
AN ENVIRONMENT MODEL FOR THE INTEGRATION
OF LOGIC AND FUNCTIONAL PROGRAMMING

Pierre E. Bonzon

University of Lausanne
HEC, 1015 Lausanne, Switzerland

Abstract

We propose a environment model for the evaluation
of both function and relation applications; as an
i l l u s t r a t i on , simple extensions of Scheme are
introduced, together with their interpreter.

1. Introduction

Early attempts ([l] , [2]) toward the goal of
integrating logic and functional programming
typical ly led to the introduction into Lisp of a
collection of primitives allowing to return, as a
l i s t data object, a l l , or any number of, the tuples
satisfying a given predicate. These proposals
actually provide an interface between two different
computational models, and therefore have been
characterized as embedding one programming language
into another. Further works [3] were more theoretic
in nature, and dealt with the fundamental issue of
providing a unified semantics for languages of both
types.

Our own approach is of the embedding kind outlined
above. It bears strong simi lar i t ies with the recent
works of both Srivastava and a l i i [4] and Haynes
[5] , in the sense that it leads to an extension of
Scheme (a lexical ly scoped dialect of Lisp),
allowing logic and functional expressions,
represented by f i r s t class data objects, to be
freely mixed, passed as arguments, returned as
results, and so on. We thus achieve a functional
embedding of logic programming within Scheme.
Following Haynes's taxonomy, this embedding can be
further described as an environment embedding, in
the sense that the embedded and embedding languages
share a common environment. It fa i ls however to be a
complete environment embedding, in the sense that it
does not allow to access and/or modify control
information.

With regard to these previous works, our
contribution can be described as follows:

- instead of taking care of our extensions by macro
expansions, we redefine the semantics of Scheme
by modifying the meta-interpreter given in [6] ;
we are thus led to a new computational model
based on two types of environments

This work was done while the author was v is i t ing at
the University of California at Santa Cruz.

- building upon th is , we incorporate into Scheme
the query language introduced in [6] .

In the resulting model, the concatenation of two
l i s t s can be the result of either a function or a
relat ion application:

(DEFINE APPEND (LAMBDA (X Y)
(COND ((NULL X) Y)

(T (CONS (CAR X]

(APPEND (CDR X) Y)

-> APPEND

(APPEND (A) ' (B C))

-> (A B C)

(DEFINE APPENDR (CLAUSE (NIL ?X ?X)))

-> APPENDR
(DEFINE APPENDR (CLAUSE

((CONS ?A ?X) ?Y (CONS ?A ?Z))
(APPENDR ?X ?Y ?Z)))

-> APPENDR

(APPENDR '(A) '(B C) ?X)

-> ((APPENDR (A) (B C) (ABC)))

(APPENDR ?X ?Y (ABC))

-> ((APPENDR () (ABC) (ABC))
(APPENDR (A) (B C) (ABC))
(APPENDR (A B) (C) (ABC))
(APPENDR (ABC) () (ABC)))

In the following sections, we f i r s t consider a
simple subset of Scheme, called Core Scheme. Next,
we introduce a variant of Core Senear which can be
used to define and apply relations (cr predicates)
rather than functions. By combining these two
models, we then obtain a logical extension of Core
Scheme, allowing the application of both functions
and relations. We conclude by showing how a query
language can be f i t t ed into this extension.

2. A Model for a functional subset of SCHEME

Let us consider a simple subset of Scheme,
thereafter called Core Scheme, whose expressions
have the following syntax:

18 ARCHITECTURES AND LANGUAGES

expression

sequence

Following the Lisp terminology, we .shall cal l an
ident i f ier an atom, the expression () , the empty
l i s t , and a l l other expressions, non-atomic l i s t s .
The semantics of Core Scheme w i l l be defined by a
function Eval of two arguments, i .e. an expression
and an environment. This interpreter, similar to the
metacircular interpreter given in [6] , w i l l be given
in PASCAL, and rely on the implementation of an
abstract data type called S-expression. This
implementation w i l l be viewed through a type List ,
operators NewList, NowAtom, Cons and Append,
selectors Car and Cdr, predicates Atom, Eq, Null ,
and mutators RpiaCa and RplaCd. Al l of these
operators correspond to the usual Lisp functions,
except for the constructors NewList and NewAtom
which return a empty l i s t and a symbolic atom.

Taking into account the conventions given below for
representing expressions, function Eval is:

function Eval(Expr, Env:List): List;
b»gin case TyppOfExpr<Expr) of

S«lfExpr:Eval:= Expr,
VarExpr:Eval:=EvalVar(Expr,Env);
QuoteExpr:Eval . =Car(Cdr(Expr)),
CondExpr:Eva I :=EvalCond(Cdr(Expr),Env) .
DefExpr:Eval:= EvalDef(Car(Cdr(Expr)),

Eval(Car(Cdr(Cdr(Expr))).Env).
Env ; ;

Lambda Expr :Eval : =;Eval Lambda (Expr , Env) ,
CallExpr:Eval:=Apply(Eval(Car(Expr),Env).

EvalLlBt(Cdr(Expr).Env))
end

end ;
The expressions recognized by the interpreter are:

2.1 Self-evaluating expressions

Self-evaluating expressions are expressions which
evaluate to themselves. In Core Scheme, they are

- the self-evaluating atom NIL and the expression ()
standing both for the empty l is t

- the self-evaluating atom T , standing for the
boolean value true (the boolean value false being
represented by the empty l i s t)

- the self evaluating atoms CAR, CDR, CONS, ATOM,
EQ and NULL, standing for the corresponding
primitive operators (or functions).

2.2 Variables

A l l atomic expressions which are not self evaluating
are treated l ike variables: the value returned by
the interpreter is looked up in the environment

supplied as second argument. The pair formed by an
atom and i t s associated value being called a
binding, a l is t of bindings defines a partial
environment (called frame in [6]) . Environments are
l i s t s of part ial environments. It should be noted
that environments are not Scheme objects, and are
introduced for describing the computational model.

2.3 Quoted expressions

Quoted expressions, prefixed with a quote, are
encoded as l i s t s with the atom QUOTE as f i r s t
element: the value returned is their second element.

2.4 Laabda expressions

They represent functions, and have the general form

(LAMBDA ("arguments") "body")

where "arguments' is a possibly empty sequence of
atoms representing the function formal argument
l i s t , and "body" is a sequence of call expressions
(see 2.7 below) representing i ts body.

The value returned by the interpreter is a function
closure (called a procedure in [o]) , i .e. the
association of the expression and i ts current
environment. A closure wi l l be viewed as an instance
of an extended abstract data type, called S-Closure,
implemented as a non atomic List variant, with
additional constructor NewClosure, predicate Closure
and selector Environment. It w i l l be represented as

(LAMBDA (arguments") "body")["environment"]

stressing the fact that the associated environment,
accessible through the selector Environment, is not
"consed" with the lambda expression.

2.5 Conditional expressions

The general form of conditional expressions is

(COND "easel" . . . "casen")

They have their usual Lisp interpretation.

2.6 Define expressions

Define expressions are used to assign a permanent
value to an atom They have the form

(DEFINE "atom" "expression")

with the value of "atom" to be that of expression".

The value returned by the interpreter is the atom.
As a side effect, a new binding is introduced in the
head of the current environment.

2.7 Call expressions

They are a l l the remaining expressions, and are
interpreted as function applications handled by

Bonzon 19

function apply. To be legal, their head must be an
atom or a lambda expression, and must evaluate to a
primit ive operator or a function closure. Actual
arguments come from a sequential evaluation of their
queue. Whereas primitive operators can be applied
d i rec t ly , the expressions contained in the body of
function closures are evaluated in sequence, the
application receiving the value of the last
expression. The environment is taken from the
closure and augmented with a partial environment
bui ld by function BindList, which takes the l i s t of
formal arguments from the closure and bind them
with the l i s t of actual arguments.

Function Apply can be defined as follows:

function Apply(Op,Ary:List):Llat;
bag in caaa TypaOfOp(Op) of

CarOp: Apply:«Car(Car(Arg));
CdrOp: Apply:=Cdr<Car IArg));
ConaOp: Apply:"ConstCar(Arg).Car(Cdr(Arg>));
AtoaiOp: If Atom (Car (Arg))

than Apply;"NawAtoml'T ')
alae Apply:sNawLlat;

EqOp: If Eq(Car(Arg),Car(Cdr(Arg)))
than Apply:*NewAton("T ')
alae Apply:sNawLiat;

NullOp: if NulKCar(Arg))
than Apply:=NawAton(T ')
alaa Apply::NawLiat;

ProoOp: Apply::EvalSaquance(Cdr(Cdr(Op)),
Cona(BindLiat(Car(Cdr(Op)).

Arg) ,
Environment(Op)))

and
and;

3. A logical variant of Core Scheme: a simple
model of logical programming

Let us now introduce a variant of Core Scheme,
allowing to define and evaluate relations (or
predicates) rather than functions. Its interpreter,
which uses two types of environments, is as follows:

function Eval(Expr,FunEnv,LogEnv:List):Li at;
bag in caaa TypaOfExpr(Expr) of

LogVarExpr:Eval:=EvalLogVar(Expr,LogEnv);
VarExpr:Eval:=EvalVar(Expr,FunEnv,LogEnv);
QuoteExpr:Eval:*Car(Cdr(Expr));
DafExpr:Eval:«EvalDaf(Car(Cdr(Expr)).

Eval(Car(Cdr(Cdr(Expr))),
FunEnv,LogEnv),

FunEnv);
ClauaaExpr.Eval:«EvalClauae(Expr,FunEnv,LogEnv);
CallExpr:Eval:«Saarch(EvalQuary(Expr,FunEnv,LogEnv),

Eva1Ca11a(Expr,FunEnv,LogEnv))
and

and;
The expressions recognized by the interpreter are:

3.1 Logical Variables

These are a l l ident i f iers prefixed with a question
mark. As they can be bound by predicate application,
the value returned by the interpreter is looked up
in the current logical environment (since clause
def in i t ions cannot be block structured, each logical
environment is simply a l i s t of bindings, i.e
contains just one part ial environment). If no
associated value is found, a variable closure is
returned, associating the logical variable and the
current logical environment. Whenever the associated

value is » logical variable, possibly in closure
form, it gets evaluated again. Logical variables in
closure form are evaluated in their own environment,
which overrides the current environment. They are
implemented as atom variants, with selector LogEnv
accessing the associated logical environment. Note
that there is no need, in this particular model, to
rename variables having the same name in different
clauses, since they are distinguished by the
environment they are associated with.

3.2 Functional variables

A l l other atoms are treated as functional variables,
and their values looked up in the current functional
environment. If no value is found, then the value of
the logical variable of the same name (i .e . prefixed
with a question mark) is returned.

3.3 Quoted expressions

Quoted expressions are defined and treated in the
same way as in Core Scheme. They can be used to
represent the equivalent of Prolog terms build with
functors (e.g. ' (F A) represents F(A)).

3.4 Clauae expressions

They represent logical clauses and have the form

(CLAUSE ("arguments") "body")

where "arguments" is a possibly empty sequence of
terms representing the clause formal argument l i s t ,
and "body" is a possibly empty sequence of cal l
expressions (see 3.6) representing i ts body. The
value returned is a predicate, defined as a l i s t of
clause closures, and containing in this case just
one closure, associating the given expression and
the two current environments. As before, closures
are implemented as non atomic List variants, with
selectors FunEnv and LogEnv accessing the associated
functional and logical environments.

Examples

(CLAUSE (?X ?Z) (FATHER ?X ?Y) (FATHER ?Y ?Z))

w i l l be returned as

((CLAUSE (?X ?Z) (FATHER ?X ?Y)(FATHER ?Y ?Z))
["environments"])

3.5 Define expreaalons

Define expressions are represented and treated much
in the same way as in Core Scheme, except for the
case when the value is a predicate: if the atom
already evaluates to a predicate, then these two
predicates are appended, a fuc i l i t y for the
def in i t ion of multiple clause predicates.

3.6 Call expressions

Call expressions are a l l other expressions. They
are interpreted here as predicate applications. To

20 ARCHITECTURES AND LANGUAGES

be legal, their head must be an atom or a clause
expression, and must evaluate to a predicate or a
variable closure. In the f i r s t case, the value
returned is the l i s t of a l l instances of the cal l
expression that can be deduced from the predicates
defined in the current functional environment. In
the second, an empty l i s t is returned. Predicate
applications are handled by function Search, which,
following most Prolog interpreters, performs a
depth- f i rs t , le f t - to- r ight search for the l i s t of
appropriate instances, and uses the unification
algorithm without the occur check. The arguments
of function Search are:

- a query closure, associating a cal l expression
whose arguments have been evaluated, and two
environments

Example

If variables X and ?X are unbound in their
current environment, the call expression

- if there is no calls (i .e the query has been
reduced to a fact) , then function Search returns
a l i s t containing the query with i ts arguments
instantiated in their associated logical
environment

- otherwise, if it is not undefined, the f i r s t ca l l
is passed to function TryEach, together with a
continuation containing the remaining cal ls.

Function Instance returns a copy of i t s f i r s t
argument with a l l i t s logical variables evaluated
and their associated values instantiated in turn.
Function TryEach constructs the l i s t of a l l
deducible instances by trying in turn each of the
clause closures contained in the predicate:

function TryEach(Query,Pred,CallArg,Cont:List) .List;
begin if Null(Pred)

then TryEach:=NewList
elss TryEach:"Append(Try(Query,CartPred),CallArg,Cont),

TryEach(Query,Cdr(Pred),Cal1Arg,
Cont))

(GDFATHER X JIM)

w i l l produce the query closure

(GDFATHER ?X JIM)["environments"]

- a l i s t of cal ls, each of them formed by the
association of a predicate and an argument
closure, this closure associating i tse l f an
unevaluated l i s t of arguments and a pair of
environments.

Example

The cal l expression

(GDFATHER X JIM)

could produce a l i s t of just one ca l l , defined as

((((CLAUSE (?X ?Z) (FATHER ?X ?Y) (FATHER ?Y ?Z))
["environments")
(CLAUSE (?X ?Z) (FATHER ?X ?Y) (MOTHER ?Y ?Z))
["environments"]).(X JIM)["environments"]))

Function Search is defined as follows:

function Search(Query,Calla:Liat) :Llst;
begin if Null(Call*)

then Search:*Cona(Cona(Car(Query),
Instance(Cdr(Query),

LogEnvlQuery))),
NewLlat)

elae oaae TypoOfOp(Car(Car(Calle))) of
PredOp:Search:"TryEach(Query,

Car(Car(Calle>),
Cdr(Car(Calla)),
Cdr(Call.));

UndefOp:Search:>NewLlat
end

end;
Function Search works as follows:

Function Try attempts to unify the current cal l
arguments in their associated logical environment,
with the candidate clause argument.** in a new
environment. In case of success, function Search is
entered recursively after adding to the continuation
the calls from the candidate clause body. A l l
arguments are evaluated before unif ication:

function Try(Query,Clause,CallArg,Cont:Liat):Liat;
var ClauaeLogEnv.TralJ:List;
begin ClauaeLogEnv:*NewEnv;

Trail:«NewList;
if Unify(EvalLiEt(CallArg,FunEnv(CallArg) ,

LogEnvfCallArg)),
LogEnv(Ca11Arg),
EvalLlst(Car(Cdr(Clause)),FunEnv(Clause),

ClauseLogEnv),
ClauaeLogEnv,
Trail)

then Try:«3earch(Query,
Append (EvalBody(Cdr (Cdr (Clauae)).,

FunEnv(Clauae) ,*
ClauseLogEnv),

Cont))
elae Try:=NewList;
ReetaurefTrall)

end;
Function EvalBody returns the l i s t of calls from the
candidate clause body.

In the unif ication process, when a free variable is
unif ied with a term, the environment associated with
this variable gets a new binding associating the
variable and the term instance in i ts current
logical environment. In order to allow backtracking
(i . e . to be able to restaure logical environments in
the state they were before trying a particular
candidate clause), a t r a i l is used to keep track of
the chronological order of bindings.

4. Logical Scheaie: the Integration of Core
and i t s logical variant

Logical Scheme, the integration of Core Scheme and
i t s logical variant, allows to define and apply
functions and predicates. Furthermore, expressions

Bonzon 21

Scheme

of both kinds can be freely mixed.

Exaaple

For i l lus t ra t ion purposes, we shall rely on an
extended Core Scheme, where numeric atoms, as well
as arithmetic operators, are self-evaluating
expressions. The following expressions are then
meaningful expressions of Logical Scheme:

(DEFINE AGE (CLAUSE I'JIM 20)])

(DEFINE YOUNG (CLAUSE (?X) (AGE ?X ?Y) l< ?Y 25)))

(DEFINE AND (LAMBDA IP Q) (CLAUSE (?X) (P ?X ?Y)
(Q ?X))))

(DEFINE YOUNGFATHER (AND FATHER YOUNG))

While the clause expression assigned to atom YOUNG
contains a function application, the body of the
lambda expression assigned to atom AND is a clause
expression. Finally, atom YOUNGFATHER is defined as
a clause expression resulting from a function
application whose arguments evaluate to predicates.

The interpreter for Logical Scheme is the union of
the two previous interpreters, with i ts last case
element modified as follows:

CallExpr:
case TypeOfCall (Eval (Car (Expr) , FuriEnv, LogEnv)) of

FunCall:Eval:=Apply(Eval(Car(Expr),FunEnv,LogEnv),
EvalLiat(Cdr(Expr),FunEnv,LogEnv),
LogEnv);

PredCall:Eval:=Search(EvalQuery(Expr,FunEnv,LogEnv),
Eva 1Ca11s(Expr,FunEnv,LogEnv))

end
In order to allow predicate applications within
function applications, function Apply has an
additional argument. Conversely, in order to allow
function applications within predicate applications,
function Search has now the following form:

function Search(Query.Calls:Ltst):List;
begin
If Null(Calls)
then Search:=Con*(Cons(Car(Query),

Ins tance(Cdr(Query),LogEnv(Query))),
NewList)

else case TypeOfCal1(Car(Car<Calls))) of
FunCall:if Nul1(Apply(Car(Car(Calls)),

EvalLi»t(Cdr(Car(CallB)),
FunEnv(Cdr(Car(Calla))),
LogEnv(Cdr(Car(Calla)))),

LogEnv(Cdr(Car(Calla)))))
then Search:=NewList
else Search:»S©arch<Query,Cdr(Calls));

PredCall̂ case TypeOfOp(Car(Car(Calls))) of
PredOp:Search:«TryEach(Query,

Car(Car(Calls)),
CdrfCar(Calls)),
Cdr(Calls));

UndefOp:Search:*NewList
end

end
end;

This new function definit ion reflects the
interpretation given, in a predicate body, to a
function application: if this function evaluates to
false, the predicate fa i l s ; otherwise the predicate
evaluation goes on. Furthermore, since clause
arguments are evaluated before unif ication, it

follows that arguments of clauses can be function
applications (as shown in the introductory example
defining the RAPPEND relation), and vice-versa.

5. Query Scheie: a query language within Scheae

In the previous example, the predicate application

(YOUNGFATHER ?X)

follows the defini t ion of a function AND returning
the conjunction of two predicates of respectively
two and one arguments. A query language is a
f ac i l i t y for applying the disjunction and/or the
conjunction, as well as the negation, of any number
of predicates of any number of arguments.

Example

In the query language introduced in [6] , predicate
YOUNGFATHER could be defined by

(RULE (YOUNGFATHER ?X) (AND (FATHER ?X ?Y)
(AGE ?X ?Z)
(< ?Z 25)))

while, in Query Scheme, it would be is defined by

(DEFINE YOUNGFATHER (CLAUSE (?XJ (AND
(FATHER ?X ?Y)
(AGE ?X ?Z)
{< ?Z 25))))

In both, this application would also be legal:

(AND (FATHER ?X ?Y) (AGE ?X ?Z) (< ?Z 25))

It must be noted however that, in [6] , the query
language is not a part of Scheme. The syntax of
Query Scheme being the same as that of Logical
Scheme, the new types of expressions are:

5.1 Self-evaluating expressions

In addition to the self-evaluating atoms introduced
earl ier, the self-evaluating atoms AND, OR and NOT
stand for the usual operators defined on predicates.

5.2 Negative clause expressions

Negative clause expressions have the form:

(NEGATION ("arguments") "body")

where body is a single cal l expression. The value
returned by the interpreter is a predicate
containing a negative clause closure. Negative
clauses are used to represent negative cal l
expressions, i .e. expressions prefixed with the NOT
operator.

Exaaple

The negative cal l expression

22 ARCHITECTURES AND LANGUAGES

(NOT (YOUNGFATHER 'BILL))

w i l l become the negative clause application

((NEGATION (?X) (YOUNGFATHER ?XJJ BILL]

5.3 Predicate expressions

Predicate expressions have the following form:

(PREDICATE clause expr." . . . clause expr.")

The value returned by the interpreter is a
predicate. Predicate expressions are thr non-closure
representation of multiple clause predicates. They
w i l l be used to represent disjunctive calls
expressions (see 5.4).

5.4 Call expressions

Call expressions now include conjunctive,
disjunctive as well as negative calJ expressions,
i .e . expressions whose head is equal to the atom
AND, OR or NOT, respectively. These particular cal l
expressions are treated as predicate applications
whith a l i s t of calls containing:

- for each conjunction, a clause expression
- for each disjunction, a predicate expression
- for each negation, a negative clause expression.

Example

(AND (FATHER ?X ?Yj
(NOT (YOUNG ?X))
(OR (HEALTHY ?X) (YOUNG ?Y)))J

w i l l be regarded as €;quivalent to

((CLAUSE (?X) (FATHER ?X ?Y]
((NEGATION (?X) (YOUNG ?X)j ?X)
((PREDICATE

(CLAUSE (?X ?Y) (HEALTHY ?X))
(CLAUSE (?X ?Y] (YOUNG ?Y)))

?X ?Y)]
?XJ

6. Conclusions

The interpretation of expressions involving function
and predicate applications, as given above, mirrors
the tradit ional use of both function applications
within logic programming languages such an Prolog,
and predicate applications within query languages.
It is by no means the only possible way to evaluate
such expressions, but not unt i l a clear denotational
semantics is agreed upon wi l l an operational
semantics possibly be called correct.

7. References

[l] Robinson, J.A.. and Sibert, E.E., LOGLISP:
Motivation, Design and Implementation, in : K.L.
Clark and S.-A. Tarnlund feds), Logic
Programming, Academic Press, New York, pp. 299-
314 (1982).

[2] Komorowski, H.J., QLOG - The Programming
Environment for PROLOG in LISP, ibidem, pp. 315-
324 (1982).

[3] DeGroot, D. and Lindstrom. G. (eds), Logic
Programming / Functions, Relations, and
Equations, Prentice-Hall, Englewood Cliffs,1986

[4 j Srivastava, A., Oxley, D., and Srivastava, D.,
An(other) Integration of Logic and Functional
Programming, in: Proceedings of the IEEE
Symposium on Logic Programming, Boston, pp. 254-
260 (1985)

[5] Haynes , Ch.T. , Logic Continuations, in :
Proceedings of the Third International
Conference on Logic Programming, London (1986)

[6j Abelson, A., and Sussman, G.J., with Sussman,
J . , Structure and Interpretation of Computer
Programs, MIT Press, Cambridge (1985)

While a predicate cal l reduces to a predicate
application, negative clause call.'., are handled as in
most PROLOG implementations, using the closed world
assumption: a negative clause succeeds if i ts calls
cannot be sat isf ied, and fa i ls otherwise. This is
reflected in an extension of function TryEach:

function TryEach(Query,Pred,CallArg,Cont:Ptr> :Ptr ;
begin
if Null(Pred)
then TryEach:»NewList
else
cat* TypeOfExpr(Car(Pred)) of
ClauseExpr:TryEach:"Append(Try(Query,Car(Pred) ,

CailArg,Cont) ,
TryEach(Query,Cdr<Pr«d) ,

CallArg,Cont)>;
NegExprtif Null(TrytQuery,Car(Prad>,CallArg,NewLi»t))

than TryEach:*Append(Search(Query,Cont) .
TryEach(Query.Cdr(Pred),

CallArg.Cont))
else TryEach:*TryEach<Query,Cdr(Pred),

CallArg.Cont)
•nd

end;

Bonzon 23

