
A U n i f o r m M o d e l f o r O b j e c t - O r i e n t e d
L a n g u a g e s U s i n g T h e C l a s s A b s t r a c t i o n

Jean-Pierre BRIOT
LITP, University Paris-6

4 Place Jussieu
Paris, 75005

mcvax!inria!litp!jpb

Pierre COINTE
Rank Xerox France
12 Place de l'IRIS
La Defense, 92071
mcvax!inria!litp!pc

A b s t r a c t

One of the main goals of object-oriented languages is to
unify their universe: "every entity of the language is an ob­
ject.* The class concept, however, usually does not follow
this wish: a class being not a real object, i.e., created from
a class. The metaclass concept introduced in Smalltalk-
80, attempts to give classes a first class citizenship but
complicates the instantiation scheme without solving its
fundamental limitations: the only partial specification of
the class at the metaclass level, and the fixed number of
meta-levels.

Some more recent approaches, as in Loops and then
CommonLoops, tend towards a better unification, but re­
veal the same limitations. We propose to go one step
further and present an ultimate new model for an opti­
mal simplification of the class/object concept, while keep­
ing the class abstraction. In this model, implemented by
ObjVlisp1, every object is an instance of a class, and a class
is a true object fully specified at the meta-level. A meta­
class is a true class inheriting from another one. Because
ObjVlisp is built on a reflective architecture, the user has
uniform access and control to all the levels of the language:
class level, metaclass level... He can add new levels and the
metaclass links can be created indefinitely.

Finally, we suggest to clarify the Smalltalk terminology
with a new definition for class variables: the instance vari­
ables of a class - treated as an object - become the class
variables of this class, explicitly expressed at the metaclass
level.

I C l a s s v e r s u s O b j e c t

This paper deals with the instantiation mechanism used
by object-oriented languages which organizes objects along
the class abstraction.
A. Class and Instantiation
"A central new concept in SIMULA 67 is the 'object'. An ob­
ject is a self-contained program (block instance), having its own
local data and actions defined by a 'class declaration'. The class
declaration defines a program (data and action) pattern, and ob­
jects conforming to that pattern are said to 'belong to the same
class' " [6J.

xThi8 research was supported by the "Object group" of the Greco
de Programmation, CNRS, France.

Object-oriented programming is built from the class
model, introduced in the language Simula-67. In Simula,
a class is a way to describe an abstract data structure.
Active objects may be dynamically created from the class
description by instantiating the variables specified by the
class. Such objects are called instances of the class.
B. Is a Class an Object?
"With respect to Simula, Smalltalk abandons static scoping, to
gain flexibility in interactive use, and strong typing, allowing it
to implement system introspection and to introduce the notion of
metaclasses9 [4].

The object paradigm is set, and is now distinct from
abstract data types systems. The Smalltalk language has
evolved from Smalltalk-72 [7] to Smalltalk-80 in order to
give the user some control on classes. Smalltalk-76 [9] is
the first language to consider a class as an object itself, i.e.,
instance of a special class, called a metaclass. However,
besides an uniformity wish2, a class is not a true object.
Its structure is not fully specified at the meta-level but
remains at the implementation level. Only the behavior
of classes, i.e., the way they react to message passing, is
specified at the meta-level, through this unique metaclass,
called Class.
C. Smalltalk-80' Metaclasses are Not a Full Answer

A unique metaclass imposes a unique behavior to all
classes. For this reason, Smalltalk-80 [8] introduced the
metaclass concept to allow distinct behaviors for different
classes. Each class now has its own metaclass. This facility
is mainly used to (re) define the instantiation method, to
initialize class variables, or to hold predefined examples.
However, Smalltalk-80 metaclasses are implicit (they are
implicitly created from the class description) and virtual
(they cannot be used as true classes, e.g., being explicitly
instantiated). Consequently metaclasses introduce such a
conceptual gap in the understanding of Smalltalk-80 that
Borning proposes to drop them:

"In our empirical studies, metaclasses were regarded as the
most significant barrier to learnability by both students and teach­
ers. We propose that they be eliminated. We have explored var­
ious alternatives to metaclasses, such as the use of prototypes.
However, for DeltaTalk we simply propose that the language re­
verts to the situation in Smalltalk-76. Every class would be in­
stance of class Class" [£].

2 "One way of stating the Smalltalk philosophy is to choose a small
number of general principles and apply them uniformly" [10].

40 ARCHITECTURES AND LANGUAGES

We do not agree with Borning's view. It seems to us
that metaclasses do add great expressive power to OOLs
and that it is really worthwhile to find a correct defini­
tion for them. We need metaclasses to develop friendly
open-ended systems [5j and we believe that the fundamen­
tal problem with Smalltalk remains the impossibility to
explicitly specify classes as instances of true classes. In or­
der to solve this deficiency and to simplify the Smalltalk-80
model we propose to unify classes and metaclasses.

I I U n i f i c a t i o n

We claim that a class must be an object with a first class
citizenship allowing greater clarity and expressive power.
A. Is Every Object a Class?

There are still classes and non-class objects in our model.
The wnon-classw objects are called terminal instances, they
are fully instantiated and are not abstractions like classes.
B. How Many Object Types?

There are two kinds of objects (classes and terminal
instances). There is no type distinction however. A class
and a terminal instance only differ through their respective
classes. For instance, a class will accept the new message
to create an instance of itself, but a terminal instance will
reject it.
C. Metaclasses are True Classes

A class of classes is called a metaclass, it specifies the
structure and the behavior of classes. The first primitive
metaclass in the language is called CLASS and owns the
new primitive method for instantiation. Any class declared
as a subclass of CLASS inherits its ability to specify and
control classes (e.g., the new method), and thus becomes a
metaclass. Consequently, metaclasses are true classes and
also true objects.
D. Creation of a Class

This unification induces a simplification of the instan­
tiation and inheritance concepts but imposes that they be
used simultaneously. We can create object with inheritance
(classes and metaclasses) or without inheritance (terminal
instances). For instance a metaclass is created as the sub­
class of another one (as an "ultimate" subclass of CLASS).

The distinction between metaclasses, classes and termi­
nal instances is only a consequence of inheritance and not
a type distinction. There is now only one type of objects
in the model.

I l l T h e U n i f i e d M o d e l

A. Structure of an Object
A class describes the structure of a (potential) set of

objects through an ordered collection of instance variables.
The first instance variable - called is it - is automatically
inherited from the OBJECT class and refers to the name of
the class of the object (each object is the instance of a
class).

As an example the POINT class, describing 2D points
specifies the following instance variables : < ia i t x y>

An instance of this POINT class, e.g., the point 10@20,
owns the values associated to the instance variables speci­
fied by its class: <POINT 10 20>

A set of procedures (called methods), usable by any of
its instances, is also specified by the class as we see below.
B. Structure of a Class

If we want to define a class, we need to know the in­
stance variables describing a class. They are specific to our
model: < i s i t name supers i_v methods>

Because it is convenient to have named classes, name
denotes the name of the class.

The list of the names of the direct superclasses from
which the class will inherit is denoted by super.

The list of instance variables that the class specifies is
denoted by i_v.

The set of methods held by the class expressed in a
P-list way, with pairs < selector-name . \-cxprcssion> is
denoted by methods.

The i s i t instance variable belongs to the OBJECT class,
the most general class in the model. In contrast to other
usual instance variables, the corresponding value is auto­
matically supplied when creating the object.

We can now describe the structure and the behavior of
a class through this set of instance variables: a class has
at last become a real object.
C. The P O I N T Example

To illustrate our model, we present its Lisp implemen­
tation called ObjVlisp. We define POINT as a subclass of
the OBJECT class by instantiating the first metaclass CLASS.
A CommonLisp syntax is used for specifying the values as­
sociated to the instance variables of the class-receiver :

(send CLASS 'new
:name 'POINT
:supers '(OBJECT)
: i_v ' (x y)
:methods '(x (A () x)

x: (A (nx) (setq x nx))))

Then we create an instance of POINT, using the same
new message : (send POINT 'new :x 10 :y 20)

I V R e f l e c t i o n

CLASS is the first primitive object. It will recursively
create all other objects. CLASS needs to be an instance
of some class as any object of the model. To prevent an
infinite regression (we need the class of CLASS, and the
class of this class...) the usual technique in OOLs is to
circularize the instantiation tree by adding a loop at its
root. The simplest way is to set this loop at the CLASS level,
i.e., by declaring CLASS as its own instance (and class).
A. Self Pattern Matching of CLASS

The previous statement severely constrains the struc­
ture of CLASS. The instance variables specified by CLASS
must match the corresponding values held by CLASS itself,
as its own instance. Below are the instance variables and
the associated values :

isit name supers Lv methods
CLASS CLASS (OBJECT) (isit name supers Lv methods) (new (A..))

Briot and Cointe 41

Note that the value associated to the instance variable
i j v is exactly the list of instance variables itself. This
self pattern-matching illustrates the circular definition of
CLASS.
B. The Golden Braid

In order to implement our model in a reflective way,
we need a "bootstrap" (5). We first create, on the Lisp
level, a skeleton of CLASS owning the new method. Then
we create, on the ObjVlisp level, the class OBJECT, root of
the inheritance tree :

(send CLASS 'new
:name * OBJECT
:supers '()
:i.v ' (is i t)
:methods '(class (A () is i t) . .))

Then we redefine CLASS by a self-instantiation using
the values presented above :

(send CLASS 'new
:name 'CLASS
:supers '(OBJECT)
:i.v '(name supers i.v methods)
:methods '(new (A i_v*

(make-instance . . .))))

After the bootstraping process, the system owns only
the CLASS and OBJECT classes and the instantiation tree is
exactly like the Smalltalk-76 one. But, as demonstrated in
[3], the uniformity and the explicit definition of the objects
CLASS and OBJECT open an immense variety of possibili­
ties.
C. Unici ty versus Genericity

The model we present is optimal in its simplicity and
generality. The unicity of the new method reflects the
unique type of objects: real instances of classes. On the
other hand, because of inheritance there are two kinds of
object creations. Thus the new method is not fully generic.

When creating an object, inheritance applies to classes
but not to terminal instances. As a consequence, the make-
instance primitive needs to discriminate between classes
and terminal instances.

In order to explicit these two ways of creating objects
(with or without inheritance) and regain genericity of the
new method, we may use another primitive object in the
model, called METACLASS, owning the new method with
inheritance (creating classes). Then CLASS will own an­
other new method without inheritance (creating terminal
instances). This second alternative is similar to the Loops
kernel [l] , augmented with the full specification of classes
at the meta-level. The disadvantage is the increased com­
plexity necessary to gain genericity for the new method. It
is very easy to extend our model towards this second alter­
native, in that sense we believe our model is more general
and simpler to understand and manipulate.
D. Indefinite Meta-Levels

We may extend the system with the same tools that
were used to create it: instantiation and inheritance. For
instance, we can specify and control two new levels of
metaclasses by first defining the SET class (whose instances
memorize the list of their instances), then the MPOINT class
(whose instance, the POINT class, memorizes its instances
and parametrizes the display character c) :

(send CLAS8 'new
.name 'SET :supers '(CLA88) :i_v '(listOfInstances))

(send SET 'new
:nazne 'MPOINT :supers '(SET) :i_v '(c))

(send MPOINT 'new
:name 'POINT : supers '(OBJECT) :i.v ' (x y) :c • * . ")

V C l a s s V a r i a b l e

We propose an alternative to the Smalltalk class variables.
The principle is to extend the scope of the instance vari­
ables of a class to each of its instances. Then the class
variables are defined at the metaclass level as simple in­
stance variables of the class treated as an object.
A. The Polygon Problem

Let us develop the Polygon construction to illustrate
this idea. The problem is to represent the (regular) Poly­
gon abstraction and the Square and Hexagon sub-abstract­
ions. The methodology of Smalltalk-80 leads to use the
class hierarchy to define, first the Polygon class, then its
Square and Hexagon subclasses.
B. The Smalltalk-80 Solution

Each polygon will be defined by its location (the first
vertex) and the length of any of its sides. Consequently
locat ion and length will be defined as the instance vari­
ables of Polygon treated as a class. The problem then,
is to parametrize the number of sides: 4 for a square, 6
for a hexagon, undef for a polygon. If we define nSides
as a class variable of Polygon, nSides will be inherited
by Triangle and Square because they are sub-classes of
Polygon.

But in Smalltalk the inheritance for class variables does
not follow the inheritance for instance variables. Class vari­
ables are used to share knowledge between instances of a
class hierarchy. For example, if the new method is rede­
fined to add the newly created instance of a class inside a
Collection's class variable, the instances of its subclasses
will also be memorized. In the same way, each square or
hexagon would share the same number of sides!

Because class and metaclass hierarchies are parallel, the
unique solution is to define nSides as an instance vari­
able of Polygon treated as an object, i.e., at the "Polygon
class1* level. Nevertheless, to access the value of nSides
from an instance of Polygon (or Square and Hexagon) we
have to explicit at the metaclass level two "read-write"
methods controlling this metavariable3. To define "6 sided"
polygons we will use the transmission :

Hexagon i n i t i a l i z e : 6

C. The ObjVl isp Solution
The "Polygon scheme" is believed to be quite general

when applying the class abstraction to the knowledge rep­
resentation field. To capture it, we have decided to define

9Here are thefe two methods held by Polygon class:
Polygon claas>>nSides

tnSidet
Polygon CUM>>initialise: numberOfSides

tnSide§*~ numberOfSidei

42 ARCHITECTURES AND LANGUAGES

the ObjVlisp class variables at the metaclass level, real­
izing a "global environment" shared by all the instances
of a class and following the inheritance rules of instance
variables. Unlike Smalltalk-80, our class variables are in­
herited but not shared by the subclasses. Consequently,
here is our alternative version of the Polygon example :

(send CLASS 'new
:narae 'METAPOLYGON
:eupers '(CLASS)
:i-v '(nSidet))

(send METAPOLYGON 'new
:name 'POLYGON
:supers '(OBJECT)
:i-v '(location length)
imethoda '(display (A () . . .) . . .)
:nSides 'undef))

METAPOLYGON is a subclass of CLASS, thus it is a meta­
class. The creation of POLYGON explicits the instantiation
of the class variable nSides. Then we can define new
classes of polygons, with distinct values of nSides, by
defining them as inheriting from POLYGON. As an exam­
ple the SQUARE and HEXAGON objects are the classes of "4
sided" and "6 sided" polygons :

(send METAPOLYGON 'new
:name 'SQUARE :supers '(POLYGON) :nSides 4)

(send METAPOLYGON 'new
rname 'HEXAGON .supers '(POLYGON) rnSides 6)

(send SQUARE 'new
:location (send POINT 'new :x 100 :y 200)
:length 20)

Every object has access to its own environment as well
as the environment of its class. Consequently nSides is
bound at two levels: class and instances methods4. The
previous instance of SQUARE has access to the bindings of
the instance variables of its class with the associated values
it owns, i.e.: (i s i t . SQUARE) (location . 100(0200)
(length . 20). But it also has access to the bindings of
the instance variables of its metaclass with the associated
values that SQUARE owns, thus gaining the value of the
(meta)instance variable: (nSides . 4).
D. Towards a New Terminology

The problem with the terminology developed by Small-
taik-80 is the non-symmetry between the instance and the
class levels. We agree with the instance methods and class
methods definitions because they respectively express the
behaviors of the instances and then the behavior of a class
as an object. On the other hand, we are confused by the
class variable definition which does not define the field of
a class as an object but defines a knowledge shared by all
its instances.

4To illustrate this point, here are the definitions of the two display
methods (Smalltalk & ObjVlisp) drawing every class of polygons and
held by POLYGON :

aP«n*- Pen new place, location,
(•elf class nSidei) timesRepeat:

[aPen go: length ; turn: 360 // («elf clan nSides)]
(A () (let ((aPen (eend (send Pen 'new) 'place: location)))
(repeat nSidee

(tend aPen 'go: length) (send aPen 'turn: (/ 360 nSides)))))

We propose to keep the term class variable BUT to
use it for a different meaning. A class variable becomes
an instance variable of the class treated as an object. To
rename the Smalltalk term class variable, we suggest the
term sharedClass variable.

V I C o n c l u s i o n

We have presented here a new model for object-oriented
programming. This model unifies class and object con­
cepts. A class is now a true object, fully specified at its
meta-level. The primitive metaclass of the model, called
CLASS, is described and created in a circular way, as an
instance of itself. This class is the root of the instantiation
tree whose depth is potentially infinite and the user has
now an uniform control on every meta-level.
Acknowledgments We thank Jean-Francois Perrot, Kris
Van Marcke and Henry Lieberman for their helpful com­
ments.

R e f e r e n c e s

[1] Bobrow, D.G., Stefik, M, The LOOPS Manual, Xerox
PARC, Palo Alto CA, USA, December 1983.

[2) Borning A., O'Shea, A., DeltaTalk: An Empirically and
Aesthetical Motivated Simplification of the Smalltalk-80
Language, ECOOP'87, to appear in Springer Verlag, P.
Cointe & H. Lieberman ed.t Paris, France, 15-17 June 1987.

[3] Briot, J-P., Cointe, P., The ObjVlisp Model: Definition of
a Uniform, Reflexive and Extensible Object-Oriented Lan­
guage, ECAI'86, pp. 270-277, Brighton, UK, 21-25 June
1986.

[4] Cardelli, L., A Semantics of Multiple Inheritance, Bell Lab­
oratories, Murray Hill NJ, USA, 1984.

(5) Cointe, P., The ObjVlisp Kernel: A Reflective Lisp Archi­
tecture to Define a Uniform Object-Oriented System, Proc.
of the Workshop on Meta-Level Architectures and Reflec­
tion, to appear in North Holland, P. Maes & D. Nardi cd.>
Alghero, Italy, 27-30 October 1986.

[6] Dahl, O., Myhrhaug, B., Nygaard, K., Simula-67 Com­
mon Base Language, SIMULA information, S-2£, Norve-
gian Computing Center, Oslo, Norway, October 1970.

[7] Goldberg, A., Kay, A., Smalltalk-72 Instruction Manual,
Research Report SSL 76-6, Xerox PARC, Palo Alto CA,
USA, March 1976.

[8] Goldberg, A., Robson, D., Smalltalk-80 - The Language and
its Implementation, Addison-Wesley, Reading MA, USA,
1983.

[9] Ingalls, D.H., The SmalItalk-76 Programming System De­
sign and Implementation, 5th ACM Symposium on POPL,
pp. 9-15, Tucson AZ, USA, January 1978.

[10] Krasner, G., Smalltalk-80 - Bits of History - Words of Ad­
vice, Addison-Wesley, Reading MA, USA, 1983.

Briot and Cointe 43

