would seem at a f i r s t
glance, especially whether time and space ef f ic ien­
cy are required. The model underlying the proposed
extension is shown and compared with relevant
l i te ra ture. We describe how some new capabil i t ies
have been added to a standard Prolog interpreter in
order to implement the extended interpreter. In
part icular, the unif icat ion algorithm and the
management of some data areas have been modified.
The space requirements and time performance of the
extended interpreter are compared with those of the
original standard Prolog interpreter, and the
results of a series of tests are discussed.

I INTRODUCTION

Set inclusion and membership are quite general
and in tu i t ive relations in many applicative
domains. Some special bu i l t - i n mechanisms for
handling them were successfully applied to
automatic theorem proving (5,8,14), and ultimately
in logic programming (1,2). The concept of property
inheritance is the basis of such mechanisms. The
programmer defines a property as a feature of every
element in a class, instead of defining the
property for each single element. Classes are
organized in hierarchies, often called is_a taxon­
omies. The inheritance mechanism makes use of the
taxonomies and reconstructs the or iginal property.

At a f i r s t glance, it seems that the Prolog
resolution rule is suitable for this kind of
taxonomic reasoning. A straightforward way of
describing taxonomies in Prolog is the following.
A class is represented as an one-argument
predicate symbol. For each is_a arc (i . e .
membership) assert in the database a clause:

cla88_name(object_name).

where class_name and object_name are the two
elements connected by the is_a arc. For each s_s
arc (i . e . set inclusion) assert a clause:

classjiame(A) :- subclassjiame(A).
Clauses for generic properties may refer to
taxonomic predicates as follows:

generic_property(..,A,..) : - . . . class_narae(A),..
This approach, called top-down, is quite natural,
but not ef f ic ient if we want to prove a property
for an instantiated object. The reason is that the
top-down approach is generative. Prolog searches
through the taxonomy un t i l it finds the object,
rather than direct ly access to i t s class and veri fy
the consistence with the required class. Thus if we
are using the top-down approach for this kind of
goals, the search time depends on the order in
which classes and objects are generated. Moreover,
if the goal f a i l s , search time is required in order
to scan the whole taxonomy.

As an alternative approach - l e t ' s cal l it
bottom-up - we introduce two (or more) clauses of
the form:

claasjnaae (classjnaae) • - 1 -
clasa_narae(A) :- superclass_name(A). - 2 -

with the following (informal) semantics.
- 1 - class_name is a subclass of i t se l f . - 2 - class_
name is a subclass of every class A provided that
8uperclass_name is a subclass of A. The top class
of the hierarchy is only subset of i t se l f :

topclass_name(topclass_name).
For each object a single clause must be given:

objectjnarae(A) :- object_classjiame(A).
that i s , objectjname is an instantiat ion of class
A, if object^class^name is a subclass of A.

Membership is tested by asking a goal l i ke :
?- object_name(te8t_clasB).

This representation is e f f ic ient for this kind
of goal. Unfortunately, generative goals are quite
d i f f i c u l t to formulate in the bottom-up approach.

A mixed approach is useful, provided that a
technique is employed in order to distinguish the
top-down and the bottom-up clauses. The
disadvantage in the mixed approach is that a lo t of
memory is required, because of the two different
sets of clauses.

It is widely accepted in l i terature that the

68 ARCHITECTURES AND LANQUAQE8

inher i tance mechanism should be embodied d i r ec t l y
in to the u n i f i c a t i o n a lgor i thm, rather than in to
reso lu t ion . The resu l t i ng system is hopeful ly more
e f f i c i e n t than the standard Prolog, when handling
taxonomies. An ad-hoc mechanism is also a v iable
so lu t ion fo r improving declarativeness of logic
programs, at least as regards the taxonomy
mechanism.

In order to support t h i s assert ion with some
experimental evidence, we have b u i l t Taxlog, a
Prolog in te rp re te r which uses res t r i c ted variables
fo r reasoning about classes and objects. Taxlog
f inds a descr ip t ion of both of them in a user-
defined taxonomy. Taxlog implements a rather
d i f f e ren t model than LOGIN (1) , in order to allow
the programmer to define taxonomies having a
class-metaclass s t ructure (6 ,7) . We compared the
performance of Taxlog wi th standard Prolog in a
series of tes ts in order to measure:
. the overhead involved by the taxonomic reasoning

machinery,
. the time and space advantages that resu l t in an

intensive usage of the mechanism.
Section I I of t h i s paper describes our informal

model of taxonomic reasoning, and Section I I I
describes the relevant l i t e r a t u r e and discusses the
di f ferences between Taxlog and other approaches.
Section IV contains the main implementation
techniques we adopted fo r extending the
capab i l i t i es of a standard Prolog in terpre ter and
fo r bu i l d ing Taxlog. F i na l l y , in Section V we
report and discuss the resu l ts we obtained in some
experiments, and compare the performance of the
standard Prolog in te rp re te r with that of Taxlog.

II TAXONOMIES AND OBJECTS IN TAXLOG

Taxlog taxonomies are b u i l t up from nodes,
which are denoted by constants, and two kinds of
arcs, is a fo r membership and s_s for set i n ­
c lus ion . Three special p r im i t i ves allow the
programmer to define taxonomies.

mkcateg(Class,Level) declares a new Class to
the system, and re la tes it w i th a Level. The system
actua l ly uses the class leve l as a simple
heur is t i cs when an ss - re la t i on must be proved.

mkisa(Atom,Class) bui lds an is_a arc between
the Atom and the Class. The Class is not required
to be a lea f of the s_s network; moreover, if any
previous is_a arc has been declared, the old edge
w i l l be deleted and subst i tu ted wi th the new one.

mkss(Subclass,Class) bu i lds an s_s arc between
Subclass and Class, assuming that Subclass is a
spec ia l i za t ion of Class.

Here fo l lows an example of taxonomy d e f i n i t i o n .
?- mkcateg(european,100),

mkcateg (C i t a l i a n , f rench, german, engl ish J,90),
mkss (C i t a l i an, f rench, german, engl i sh, europeanl \
mkisa(me, I ta l ian) .

Appendix 1 shows a user - f r iend ly syntax fo r
def in ing taxonomies. Ac tua l l y , t h i s syntax is
described by Prolog clauses, and is loaded at
i n i t i a l i z a t i o n t ime.

Note that the same constant may be considered
both as an object and a c lass; as an object it can
be c lass i f i ed in a class by means of an is_a edge.
Thus, in Taxlog we can bu i ld taxonomies where
superclasses are d i s t i n c t from metaclasses. In the
foregoing example, a metaclass may be def ined:

?- mkcateg(nat ional i ty,100),
mkisa(Cital ian,french,german,engl ishJ,

n a t i o n a l i t y) .
The issue of extending the Prolog u n i f i c a t i o n

to an e f f i c i e n t use of taxonomies has been solved
by introducing res t r i c ted var iab les, that is by
al lowing variables to be quant i f ied over classes.
In Prolog terms, an atom and a var iab le r es t r i c t ed
to a clasB are un i f i ab le only if the atom is a
member of the c lass. An atom is a member of each
class l inked wi th it by a chain of exact ly one is_a
and zero or more s_s arcs. This inher i tance ru le
avoids some typ ica l problems a r i s ing when no
d i s t i nc t i on is made between isa and ss arcs (i n our
example, "me" is not a " n a t i o n a l i t y " !) .

Taxlog in terpre ts log ic programs whose clauses
are qui te s imi la r to Prolog ones, except that
var iables can be res t r i c ted to the classes defined
in the taxonomy. As an example of Taxlog clause,
consider the fo l low ing , taken from (1) :

happy(X) :- l i ke (X ,Y) , got(X,Y)
X isa person.

The constant person has been declared as a
c lass. In the clause, X is a var iable r e s t r i c t e d to
person, and Y is unres t r i c ted . The ' : ' binary
operator separates a clause from the r e s t r i c t i o n
declarat ions over the var iab les. The parser can
recognize the precondit ion part of a clause from
the r e s t r i c t i o n par t , and bu i ld an in te rna l
s t ructure for representing res t r i c t ed var iab les .
See Appendix 2 fo r a b r i e f descr ipt ion of the read
and wr i te p r im i t i ves .

The un i f i ca t i on algorithm has been extended,
and actua l ly covers three new cases:
. uni fy an atom and a res t r i c ted var iab le : t h i s

operation succeeds if the atom has boen declared
as member of e i ther the r e s t r i c t i o n class or a
spec ia l iza t ion o f i t ; in every other case, i n ­
cluding i f the r e s t r i c t i o n class is a spec ia l -
zat ion of the atom class, the u n i f i c a t i o n f a i l s ;

. uni fy an unbound var iable and a r es t r i c t ed
var iab le : the two variables share, and the same
r e s t r i c t i o n constrains the un i f i ed va r iab le ;

. uni fy two res t r i c ted var iab les; they are un i f i ed
in the in tersect ion o f t he i r r e s t r i c t i o n s .

The user may submit Taxlog any goal containing
res t r i c t ed var iab les; analogously a Taxlog answer
can be an atom, a s t ruc tu re , a r e s t r i c t e d va r iab le ,

M o n t i n i 6 9

or an unrestricted variable. This fact
distinguishes Taxlog from tradi t ional Prolog
interpreters, because Taxlog answers can refer to
classes, not purely to single objects, by means of
restricted variables. Note that this fact can avoid
some confusing answers, that arise from an
uncorrect mixing of classes and objects. Thus even
in answers we can distinguish properties of each
object in a class from properties of a class as an
object. For example, if we declared:

?- mkisa(doggy1,dog),
mkisa(doggy2,dog),
mkisa(dog,animal_species).

and have the following clauses:
barks(A) : A isa dog.
contains(A,zoology_book) : A isa animalj3pecies.

the goal barks(X) produces the answer:
X ■ _1 : _1 isa dog.

while the equivalent Prolog answer is :
X = doggy1; (ask an other solution)
X = doggy2

The Taxlog goal
?- contains(dog,zoology book).

succeeds, while the goal
?- contains(X.zoologybook) : X isa dog.

f a i l s , because the property "contained into the
zoology_book" refers to the class of dogs as a
whole, not to individual dogs.

There exists a suitable instantiation predi­
cate, which allows the user to take Taxlog answers
back to Prolog-style. This predicate extends
DECSystem-10 Prolog current atom(A) predicate (11).
The goal is successively sat isf ied by instantiating
the variable A to the atoms in a system-dependent
order. If A is a restr icted variable, the goal w i l l
be satisf ied exclusively by the atoms whose class
satisf ies the given res t r ic t ion . We can use
current_atom in order to enumerate the atoms which
are members of a class and of i t s specializations.
In the "barks" example, a Taxlog goal l i ke :

?- barks(X), current_atorn(X).
produces the very same sequence as Prolog,

There is a discrepancy between Taxlog and
Prolog answers when some class at the lowest level
of the taxonomy is empty. The discrepancy may be
eliminated by applying the current_atom predicate.
For example, if no object has been declared member
of the "dog" class, the Taxlog goal barks(X)
produces the answer:

X » 1 : _1 isa dog.
but the Taxlog goal:

?- barks(X), current_atom(X).
f a i l s , as well as barks(X) submitted to Prolog.

I l l RELEVANT LITERATURE

McSkimin and Minker (8) introduce the TT-a
clause representation for f i r s t order predicate
calculus, where a variable quantification method

over subsets of the universe of objects is used.
Variable restr ict ions are managed by a semantic
unif ication algorithm. In a dictionary, semantic
categories are related to constants, function
domains and ranges, and predicates by means of
membership relations. Moreover, three kinds of
relat ion interconnect semantic categories, that is
superset, equality and disjointness.

Walther (13,14) extends the Markgraf Karl Refu­
tation Procedure to a many-sorted theorem prover on
the basis of i t s many-sorted calculus, where varia­
bles can be declared quantified over a sort. Some
experimental results are available. Cohn (5) uses a
sorting function to describe sort restr ict ions
deriving from the argument positions of the
function and predicate symbols that it occupies.

Final ly, Ait-Kaci and Nasr (1) propose psi-term
unif icat ion as a bu i l t - i n mechanism for handling
is_a taxonomies within Prolog.

Our proposal di f fers from Ait-Kaci and Nasr for
a number of reasons. The main reason is that we
distinguish is_a and s_s arcs, and thus enable
metaclasses to be represented. In LOGIN there is no
way of distinguish the class level from the object
level , because both are considered as subtypes.

An other difference between the two approaches
is that LOGIN allows functor symbols to be unified
according to the taxonomy, while Taxlog forbids i t .
It is possible to perform this kind of taxonomic
reasoning in Taxlog by representing the taxonomic
factor as an adjunctive argument of a general
functor symbol, thus enabling the difference
between type-constructor and functor being used in
order to preserve the efficiency in uni f icat ion.
The functor unif ication is performed in Taxlog as
address comparison, while the inheritance property
is entrusted to the simpler unif ication algorithm
for constants.

We think that the Taxlog proposal may be
considered, in a sense, complementary to LOGIN.
Many of the features introduced in LOGIN are quite
interesting for supplying Prolog with a suitable
support for programming. In part icular, we think
that the three main representation improvements,
non-fixed ar i ty for terms with expl ic i t labeling,
tagged arguments, and compile time enforcement of
taxonomic consistency should be effectively used in
the design of Prolog compilers. Nevertheless, as a
run time support, we think that Taxlog is quite
e f f ic ient , and provides the user with a clearer and
more in tu i t ive semantics.

IV INTEGRATING TAXONOMIES INTO A PROLOG INTERPRETER

A prototype version of the Taxlog interpreter
has been bu i l t by suitably extending an existing
Prolog interpreter (9), fu l l y compatible with the
standard described in (4). The prototype is
written in C language and currently runs on an AT&T

70 ARCHITECTURES AND LANGUAGES

3B2 microcomputer under the UNIX(TM)* System V as
operating system.

The Taxlog prototype interpreter currently
implements a l l the functionalit ies described in the
previous sections, except for the following
rest r ic t ion to the structure of taxonomies: each
class is allowed to have only a single father. This
(actual) l imi tat ion causes taxonomies to have a
tree structure.

The following modifications to the Prolog
interpreter have been done.

A new system area has been defined for classes,
besides the tradi t ional execution stacks (local,
global, t r a i l stack), and the database. The
category area contains the class descriptors and a
representation for is__a and s_s arcs. For each
class record the following information is stored:
. a pointer to the generalization class,
. a pointer to the l i s t of specialization classes,
. a pointer to the class member l i s t ,
. the class level ,
. a pointer to the atom denoting the class.

Two f ie lds have been added to the atom internal
structure, a pointer to the class denoted by the
same str ing as the atom, and a pointer to the class
the atom is a member of.

Restrictions on variables are actually
represented as pointers to the category area. The
resolution algorithm is substantially unchanged,
but the unif ication algorithm has been extended as
described in Section I I . The stack record internal
structure has been l e f t unchanged. The t r a i l stack
mechanism only has been modified: when a restricted
variable is instantiated, or is restricted to a
more specific class, the old restr ict ion is saved,
together with the address of the variable. Much
care has been taken in order to use as l i t t l e as
possible space for the t r a i l records. Actually
Taxlog saves space for unrestricted variables,
because it does not push on the t r a i l the
"undefined" value for them. During the backtracking
phase, a test is performed on the second element on
the top of the t r a i l : i f i t is a restr ict ion (i . e .
a pointer to the category area), then this is the
old restr ic t ion for the variable whose address is
stored on the top of the t r a i l .

Final ly, the clause internal data structure
contains a representation for restrictions on
clause variables. Actually, for a number of reasons
restr icted variables are classif ied as global. The
clause representation consists thus of an array of
i n i t i a l values for global variables only. When a
clause is selected for matching, the system builds
two new contexts in the local and global stacks,
and in i t ia l i zes the global stack record to the
restr ict ions descripted in the clause. If no
restr icted variable appears, the clause

♦UNIX is a trademark of AT&T Bell Laboratories.

representation is almost identical to Prolog but a
f lag indicating whether or not an i n i t i a l global
stack record exists in the clause representation.
V PERFORMANCE COMPARISON BETWEEN PROLOG AND TAXLOG

Some considerations and experiments have been
made in order to compare the performance of Taxlog
and Prolog and to measure, in terms both of
required space and computation time, the overhead
and the advantages involved by the extensions.
A* Time efficiency

We carried out two series of experiments for
measuring time efficiency. Much care has been taken
in order to exclude data pollutions due to the
presence of other users in the system. We took the
tms__utime datum, and obtained it by means of the
times system ca l l . It represents the CPU time used
by the cal l ing process in order to execute
operations in the user space (12). The experiments
took place with the operating system in single-user
mode.

1. Time overhead due to the taxonomy mechanism

In the f i r s t series of tests the programs do
not make use of taxonomic reasoning at a l l . Note
that Taxlog is an extension of Prolog, thus we
could use the very same source programs in our
experiments for both the interpreters.

Table 1 - Average execution times (100 runs)
(data in lOOths sec.)

Procedure(Datum)
nreverse(1ist30)
qsort(l ist50)
deriv(timeslO)
deriv(dividelO)
deriv(loglO)
deriv(ops8)
serialise(palin25)
dbquery**
dbquery

Prolog
58.51
91 .90
5.54
5.73
4.17
4.01

51.58
127,33
743.16

Taxlog
60.62
94.56
5.64
6.02
4.36
4.20

53.39
133.41
778.71

Ratio
1.0361
1.0289
1.0181
1.0506
1.0456
1.0474
1.0351
1.0477
1.0478

We took the test programs from Warren (15):
• "reverse, which inverts the terms of a l i s t ,

applied to l is t30, a 30 element l i s t ;
. qsort, a version of the quicksort algorithm,

applied to the Warren l ist50 l i s t ;
• deriv, a program for computing symbolic

derivatives, applied on four different arithmetic
expressions, named timeslO, dividelO, loglO, and
ops8;

. serial ise, which translates a given str ing into a
l i s t of numbers which represent the character

**In the dbquery example, the system gives five
answers. We reported in the table, respectively,
the time for the f i r s t answer and the time for the
refutation.

Mont in i 71

codes, applied to the str ing palin25;
. dbquery, which represents a simple query

application on a l i t t l e geographic database.
Table 1 summarizes the results of this series of
tests. For the Warren's examples, the overhead
fa l ls into the interval between 1.80% and 5.06% of
the total execution time.

The overhead does not depend on the total
execution time. It is due exclusively to the higher
complexity involved in the unif icat ion, because
Taxlog considers the case of restricted variables
even if in these examples they do not appear.

2. Time advantages in using taxonomies

In this second series of tests we measured the
improvement which derives from an extensive use of
the taxonomic reasoning capabil i ty. The testing
program represents a simple query on a database.
Some properties in the database are defined by
using objects and classes declared in a taxonomy.
In the query some variables are restr icted.

Two different versions have been bu i l t for each
test program. In the standard Prolog version, no
restricted variable appears, while the Taxlog
version contains a description of the taxonomy in
terms of the primitives we introduced. A number of
d i f f i cu l t i es has been faced in order to make
signif icant the comparison between the two systems.
F i rs t , even though the two systems interpret the
same example, they give a different number of
answers, because Prolog instantiates variables to
the constants which satisfy the goal, but Taxlog
generalizes answers as far as possible to
categories. In order to have comparable results
two kinds of measures have been taken: the f i r s t -
answer time, that is the time the system takes in
order to f ind the f i r s t solution for the goal, and
the refutation time, i .e . the time the interpreter
takes to generate a l l solutions and then answer
"no".

Second, first-answer times in a Prolog
interpreter are greatly dependent on the clause
ordering: in a choice point the interpreter
examines direct ly the correct branch only if it is
the f i r s t in the database. First-answer times were
taken with the database ordered in the most favou­
rable way. Note that the Taxlog interpreter is very
l i t t l e sensitive to the order of the various parts
of a taxonomy. Thus, the first-answer time is the
most favourable measure for Prolog. On the contra­
ry, the refutation time is fu l ly independent from
the clause ordering in the database for both sys­
tems, provided that no extra-logical feature, such
as cut, assert, etc. , appears. In general, Taxlog
capabil it ies are exploited for refutation problems.

Third, two different kinds of query have been
taken into consideration. In the f i r s t case there
is a two-variable query: the interpreter satisf ies

the goal by finding a suitable combination of
values for the two variables. In the second case
two constants appear instead of the variables: the
interpreter proves that the query is sat isf ied by
the two constants. Two-variable queries have been
measured, for Taxlog, in two dif ferent ways: in the
f i r s t , an answer is given in terms of restr icted
variables, in the second way the answer is made
uniform to standard Prolog by f i l t e r i n g it through
the current_atom primit ive.

Fourth, the test programs for the two systems
are not equal: it is therefore possible that
different implementation techniques for the same
program require different answer times. With
respect to standard Prolog, the two solutions,
top-down and bottom-up, have been considered for
the problem of searching through a taxonomy. Note
that for first-answer times with optimal ordering
of clauses top-down and bottom-up are almost
equivalent, because no true search is required.
Thus, only results for top-down are reported. The
difference between the two approaches may be better
appreciated for refutation times.

Final ly, first-answer times for random clause
ordering range from the first-answer time for
optimal clause ordering (including i t) to the
refutation time (excluding i t) . Thus the comparison
of the two measures gives an idea of the answer
times for increasingly more non-deterministic
problems.

In Appendix 3 we report the test program for
each version.

First-answer times

The test has been repeated for increasingly
deeper taxonomies: the results (see Table 2) show
that f i rst-order times l inearly depend on the
taxonomy depth. As the rate is much higher for
Prolog than for Taxlog, we have proved that a
single complex unif ication step is far more
ef f ic ient than a taxonomic deduction with a simple
unif icat ion algorithm. Note that Taxlog results for
two-variable queries do not depend on the taxonomy
size, because only one clause is used, and taxon­
omic information is not required (see Appendix 3).

Refutation times

Three groups of tests have been done, in order
to measure the refutation time rate result ing in
increasing (uniformly):
. the number of objects per class,
. the number of subclasses per class,
. the depth of the taxonomy.

A l l experiments for each group of tests make
use of balanced taxonomies with a uniform number of
objects per bottom-level class. Table 3 shows the
results for these tests.

72 ARCHITECTURES AND LANGUAGES

Table 2 - Average first-answer times

Taxonomy
depth

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

Two constants
Prolog

top-down
0.749
1.063
1.362
1.656
1.954
2.251
2.559
2.856
3.155
3.457
3.758
4.063
4.358
4.665
4.963
5.241

Taxlog

0.220
0.234
0.251
0.269
0.272
0.292
0.302
0.317
0.326
0.345
0.352
0.367
0.376
0.395
0.405
0.424

Twc
Prolog

top-down
0.662
0.879
1.099
1.311
1.528
1.747
1.963
2.182
2.396
2.617
2.835
3.051
3.267
3.484
3.701
3.890

• variables
Taxlog

0.198
0.198
0.198
0.199
0.194
0.197
0.197
0.199
0.201
0.199
0.197
0.198
0.200
0.195
0.197
0.197

Taxlog
«

0.441
0.457
0.484
0.504
0.531
0.553
0.570
0.595
0.617
0.640
0.657
0.686
0.705
0.726
0.753
0.770

Table 3 - Average refutation times
Increasing the no. of objects per class.

Two variables Two constants
Number of Prolog Taxlog Taxlog Prolog Prolog Taxlog
objects
per class

1
2
3
4

top
down

0.322
0.701
1.282
2.074

0.201
0.197
0,201
0.199

0.626
1.224
2.063
3.163

top
down
0.299
0.398
0.444
0.487

bottom
up

1.205
1.195
1.193
1.207

0.223
0.223
0.222
0.218

Increasing the no. of subclasses per class.
Two variables Two constants

Number of Prolog Taxlog Taxlog Prolog Prolog Taxlog
subclasses top
per class

2
3
4
5

down
1.017
1.941
3.198
4.779

0.202
0.201
0.203
0.201

1.
2,
3,
4

♦

.282

.193

.362

.805

top
down
0.619
0.841
1.069
1.292

bottom
up

1.140
1.136
1.134
1.133

0.230
0.229
0.229
0.227

Increasing the depth of the taxonomy.
Two variables Two constants

Depth
of the
taxonomy

1
2
3
4

Prolog
top
down

0.322
1.078
3.989

15.459

Taxlog

0.201
0.200
0.199
0.201

Taj

0,
1.
3,

11.

dog

.626

.285

.507

.628

Prolog
top
down
0.299
0.643
1.334
2.711

Prolog
bottom

up
1.205
1.365
1.535
1.700

Taxlog

0.223
0.231
0.237
0.246

♦The results in these columns refer to answer
times for queries f i l te red through the current_atom
primit ive, in order to take Taxlog answers back to
Prolog sty le.

B. Memory requirements
Some considerations arise when the space

requirements for the two systems, Prolog and
Taxlog, are compared. We can distinguish between
stat ic and dynamic space requirements.

1. Static space requirements

Actually, Taxlog imposes a space overhead of
two words per atom, in order to store the two ad­
dit ional pointers (see Section I I I) . This overhead
must be payed for each atom in the system, thus
included a l l atoms which are members of no class.

In order to store taxonomic relations, we need
some space for classes, and for s_s and is__a arcs.
Table 4 summarizes space requirements for Taxlog,
and for the two approaches, top-down and bottom-up,
in Prolog. In these measures we do not consider the
space for storing atoms. Classes are represented in
Taxlog by enti t ies in the category area, while in
Prolog they are represented as unary functors. The
bottom-up approach, moreover, requires some space
for storing a clause for each category entry. In
Prolog more space is needed in order to store s__s
and is_a arcs than in Taxlog because the arcs are
represented as normal clauses, and thus a
representation for head, t a i l , and control
information must be provided.

Table 4 - Static space requirements for storing a
taxonomy (in words).

Stored object
Class
s s arc
is a arc

Taxlog

5
2
2

Prolog
top-down

7
10
8

Prolog
bottom-up

15
10
10

Clauses not involving restricted variables need
the very same space for both systems. When
restricted variables appear, instead, the space
difference between Prolog and Taxlog depends on two
parameters: T, that is the number of taxonomic
restr ict ions in a clause (and their equivalent
representation as predicates in standard Prolog),
and V, that is the number of global variables in
the Taxlog clause. For our implementation, a
formula gives the difference in number of words:

(Prolog_space - Taxlog__space) » 5 * T - V
Note that an intensive use of taxonomic

restr ict ions favours Taxlog, because Prolog
requires space in order to store the predicate form
of the taxonomic restr ic t ion and the comma
separator, while Taxlog stores direct ly the
restr ic t ion as a pointer to the category area in
the i n i t i a l environment. But restr icted variables
are considered global, and, actually, the i n i t i a l
environment contains a word for each global
variable. This fact explains why the corrective
factor appears in the formula.

M o n t i n i 7 3

2. Dynamic space requirements
It is worth noting that Taxlog requires the

very same dynamic space as Prolog, if the taxonomy
mechanism is not used. The only stack space waste
that Taxlog imposes, respect with Prolog, is in
t r a i l management, because the old variable
restr ict ions must be stored together with the
variable addresses, during the uni f icat ion. But the
careful t r a i l management algorithm we used saves
this space when unrestricted variables are
instantiated.

Surprisingly, even if taxonomies are used, much
dynamic space is gained, as the data in Table 5
confirm, because many stack records, that Prolog
pushes on the local stack for handling the clauses
describing the taxonomy, are simply not used (and
thus not stored) by Taxlog. Consequently, more
space is gained in the t r a i l stack, because there
is no need of saving the addresses of the taxonomic
clauses; moreover, less variables exist in the
system. The increase in the global stack size is
due to the fact that restr icted variables are
classif ied as global, and thus are stored in the
global stack instead of the local stack.

Table 5 refers to the same examples used for
first-answer time queries with two variables. Data
are relat ive to the smallest taxonomy (depth = 2).
Bigger taxonomies give the same results for Taxlog,
but a higher space usage for Prolog, due to the
stack records for the taxonomy clauses.

Table 5 - Dynamic space requirements for an example
(in bytes).

Memory area Taxlog Prolog top-down
Local Stack S6 244
Global Stack 16 0
Trai l Stack 32 52

VI CONCLUSIONS
The efficiency of a prototype of the Taxlog

interpreter has been valued with respect to
standard Prolog by means of a series of
measurements. The maximum overhead, due to the
higher degree of complexity of the extended
interpreter, is about 5% of the execution times,
and is fu l l y independent from the size of the test
problem. An intensive use of taxonomies involves
considerable improvements in terms of execution
times. The taxonomic reasoning model employed in
Taxlog is quite general: this system feels a good
candidate for many practical applications (3).

ACKNOWLEDGEMENTS

Most work on the model has been accomplished by
the author and Cristina Bena, whose contribution is
invaluable. Useful suggestions came to this work
from Franco Sirovich, Gianfranco Rossi and Alberto

Martel l i at the Comp. Science Dept. of University
of Turin. The author wishes to thank his colleagues
at Laboratorio di Intelligenza A r t i f i c i a le for
their support and helpful discussions.

APPENDIX 1 - USER-FRIENDLY SYNTAX FOR DEFINING
TAXONOMIES

A simple, user-friendly syntax has been defined
for helping the programmer to introduce taxonomies
into the Taxlog system. A BNF description of the
grammar is given, together with a Prolog
description of i t s semantics and an example.
BNF description:

Taxonomy^declaration ::= declare Tree.
Tree ::= Atom

| Atom :=s List_of_elements
| Tree -> Tree { , Tree i

L ist of elements ::= CAtom { , Atom
Note: {J are the usual Kleene closure operators,
and indicate zero or more occurrences of a pattern.
Prolog interpretation:

?- op(255,fx,declare),
op(254,xfy. ' -> ') ,
op(200 txfx,•:=•).

declare Tree :- declare(Tree,1000000,).
declare((A->B),N,Top) :- !, declare(A,N,Top),

NmlO is N - 10,
declaress(Top,B,NmlO).

declare((A := L),N,A) :- !, mkcateg(A,N),
mkisa(L,A).

declare(A,N,A) :- mkcateg(A,N).
declaress(T,(B,C),N) :- !, declare(B,N,TopB),

mkss(TopB,T),
declaress(T,C,N).

dec1areas(T,B,N) :- declare(B,N,TopB),
mkss(TopB,T).

Example:
?- declare european -> i ta l ian :* fmej ,

french, german, english.
?- declare nationali ty :« Ci ta l ian, french,

german, engli sh 3.

APPENDIX 2 - READING AND WRITING TAXLOG TERMS

From the syntax point of view, the Taxlog
interpreter accepts exactly the Prolog constructs.
The read primit ive f i r s t builds the deep structure
of the input expression, considering the special
1:• symbol as a normal syntactic operator*, then
interprets it and considers i t s second argument as
a succession of restr ict ions to be applied to the
variables appearing in the f i r s t argument. The read
primit ive makes therefore the symbol ' :' and the
syntactical structure of the restr ict ions

•Note that in the bootstrapping phase the operators
are currently defined as follows:

?- op(255 fxfx, , :»), op(254,xfx,• :-•) ,
op(253,xfy,•,•), etc.

74 ARCHITECTURES AND LANGUAGES

transparent to the rest of the system. For example
if the goal:

?- read(A), functor(A fF,Arity).
is given the input sequence:

structure(Varl,Var2,Var3) : Varl isa ca t l .
the Taxlog answer is the following:

A « structure(_l,_2,_3) : _1 isa cat l
F « structure
Ari ty *= 3

while the goal:
?- read(A), arg(l,A,V).

with the same input structure as before produces
the following answer:

A = structure(_l,_2,_3) : _l isa catl
V = _1 : _1 isa cat l

The write primitive writes i t s argument with
the same syntax as the answers: if in i ts argument
any restr icted variable appears, the write
primitive prints the argument denoting each
variable with a symbol. Then the special •:•
operator is printed, followed by the restrictions
on the variables in the format:

<variable> isa <class>
The symmetry between read and write has been

maintained: structures written on a f i l e by Taxlog
are in the format accepted by the read primit ive.

APPENDIX 3 - TEST PROGRAMS

Here follows an example of the test programs
and taxonomies for time measurement.
Taxlog

?- mkcateg(zero,100), mkcateg([a,b3,90),
mkss(£a,b2,zero),
mkisa(oa,a)f mkisa(ob,b).

relation(A,B) : A isa a, B isa b.
Prolog, top-down

zero(A) :- a(A). zero(A) :- b(A).
a(oa). b(ob).
relation(A.B) :- a(A), b(B).

Prolog, bottom-up
zero(zero).
a(a). b(b).
a(A) :- zero(A). b(A) :- zero(A).
oa(A) : - a(A). ob(A) : - b(A).
relation(A.B) :- isa(A,a), isa(B,b).
isa(0fC) :- I = . .C 0,C] , I.

Measurements for first-answer times
measure :- cpu_time(Tl),

relation*A,B), /* (1) */
cpu_time(T2),
Tdif f is T2 - T l ,
wr i te(Tdi f f) .

For two-constant queries, instead of (1) use:
relation(oa,ob),

For Taxlog two-variable queries with current_atom,
instead of (1) use:

relation(A,B), current_atom(A), current_atom(B),

Measurements for refutation times
measure :- cpu_time(T), r e f u ted) .
refute(_) : - relation(A.B), f a i l . / * (2) * /
refute(Tl) :- cpu_time(T2), Tdi f f is T2 - T l ,

wr i te(Tdi f f) .
For two-constant queries, instead of (2) use:

refute(_) : - relation(oa fob), f a l l .
For Taxlog two-variable queries with current_atom,
instead of (2) use:

refute(_) :- relation(A.B), current_atom(A),
current_atom(B), f a i l .

REFERENCES

1 Ait-Kaci H., R. Nasr "LOGIN: A Logic Programming
Language With Bui l t - in Inheritance" J. Logic
Program. 1:3 (1986) 185-215.

2 Bena C., G. Montini "Analysis and proposals for
using logic languages in consultation systems",
In Proc. 1st I ta l ian Nat. Conf. on Logic Progr.
(in I ta l ian) , Genova, March 1986, 152-159.

3 Bena C, G. Montini and F.Sirovich "Planning and
Executing Office Procedures in Project ASPERA"
In Proc. 10th 1JCAI, Milano, 1987.

4 Clocksin W.F., C.S. Mellish Programming In
Prolog, Springer-Verlag, 1981.

5 Cohn A.G. "On the Solution of Schubert's
Steamroller in Many-Sorted Logic", In Proc. 9th
IJCAI, Los Angeles 1985, 1169-1174.

6 Goldberg A., D.Robson Smalltalk-80. The language
and i ts implementation, Addison-Wesley, 1983.

7 Levesque H., J. Mylopoulos "A Procedural Seman­
t ics For Semantic Networks" in Findler, Associ­
ative Networks, Academic Press, 1979, 93-120.

8 McSkimin J.R., J. Minkcr "A Predicate Calculus
Based Semantic Network For Deductive Searching",
in Findler, Associative Networks, Academic
Press, 1979, 205-238.

9 Montini G. "GioLog User's Manual", In t . Report
-PQ0786-9, LIA, CSI-Piemonte, Torino, July 1986.

10 Montini G. "Efficiency of taxonomic reasoning
and Prolog interpreters", In Proc. 2nd I ta l ian
Nat. Conf. on Logic Progr. (in I ta l ian) , Torino,
May 1987.

11 Pereira L.M. User's Guide to DECsystem-10
Prolog, Divisao de Informatica, Lab. Nac. de
Eng. Civ., Lisboa, 1977.

12 UNIX(TM) System V User Reference Manual, Release
2.0, October 1984, AT&T Bell Laboratories.

13 Walther C. "A Many-Sorted Calculus Based on
Resolution and Paramodulation", In Proc. 8th
IJCAI, Karlsruhe, 1983.

14 Walther C. "A Mechanical Solution of Schubert's
Steamroller by Many-Sorted Resolution" A r t i f .
Intel 1. 26:2 (1985) 217-224.

15 Warren D.H.D. Applied Logic - I ts Use and
Implementation as a Programming Tool, PhD
Thesis, Edinburgh, 1977.

M o n t i n i 7 5

