
A P a r a l l e l L o g i c P r o g r a m m i n g L a n g u a g e f o r P E P S y s

Michael Rate

ECRC, Arabellastr. 1

Abstract
This paper describes a new parallel Logic Programming

language designed to exploit the OR- and Independent AND-
parallelisms. The language is based on conventional Prolog
but with natural extensions to support handling of multiple
solutions and expression of parallelism.

1 . I n t r o d u c t i o n

PEPSys (Parallel ECRC Prolog System) is a research
project started in mid 1984 in the Computer Architecture
Group of the European * Computer-industry Research Centre
(ECRC). Its general goals are to study and evaluate new and
practicable solutions to the problems of parallel logic
programming. Although the project aims at investigating
parallel computer architectures for logic programming, it
began with an attempt to define the application
programmer's needs [Ratcliffe and Robert, 1985], as well as a
study of existing parallel logic models [Syre and Westphal,
1985). These considerations led us to define a high level
language for parallel logic programming, which offers facilities
for sequential programming, as in conventional Prolog, as well
as others allowing the expression of AND-parallelism, OR-
parallelism, controlled by the programmer. Beside the
language definition, we have also defined) a parallel
computational model, and we are currently writing a compiler
for the language generating a parallel intermediate-level
language. This will be used for an implementation of PEPSys
on a commercial multiprocessor system. Simultaneously, we
are studying parallel computer architectures adapted to our
approach. These will be evaluated by simulation.

This paper focuses on the PEPSys high level language
|Ratcliffe and Robert, 1986] Section 2 presents the

objectives of the language and compares them with other
approaches. Section 3 describes the main characteristics of
the language, and an example showing its main features.
Section 4 gives results obtained by a high level interpretation
of the language, combined with an evaluation of the
execution of some application programs. Section 5 discusses
the useful extensions that are felt important but kept aside
for further study. Section 6 presents the current status of the
activities in the PEPSys project.

In addition to the writers of this paper, the co-authors of
the work pre*ented here are Max Hailperin, Philippe Robert,
and Harald Westphal. The PEPSys project team includes also
Uri Baron, Jacques Chassin de Kergommeaux, Bounthara lng,
and Donald Peterson, all full time researchers at ECRC, most
of whom have contributed to the definition of the language
by their comments or the use of it.

iffe and Jean-Claude Syre

, 8000 Muenchen 81, West Germany

2 . O b j e c t i v e s o f t h e L a n g u a g e

In order to present the objectives of PEPSys, we would
first like to situate our approach among the numerous
proposals under study for parallel logic languages. Due to
lack of space, we will restrict our short review to the most
characteristic works. More on the subject can be found in
[Syre and Westphal, 1985] [Gregory, 1986] [Crammond,

1985]

2 . 1 . C o m m i t t e d C h o i c e L a n g u a g e s

Historically, the Committed Choice Language approach has
received considerable attention [Clark and Gregory,
1986] [Shapiro, 1986] [Ueda, 1985] . Although we do not
intend to fight against this class of languages (we find it
quite complementary to our own), this approach lacks at
least two important features:

• It is not really user-oriented: Almost all these
languages (Parlog, Concurrent Prolog, KLl) suffer
from a complicated semantic definition, which is
reflected in the numerous existing implementations
and discussions around both the languages and
their implementations. Their most recent
derivatives, e.g. Kernel Parlog, Flat CP and the
Logix System [Silverman and Houri, 1985], or Flat
GHC have reduced capabilities in order to simplify
and clarify the semantics of the guards in a
clause. The OR-parallelism, a very important
source of useful parallelism, is somewhat difficult
to handle because it is basically excluded by the
principle of guards. The annotations in CP or the
modes in Parlog, even if they make the writing of
programs not too difficult, often lead to a painful
re-reading of the program.

• It is not really implementation-oriented: this
approach often leads to an explosion of processes
which often bring very little parallelism for very
much control and synchronization overhead. It is
our strong feeling thai the user must be able to
control the parallelism to avoid such situations.

This class of languages seems to be well adapted to some
applications such as systems programming, simulation or
expression of control for numerical programming, where it is
useful to have some kind of synchronization mechanisms.
Although different but probably aimed at the same
applications is Delta Prolog [Pereira et al., 1986] in which
explicit events are managed by the programmer to express
the synchronization.

48 ARCHITECTURES AND LANGUAGES

2.2. " A l l s o l u t i o n s " L a n g u a g e s .

By contrast, another class of languages avoids implicit or
explicit synchronisation constructs, and concentrates on pure
parallelism (AND-parallelism, OR-parallelism, induced
parallelism). This approach has also been addressed by
many people, and at different levels: automatic parallelism
detection jChang and Despain, 1984], pure OR-parallel models
|Ciepielewski and Hausmann, 1986) |Kumon et al., 1986),

more complete systems including a language like PRISM
{Kasif et al., 1983), an execution model such as P1M-D [lto

and Masuda, 1984) or Argonne Labs ANLWAM [Butler et al.,
1986). Among those works, only PRISM really addresses the
problems from the language level to the implementation on
parallel processors.

2.3. O b j e c t i v e s o f t h e P E P S y s L a n ­
guage .

The main objectives of the PEPSys language are the result
of the careful study of the existing proposals, complemented
by an analysis of the programmer's requirements. As part of
a much larger project involving a computational model, and
execution models, with which it is totally consistent, it
provides an integrated solution to the problem of parallel
logic programming. This is often not the case with other
approaches which only deal with one facet of the problem.
Let us briefly define the objectives of the PEPSys language:

• An "all-solutions" language: PEPSys is targeted
for non-deterministic logic computations which lead
to potentially several solutions, all of them being
considered useful to the user. Decision making
systems, and open problems often need this non
determinism, simply because the "right" solution
cannot be defined by the program, but only by
the user inspecting the several solutions obtained
from his query.

• A language with a declarative semantics:
while it is true in some cases that one knows the
behaviour of a predicate and its clauses (as is
necessary in Parlog, for example), our approach is
to retain the declarative property. Our language is
compatible with Prolog, which may be useful when
the user writes sequential portions of his program
(and there are always sequential parts in a
program).

• A flexible language, both at the expression level
and at the implementation level. The flexibility at
the expression level is conveniently achieved only
if the programmer is given enough explicit control
capabilities.

• A language to produce easy-to-write, eaay-to-
read programs, with a simple syntax, and a
clear semantics, even at the expense of some
additional writing. Punctuations and special
keyboard characters are not felt the best way to
express such important features as asynchronism or
parallelism, especially when the program is to be
updated.

The next section will present the language. It attempts to
fulfil these objectives with three basic ideas: modularity,

explicit independent AND-parallelism, and user-controllable
OR-parallelism.

3 . T h e P E P S y s L a n g u a g e

3 . 1 . M o d u l e s a n d I n t e r f a c e s

When developing any large piece of software, imposing a
modular structure on a language greatly aids compile-time
error checking and analysis, particularly when compiling a
small part of a very large program. PEPSys modules are
completely self-contained. This means that all predicates
accessible from within the module must be either explicitly
declared within it or else explicitly imported into it.
Similarly, any definitions required by other modules must be
explicitly exported from the module containing the definition.

In order to achieve such a closed structure, two built-in
predicates are used to declare inter-module interfaces:

?- export(|exp/3)).
?-import from('other inodu1e.par', [imp/5)).

The definition of the predicate tzp/S is exported from the
current module and is available for importing into any other
module. The definition of the predicate imp/5, defined in the
module other _ module .par, is imported into the current module
and therefore available for use within it. It is not possible
to implicitly import predicates, other than the standard built-
in predicates, since no global declaration is provided. This
restricts the scope of any possible name clashes to a local
module.

A PEPSys program has two types of modules: serial and
parallel.

Serial modules contain conventional Prolog code and use the
the normal Prolog depth first execution strategy with
backtracking to select alternative clauses. The only unusual
feature is that all the clauses for a predicate must be
grouped together. Access to any other predicates defined
within other serial modules is provided directly by the
declarations illustrated above.

Access to predicates defined in parallel modules is also
provided through the same interface mechanism but the
actual usage of such predicates must only occur from within
the built-in predicates oneof/J, bagoj/S and setof/S. The oneof
predicate is used to obtain a single result, the first in time,
generated by a predicate call whilst the other two collect
alternative solutions from the predicate call. These three
predicates will all fail on backtracking.

Parallel modules contain only the parallel PEPSys language.
This includes most of the usual Prolog predicates, plus
oneof/1, bagof/S and setof/S, but excludes all side-effect
predicates (e.g. assert/}, retract/1, read/1, write/S, f/0 etc.).
Parallel modules may use predicate definitions declared within
other parallel modules using the same interface declaration
convention as used in serial modules. It is not allowed to
import a predicate from a serial module into a parallel one
and it i« not necessary to use the built-in predicates oneof,
bagof and setof when using predicates defined within other
parallel modules.

These two module types are distinguished by the file name
extension used to contain their code. Thus serial modules

Ratcliffe and Syre 49

have the extension .«er and parallel modules the extension
.par. This follows the approach used in ECRCProlog
[Estenfeld and Meier, 1986].
This structure separates the parallel and sequential parts of

a program in a clear way. The programmer is relieved of
the burden of having to imagine and manage complex
interactions between asynchronous concurrent processes whilst
still having access to powerful side-effect facilities. Large
application programs are easy to manage and comprehensive
compile-time error checking is facilitated.

3 .2 . A N D - P a r a l l e l i s m

The parallel PEPSys language supports the parallel
execution of Independent goals. Two goals are considered
Independent only if they have either no uninstantiated shared
variables or else cannot instantiate any shared uninstantiated
variables to different values*. In this way, the overheads of
general AND-parallelism is avoided.

Progress has been made in automatically detecting such
independent goals. However, with state-of-the-art technology,
we still believe the programmer to be the best guide,
particularly to decide what is worthwhile parallelism (i.e.
worth the overheads).

Goals which are independent in this sense are separated
with the independent operator (#) instead of the usual comma
(,). This indicates to the compiler and/or runtime system
that these goals may be safely executed in AND-parallel
mode.

The language places no restriction on the number of
solutions each goal of an AND-parallel execution produces.
There are no constraints as to how parallel constructs may
be nested.

3 .3 . O R - P a r a l l e l i s m a n d P r e d i c a t e
P r o p e r t i e s

In a parallel module, as well as being grouped together, the
clauses of a predicate must be preceded by a properties
declaration. This declaration contains additional information
about the predicate to that expressed within the clauses
themselves. This information is used to express whether it is
worthwhile executing all clauses concurrently (i.e. OR-
parallelism), whether the clause ordering is significant, and
the number of valid solutions the predicate is allowed to
generate. Some of this information is semantic in that it
reflects on the meaning of the clauses written as the
predicate's definition, whilst some is pragmatic in that it is
merely advice' to a compiler or runtime support system.

Property declarations have the form:

- proper t i es (<l i »t__of_p roper t i es>).

Three properties are supported by the language; they are
completely orthogonal:

•This is also referred to as restricted AND-parallelism in the
literature.

• the solutions property • specifies whether all or
only one of the solutions the predicate is able to
generate are to be considered as valid.

• the clauses property - specifies whether the
ordering of clauses is significant or not.

• the execution property - specifies whether executing
all clauses concurrently is likely to be useful or
not

It is important to note the fundamental difference in nature
between the solutions and clauses properties and the execution
property. The latter has no effect on the semantics of the
predicate definition. It merely acts as advice to a run-time
scheduler, effectively saying "if there are enough free
resources, then allocate the execution of these clauses to
different processes". Thus, the parallelism exploited may be
constrained to the resources available.

Conventional sequential execution is also embedded in this
scheme with the use of the following property declaration:

-propert i e s (| s o l u t i o n s (a l l) ,
c lauses(ordered),
execut i on (laey)J) .

In this example, the solutions property allows all the
solutions the predicate can generate to be considered as
valid, the clauses property forces the clause ordering to be
significant. That is, solutions from the first clause will be
returned before any from later clauses. Finally, the execution
property recommends lazy execution. This invokes the usual
execution mechanism of generating choice-points and
backtracking to these when failure occurs. However, note
again that the execution property is purely advisory; there is
no observable difference to the user if the execution property
had been processed as if it were eager, that is, if all clauses
had been executed concurrently. The resulting solutions from
different clauses would still be ordered in the sequence order
of the clauses generating them, and all the solutions
generated would still be valid. The only difference would be
that the backtracking mechanism could have been replaced
by parallel execution. In general, it is assumed that any
implementation would only exploit parallelism where it is
recommended to do so.

Although there is no cut operator in the parallel language,
its effect can be simulated using the solutions property. If
the solutions property is defined as one, meaning that only the
first solution generated in time is considered valid, then this
is equivalent in conventional Prolog to having a cut as the
last goal in every clause. If the predicate also has the
property clauses (ordered), then the solution generated must
come from the first clause able to generate a solution. Using
this mechanism it is possible to devise a general program
transformation for any Prolog predicate with cuts into the
PEPSys language.

3 .4 . A n E x a m p l e P r o g r a m

This now seems an appropriate point at which to look at
the PEPSys code for a short program. For this purpose, we
will present a PEPSys coding for the n queens program (see
fig 3.4).

SO ARCHITECTURES AND LANGUAGES

PEPSys n-queens Programme (c) copyright BORC QnbH */
Muenchen 1986 */

/* Authors: M. J. Ratcliffe and P. Robert. */
/* Description: serial module of the 'n-queens' program */
/* Entry point: go/1 . . . argument is the integer board site */
/* V

?• exportf |go/l]).
?- import_from('queens.par', |get solutions/2)).

/* User entry point */

go(Site) :-
bagof(Soln, get_so 1 ut i oris (Size, Soln), Solutions),
member(S, Solutions), writeln(S), f a i l .

go(Site).

PEPSys n-queens Program-lie (c) copyright ECRC QnbH
Muenchen 1986

/• Authors: M. J. Ratcl i f fe and P. Robert.
/* Description: parallel module of the 'n-queens' program
/* Entry point: get_so 1 ution/2 . . . called from serial module
/*

?-export(|get solutions/2]). % Export entry point

-prope r t i e s([|).
get solutions (Board_size, Soln) :- so 1ve(Boardsize, [j , Soln).

% Accumulate the positions of occupied squares
-propert ies([solut ions(al1),clauses(ordered),execut ion(1 azy))).
solve(Bs, [square(Bs, Y) | L] , [square(Bs, Y) | L]) .
so 1ve(Board_size, I n i t i a l , Final) :•

newsquare(1nitial, Next, Boardsi ic) , so 1ve(Board s i le , |Next | I n i t i a l] , Final).

% Generate legal positions for next queens
- proper ties([solutions(al)),clauses(ordered),execution()azy)]).
newsquare([square(] , J) j Rest J, square(X, Y), BoardSize) :-

1 < BoardSize, X is 1 -+ 1, snint(Y, BoardSize),
not(threatened(I, J, X, Y)) # safe(X, Y, Rest),

newsquare(j], square(l, X), BoardSize) :- snint(X, BoardSize).

% Generate a l l possible positions for the next queen
-properties([solutions(all),c1-auses(unordered),execution(eager)|).
s n i n t (X, X) .
snint(N, NP1 usOneOrMore) :- M is NPI usOneOrMore - 1 , M > 0, snint(N, M).

% Check whether queens on squares (I , J) and (X, Y) threaten each other
-properties! [solutions(one),clauses(unordered),execut ion(lazy)|).
threatened(1, J, X, Y)
threatened(I, J, X, Y)
threatened(l, J, X, Y)
threatenedfl, J, X, Y)

- 1 = X.
- J = Y.
- U is 1 - J, V is X - Y, U = V.
- U is 1 + J, V is X + Y, U ^ V.

% Checks whether square(X, Y) is threatened by any existing queens
-properties((solutions(one),clauses(ordered),execution(lazy)]).
safe(X, Y , []) .
safe(X, Y, |square(I, J) | L]) :-

not(threatened(l, J, X, Y)) # safe(X, Y, L).

Figure 1: A PEPSys Coding of the n-queens Program

Ratcliffe and Syre 51

This program is coded in two modules. The serial module,
queens.ser, contains the user interface whilst the parallel
module, queens.par, contains the parallel code. The interface
between the two is provided by the get __ solutions/£ predicate.
This is called from the serial module using the bagoj/S
predicate to collect all the solutions.

This program exploits both OR- and AND-parallelism. OR-
parallelism is used to generate, and continue processing with,
all the possible positions for the next queen. These are
generated by the snint/2 predicate. AND-parallelism is then
used in the newsquare/S and safe/3 predicates to execute the
validity tests on the newly generated position of the next
queen in parallel.

It is informative to consider the property declarations of the
parallel predicates a little more closely:

• get _ solutions/t. the properties are defaulted since
only the solution* property is relevant and this is
defaulted to all.

• solve/S: all solutions are required but if is not
worth executing the two clauses in parallel.

• newsquare/3: all solutions are required but it is not
worth executing both clauses concurrently since
unification, which will mostly choose the first
clause, will decide between them.

• sntnt/B: this predicate generates the OR-parallelism
by generating all possible row positions in a
column for a new queen.

• threatened/4: it is only necessary to prove one
condition of a false position for a queen but the
tests are not complex enough to be worth parallel
execution.

• safe/3: this is a vector operation to try and find
any previously placed queen threatening the newly
placed one.

4 . L a n g u a g e E v a l u a t i o n

Any computer language is valueless without an
implementation so we have written an interpreter for our
language in CProlog. This interpreter can also generate an
execution trace file. This file can than be interpreted by an
analysis program in terms of parallel concurrently executing
processes.

The analysis of the trace file makes several assumptions to
simplify its work. It must be remembered that the purpose
of this analysis is to evaluate a PEPSys coding for a
program rather than predict the performance on a particular
system; it measures the amount of parallelism expressed by
the code. The main assumptions are presented below:

• each goal executes in one time unit

• no overhead for process splitting

• unlimited resources are available

• all AND-parallel goals are executed to completion

• OR-parallel processes split after unification
The assumption of unlimited resources violates a

fundamental principle of the PEPSys project, namely that the
amount of parallelism exploited should be restricted by the
resources available. However, when Investigating how much
parallelism is expressed within a program and estimating
what resources it could usefully utilise, this assumption is
reasonable.

It is in fact an option that all OR-paralle) processes are
split after unification. The alternative is to perform
unification in the child process(es). This case is a little
naive and results in the creation of processes which may fail
after performing unification, thus wasting the overhead/ of
process creation. The assumption presented here can be
thought of as representing a perfect indexing scheme in /the
selection of candidate clauses. The real situation lies
somewhere between these extremes; we hope nearer the latter
than the former!

Using these tools, the execution of five PEPSys programs
was analysed. The table below summarises the results:

+ + + + +
| Program | Total No | Maximum No j Speedup |
| Name j of Goals | of Active | Factor |

1 Argl |
| Four Queens |
| Mapl |
| Pathsearch |
| Warplan |
+ +-

31202
1261
5700
3223

71796
- + - -

1200
40

130
28
78

. . + .

267
17
56
8

10
- +

The speedup factors quoted above are calculated by
dividing the total number of goals executed by the execution
time (which is also measured in numbers of goals). This is
valid when all solutions are generated but is otherwise
questionable.

The first program, argl, is the salt and mustard problem re-
coded from the original written at Argonne labs. The second
is a specific example of the n queens program discussed above;
in this case two solutions are generated. The mapl program
is an implementation of the map colouring problem; this
coding follows that used in (Ciepielewski et al., 1985] and
exhibits much OR-parallelism. The path program is a simple
heuristic search application implemented at ECRC. Using a
representation of a public transport network it generates all
reasonable ways of travelling between two nodes. The
network used here has only 17 nodes. The final program,
warplan, is a simple re-coding of Warrens original. Here it is
solving a block's world problem presented in the same paper.

The graph below shows the number of concurrent processes
(y-axis) as a function of time (x-axis) for two of the
programs analysed. The solid line corresponds to the four
queens problem and the dashed line to the mapl problem:

52 ARCHITECTURES AND LANGUAGES

Using the language, the programmer can tune the
parallelism in his program. The effects of adjusting the
granularity of the parallelism in this way is illustrated in the
table below. This shows the speedup factor for a single
program (a soccer team selection problem) as a function of
the amount of parallelism added to the basic sequential
source program:

+ + + + + +
| amount of OR-//ism | NONE | FULL | FULL | FULL |
j amount of AND-//ism | NONE | NONE | PART | FULL |
| execution time | 816 j 38 j 32 j 10 j
| speedup factor j - j 21.5 j 25.5 | 81.6 |
+ + + + + +

Another result of this preliminary evaluation of parallel
programs concerns the potential dangers of not controlling
the parallelism. A program can generate a large amount of
parallel activities, but many of them may be just duplicates:
some OR branches in the program may produce the same
intermediate solutions, and every parallel path generated
afterwards will perform identical computations. The activation
of AND-parallel branches can lead to a cross product of
intermediate results which are just permutations of the same
subresults. In the same vein, an OR-paralle) branch can lead
to so many parallel computations that it would saturate any
multiprocessor system. The PEPSys language offers the
programmer an adequate set of explicit constructs to adjust
and refine his source programs in a clear and simple way.

We find these results encouraging in that our language does
indeed lend itself to the expression of significant parallelism.
It has even proved possible to get significant gains from
simple translations of conventional Prolog programs.

5 . P r o p o s a l s f o r L a n g u a g e E x t e n s i o n s

When coding programs, we have come to recognise tome
limitations in the language. These proposals are designed to
eliminate these.

The parallel PEPSys modules are completely static in
nature. Whilst this presents a very clean language, it also

has problems, particularly when it comes to comparing the
efficiency of some Prolog programs with their PEPSys
equivalents. This proposal provides a global dynamic
database within the parallel environment with the unusual
property, when compared with conventional Prolog, of not
guaranteeing coherence. There are three areas in which this
could be useful: lemmas (avoiding repeatedly computing the
same intermediate solutions), constraining the search space
(heuristic rules may be dynamically adjusted to generate only
reasonable solutions) and process synchronisation (a process
may actively wait for another to transmit a message).

In some cases it is desirable to modify a particular
predicate's properties for a particular call of that predicate.
Only modifications which do not override the basic nature of
the predicate definition are allowed:

clauses: "unordered" to "ordered"
execution: "eager" to "laEy"

No modification of the tolvtioni property is necessary since
the built-in predicate oneof/1 accomplishes the same function.
Such modifications may also be used with built-in predicates.

A vector relation is a relation between corresponding
elements of lists (vectors) which can be executed concurrently
for each set of corresponding elements. In the basic
language, this is expressed by using recursion to select the
list elements and executing the recursive goal call in AND-
parallel mode. This has been identified as an important
source of parallelism in Prolog |Ratcliffe and Robert, 1985].
The exploitation of this parallelism is inefficient because a
recursive goal call must be executed before the next vector
element process can be generated. A special syntax for
vector operations would save the execution time of n goals,
where n is the length of the vector, and initiate the
concurrent processes faster.

The unification between a goal and a clause head is often
augmented by the execution of a few simple tests. Such
goals are really unification constraints and should be
expressed as such. By compiling such constraints into the
unification process the overall efficiency of execution will be
improved. The so-called flat guarded languages essentially use
guards in this manner.

The use of guards could be introduced in the style of P-
Prolog at Keio University. In this case guards could be used
to express a predicate able to produce multiple solutions but
commit execution to a single clause. Currently this can only
be done using multiple layers of predicates.

6 . C u r r e n t a n d F u t u r e W o r k o n t h e
P E P S y s P r o j e c t

The parallel programming language described in this paper
is one activity of the PEPSys project. Associated with it, we
have defined a parallel logic computational model. This model
handles Sequentiality, AND-parallelism and OR-parallelism, in
a resource-limited environment, with as little overhead as
necessary. When the resources become saturated, the
potentially parallel processes are executed sequentially, and
conversely, a parallel process which was forced to run
sequentially may be retroactively made parallel with a
minimal overhead if resources become available. This facility
outperforms the existing models. It is more general than the
models defined by Hermenegildo (MCC, AND-parallel only) or
Ciepielewski (S1CS, OR-parallel only), or even Overbeek

RatcllffeandSyrt 53

(ANL, only deterministic AND-paralle) branches). It uses an
improved Hash Windows scheme for representation of data
structures, and thus is more efficient than the Kabu Wake
method (recopy of the whole state to start retroactive
parallelism), and the other models mentioned above (however
the ANL model, also in use at S1CS and Manchester
University with the concept of "favored" branches, seems to
be very efficient, too).

From the language and the model definitions, we are
currently working in three areas of interest:

• Language and applications: we are writing
application programs, to test the language, as well
as to evaluate our global approach. The programs
are adaptations of sequential ones (PRESS, Logic
Circuit Fault Finder), or they are developed from
scratch with an initial parallel analysis of the
problem (Public Transportation System Adviser,
Tourist Information Adviser).

• Direct implementation on a commercial
multiprocessor system. The PEPSys language and
the computational model are currently being
implemented on a Siemens MX-500 multiprocessor
(similar to a Sequent Balance 8000 system). A
compiler, using the technology developed at ECRC
for the ECRC compiler and for the Sequential
Inference Processor, is under test.

• Evaluation of execution models of multiprocessor
systems adapted to PEPSys. We are defining new
architectural models adapted to the computational
model. We will implement a set of simulation tools
that will evaluate those models on benchmark
programs written in the PEPSys language.

Further results will include the performance evaluation of
the direct implementation, the simulation of new parallel
computer architectures for logic programming (in our class of
languages, i.e. not the Committed Choice class), and a
revised version of the programming language.

7 . C o n c l u s i o n

In this paper we have defined the main features of a
parallel logic language which covers most of the user's
requirements for programming lage scale applications
containing potential AND and OR-parallelisms, as well as
sequential portions. The modularity and some built-in
predicates allow for a clean, structured programming
methodology, with well-defined interfaces between sequential
and parallel modules. Within a sequential module,
conventional Prolog is used, with all the facilities to interface
with the user or the system. Within a parallel module, a
predicate is written in a familiar syntax close to prolog, and
augmented with a Property Declaration. This Property
Declaration defines the parallel behavior of the predicate, as
seen by the programmer with regard to its use in the
program. It also provides some flexibility in that the
programmer can tune the real parallelism he wishes to have.
The explicit expression of parallelism is considered better
than any other solution, since it reflects more the
specification of the initial problem. Some examples (most of
them taken from existing sequential implementations), and
their pseudo-dynamic evaluation by the interpreter, have
shown a promising parallel behavior, which should be even

better in the programs whose specifications use directly the
capabilities offered by the language

The basic language is associated with a computational
model and is currently being implemented on a commercial
multiprocessor system. Real world (but still small)
applications are being written to evaluate its capabilities.

We are aware that the language presented here is not the
"ultimate" parallel logic language, but may be the starting
point for an extended one, incorporating more tools to
express other kinds of concurrency, such as those existing
now in Parlog, GHC, or Delta Prolog. In the same vein,
extensions to an asynchronous data base allowing loose,
chaotic synchronisation, or vector parallelism constructs, may
appear useful in real applications. This will be studied in
conjunction with the other work in the PEPSys system at
ECRC.

Re fe rences

jButler et al., 1986]
R. Butler, E. Lusk, W. McCune, and R. Overbeek.
Parallel logic programming for numeric applications.
In Ehud Shapiro (editor), Third International Conference

on Logic Programming, pages 375-388. London, July,
1986.

|Chang and Despain, 1984)
J.H. Chang and A.M. Despain.
Semi intelligent backtracking of Prolog based on a static data

dependency analysis.
Technical Report internal report, University of

California Berkeley, 1984.

(Ciepielewski and Hausrnann, 1986]
A. Ciepielewski, B. Hausrnann.
Performance Evaluation of a Storage Model for OR-

parallel Execution of Logic Programs.
In Proc. 1986 Symposium on Logic Programming, pages

246-257. Salt Lake City, Utah, September, 1986.

[Ciepielewski et al., 1985]
A. Ciepielewski, S. Haridi and B. Hausman.
Initial Evaluation of a Virtual Machine for Or-parallel

Execution of Logic Programs.
In UMIST (editor), 1FJP TC 10 Working Conf. on Fifth

Generation Computer Architecture. IFIP, Manchester,
July 15-18, 1985.

|Clark and Gregory, 1986)
K. Clark and S. Gregory.
PARLOG: Parallel Programming in Logic.
acm Transactions on Programming Languages and Systems

8(l):l-49, January, 1986.

[Crammond, 1985]
J. Crammond.
A Comparative Study of Unification Algorithms for

OR-Parallel Execution of Logic Languages.
In D. DeGroot (editor), Int. Conf. on Parallel Processing,

pages 131-138. IEEE, St. Charles, III., August,
1985.

54 ARCHITECTURES AND LANGUAGES

[Estenfeld and Meier, 1986]
K. Estenfeld and M. Meier.
ECRC Prolog User's Manual Version 1.2.
Technical Report LP - 13, ECRC, September, 1986.

| Gregory, 1986)
Steve Gregory.
Parallel Logic Programming: The State of the Art.
Internal Report, ECRC, May, 1986.

(ho and Masuda, 1984]
Noriyoshi lto and Kanae Masuda.
Parallel inference machine based on the dataflow

model.
In Intl Workshop on High level Computer Architecture 84,

pages 10. LA, May, 1984.
[Kasif et al., 1983]

Simon Kasif, Madhur Kohli, and Jack Minker.
PRISM A Parallel Inference System for Problem

Solving.
In Nucleo de Inteligencia Artificial, Universidadc Nova

de Lisboa (editor), Proc. 1983 Logic Programming
Workshop, pages 123 - 152. Maryland USA, June,
1983.

[Kumon et a)., 1986]
K. Kumon, H. Masutawa, A. Hashiki.
Kabu-Wake: A new parallel inference method and its

evaluation.
In Proc. IEEE COMPCON 86, pages 168-172. San

Francisco, March, 1986.
[Pereira et al., 1986)

L.M. Pereira, L. Monteiro, J. Cunha, and J.N.
Aparicio.
Delta Prolog: a distributed backtracking extension with

events.
In Ehud Shapiro (editor), Third International Conference

on Logic Programming, pages 69-83. London, July,
1986.

jRatcliffe and Robert, 1985]
M. J. Ratcliffe and P. Robert.
The Static Analysis of Prolog Programs.
Technical Report CA-11, ECRC, October, 1985.

[Ratcliffe and Robert, 1986]
M. J. Ratcliffe and P. Robert.
PEPSy: A Prolog for Parallel Processing.
Technical Report CA-17, ECRC, March, 1986.

[Shapiro, 1986)
Ehud Shapiro.
Concurrent Prolog: A Progress Report.
IEEE Computer 19(8):44-58, August, 1986.

[Silverman and Houri, 1985]
W. Silverman, A. Houri.
Log/z, Installation Manual for Release 1.1
Wciimann Institute of Science, 1985.

[Syre and Westphal, 1985)
Jean Claude Syre and Harald Westphal.
A Review of Parallel Models for Prolog.
Technical Report CA-07, ECRC, June, 1985.

[Ueda, 1985]
Kaeunori Ueda.
Guarded Horn Clauses.
Technical Report TR-103, 1COT, June, 1985.

Ratcliffe and Syre 55

