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Abstract 

We propose a environment model for the evaluation 
of both function and relation applications; as an 
i l l u s t r a t i on , simple extensions of Scheme are 
introduced, together with their interpreter. 

1. Introduction 

Early attempts ( [ l ] , [ 2 ] ) toward the goal of 
integrating logic and functional programming 
typical ly led to the introduction into Lisp of a 
collection of primitives allowing to return, as a 
l i s t data object, a l l , or any number of, the tuples 
satisfying a given predicate. These proposals 
actually provide an interface between two different 
computational models, and therefore have been 
characterized as embedding one programming language 
into another. Further works [3] were more theoretic 
in nature, and dealt with the fundamental issue of 
providing a unified semantics for languages of both 
types. 

Our own approach is of the embedding kind outlined 
above. It bears strong simi lar i t ies with the recent 
works of both Srivastava and a l i i [4] and Haynes 
[ 5 ] , in the sense that it leads to an extension of 
Scheme (a lexical ly scoped dialect of Lisp), 
allowing logic and functional expressions, 
represented by f i r s t class data objects, to be 
freely mixed, passed as arguments, returned as 
results, and so on. We thus achieve a functional 
embedding of logic programming within Scheme. 
Following Haynes's taxonomy, this embedding can be 
further described as an environment embedding, in 
the sense that the embedded and embedding languages 
share a common environment. It fa i ls however to be a 
complete environment embedding, in the sense that it 
does not allow to access and/or modify control 
information. 

With regard to these previous works, our 
contribution can be described as follows: 

- instead of taking care of our extensions by macro 
expansions, we redefine the semantics of Scheme 
by modifying the meta-interpreter given in [6 ] ; 
we are thus led to a new computational model 
based on two types of environments 

This work was done while the author was v is i t ing at 
the University of California at Santa Cruz. 

- building upon th is , we incorporate into Scheme 
the query language introduced in [6] . 

In the resulting model, the concatenation of two 
l i s t s can be the result of either a function or a 
relat ion application: 

(DEFINE APPEND (LAMBDA (X Y) 
(COND ((NULL X) Y) 

(T (CONS (CAR X] 

(APPEND (CDR X) Y) 

-> APPEND 

(APPEND (A) ' (B C)) 

-> (A B C) 

(DEFINE APPENDR (CLAUSE (NIL ?X ?X))) 

-> APPENDR 
(DEFINE APPENDR (CLAUSE 

((CONS ?A ?X) ?Y (CONS ?A ?Z)) 
(APPENDR ?X ?Y ?Z))) 

-> APPENDR 

(APPENDR '(A) '(B C) ?X) 

-> ((APPENDR (A) (B C) (ABC))) 

(APPENDR ?X ?Y (ABC)) 

-> ((APPENDR () (ABC) (ABC)) 
(APPENDR (A) (B C) (ABC)) 
(APPENDR (A B) (C) (ABC)) 
(APPENDR (ABC) () (ABC))) 

In the following sections, we f i r s t consider a 
simple subset of Scheme, called Core Scheme. Next, 
we introduce a variant of Core Senear which can be 
used to define and apply relations (cr predicates) 
rather than functions. By combining these two 
models, we then obtain a logical extension of Core 
Scheme, allowing the application of both functions 
and relations. We conclude by showing how a query 
language can be f i t t ed into this extension. 

2. A Model for a functional subset of SCHEME 

Let us consider a simple subset of Scheme, 
thereafter called Core Scheme, whose expressions 
have the following syntax: 
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expression 

sequence 

Following the Lisp terminology, we .shall cal l an 
ident i f ier an atom, the expression ( ) , the empty 
l i s t , and a l l other expressions, non-atomic l i s t s . 
The semantics of Core Scheme w i l l be defined by a 
function Eval of two arguments, i .e. an expression 
and an environment. This interpreter, similar to the 
metacircular interpreter given in [6 ] , w i l l be given 
in PASCAL, and rely on the implementation of an 
abstract data type called S-expression. This 
implementation w i l l be viewed through a type List , 
operators NewList, NowAtom, Cons and Append, 
selectors Car and Cdr, predicates Atom, Eq, Null , 
and mutators RpiaCa and RplaCd. Al l of these 
operators correspond to the usual Lisp functions, 
except for the constructors NewList and NewAtom 
which return a empty l i s t and a symbolic atom. 

Taking into account the conventions given below for 
representing expressions, function Eval is: 

function Eval(Expr, Env:List): List; 
b»gin case TyppOfExpr<Expr) of 

S«lfExpr:Eval:= Expr, 
VarExpr:Eval:=EvalVar(Expr,Env); 
QuoteExpr:Eval . =Car(Cdr(Expr)), 
CondExpr:Eva I :=EvalCond(Cdr(Expr),Env) . 
DefExpr:Eval:= EvalDef(Car(Cdr(Expr)), 

Eval(Car(Cdr(Cdr(Expr))).Env). 
Env ; ; 

Lambda Expr :Eval : =;Eval Lambda (Expr , Env ) , 
CallExpr:Eval:=Apply(Eval(Car(Expr),Env). 

EvalLlBt(Cdr(Expr).Env)) 
end 

end ; 
The expressions recognized by the interpreter are: 

2.1 Self-evaluating expressions 

Self-evaluating expressions are expressions which 
evaluate to themselves. In Core Scheme, they are 

- the self-evaluating atom NIL and the expression () 
standing both for the empty l is t 

- the self-evaluating atom T , standing for the 
boolean value true (the boolean value false being 
represented by the empty l i s t ) 

- the self evaluating atoms CAR, CDR, CONS, ATOM, 
EQ and NULL, standing for the corresponding 
primitive operators (or functions). 

2.2 Variables 

A l l atomic expressions which are not self evaluating 
are treated l ike variables: the value returned by 
the interpreter is looked up in the environment 

supplied as second argument. The pair formed by an 
atom and i t s associated value being called a 
binding, a l is t of bindings defines a partial 
environment (called frame in [6]) . Environments are 
l i s t s of part ial environments. It should be noted 
that environments are not Scheme objects, and are 
introduced for describing the computational model. 

2.3 Quoted expressions 

Quoted expressions, prefixed with a quote, are 
encoded as l i s t s with the atom QUOTE as f i r s t 
element: the value returned is their second element. 

2.4 Laabda expressions 

They represent functions, and have the general form 

(LAMBDA ("arguments") "body") 

where "arguments' is a possibly empty sequence of 
atoms representing the function formal argument 
l i s t , and "body" is a sequence of call expressions 
(see 2.7 below) representing i ts body. 

The value returned by the interpreter is a function 
closure (called a procedure in [o] ) , i .e. the 
association of the expression and i ts current 
environment. A closure wi l l be viewed as an instance 
of an extended abstract data type, called S-Closure, 
implemented as a non atomic List variant, with 
additional constructor NewClosure, predicate Closure 
and selector Environment. It w i l l be represented as 

(LAMBDA (arguments") "body")["environment" ] 

stressing the fact that the associated environment, 
accessible through the selector Environment, is not 
"consed" with the lambda expression. 

2.5 Conditional expressions 

The general form of conditional expressions is 

(COND "easel" . . . "casen") 

They have their usual Lisp interpretation. 

2.6 Define expressions 

Define expressions are used to assign a permanent 
value to an atom They have the form 

(DEFINE "atom" "expression") 

with the value of "atom" to be that of expression". 

The value returned by the interpreter is the atom. 
As a side effect, a new binding is introduced in the 
head of the current environment. 

2.7 Call expressions 

They are a l l the remaining expressions, and are 
interpreted as function applications handled by 
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function apply. To be legal, their head must be an 
atom or a lambda expression, and must evaluate to a 
primit ive operator or a function closure. Actual 
arguments come from a sequential evaluation of their 
queue. Whereas primitive operators can be applied 
d i rec t ly , the expressions contained in the body of 
function closures are evaluated in sequence, the 
application receiving the value of the last 
expression. The environment is taken from the 
closure and augmented with a partial environment 
bui ld by function BindList, which takes the l i s t of 
formal arguments from the closure and bind them 
with the l i s t of actual arguments. 

Function Apply can be defined as follows: 

function Apply(Op,Ary:List):Llat; 
bag in caaa TypaOfOp(Op) of 

CarOp: Apply:«Car(Car(Arg)); 
CdrOp: Apply:=Cdr<Car IArg)); 
ConaOp: Apply:"ConstCar(Arg).Car(Cdr(Arg>)); 
AtoaiOp: If Atom (Car (Arg) ) 

than Apply;"NawAtoml'T ') 
alae Apply:sNawLlat; 

EqOp: If Eq(Car(Arg),Car(Cdr(Arg))) 
than Apply:*NewAton("T ') 
alae Apply:sNawLiat; 

NullOp: if NulKCar(Arg) ) 
than Apply:=NawAton( T ') 
alaa Apply::NawLiat; 

ProoOp: Apply::EvalSaquance(Cdr(Cdr(Op)), 
Cona(BindLiat(Car(Cdr(Op)). 

Arg) , 
Environment(Op))) 

and 
and; 

3. A logical variant of Core Scheme: a simple 
model of logical programming 

Let us now introduce a variant of Core Scheme, 
allowing to define and evaluate relations (or 
predicates) rather than functions. Its interpreter, 
which uses two types of environments, is as follows: 

function Eval(Expr,FunEnv,LogEnv:List):Li at; 
bag in caaa TypaOfExpr(Expr) of 

LogVarExpr:Eval:=EvalLogVar(Expr,LogEnv); 
VarExpr:Eval:=EvalVar(Expr,FunEnv,LogEnv); 
QuoteExpr:Eval:*Car(Cdr(Expr)); 
DafExpr:Eval:«EvalDaf(Car(Cdr(Expr)). 

Eval(Car(Cdr(Cdr(Expr))), 
FunEnv,LogEnv), 

FunEnv); 
ClauaaExpr.Eval:«EvalClauae(Expr,FunEnv,LogEnv); 
CallExpr:Eval:«Saarch(EvalQuary(Expr,FunEnv,LogEnv), 

Eva1Ca11a(Expr,FunEnv,LogEnv)) 
and 

and; 
The expressions recognized by the interpreter are: 

3.1 Logical Variables 

These are a l l ident i f iers prefixed with a question 
mark. As they can be bound by predicate application, 
the value returned by the interpreter is looked up 
in the current logical environment (since clause 
def in i t ions cannot be block structured, each logical 
environment is simply a l i s t of bindings, i.e 
contains just one part ial environment). If no 
associated value is found, a variable closure is 
returned, associating the logical variable and the 
current logical environment. Whenever the associated 

value is » logical variable, possibly in closure 
form, it gets evaluated again. Logical variables in 
closure form are evaluated in their own environment, 
which overrides the current environment. They are 
implemented as atom variants, with selector LogEnv 
accessing the associated logical environment. Note 
that there is no need, in this particular model, to 
rename variables having the same name in different 
clauses, since they are distinguished by the 
environment they are associated with. 

3.2 Functional variables 

A l l other atoms are treated as functional variables, 
and their values looked up in the current functional 
environment. If no value is found, then the value of 
the logical variable of the same name ( i .e . prefixed 
with a question mark) is returned. 

3.3 Quoted expressions 

Quoted expressions are defined and treated in the 
same way as in Core Scheme. They can be used to 
represent the equivalent of Prolog terms build with 
functors (e.g. ' (F A) represents F(A) ). 

3.4 Clauae expressions 

They represent logical clauses and have the form 

(CLAUSE ("arguments") "body") 

where "arguments" is a possibly empty sequence of 
terms representing the clause formal argument l i s t , 
and "body" is a possibly empty sequence of cal l 
expressions (see 3.6) representing i ts body. The 
value returned is a predicate, defined as a l i s t of 
clause closures, and containing in this case just 
one closure, associating the given expression and 
the two current environments. As before, closures 
are implemented as non atomic List variants, with 
selectors FunEnv and LogEnv accessing the associated 
functional and logical environments. 

Examples 

(CLAUSE (?X ?Z) (FATHER ?X ?Y) (FATHER ?Y ?Z)) 

w i l l be returned as 

((CLAUSE (?X ?Z) (FATHER ?X ?Y)(FATHER ?Y ?Z)) 
["environments"]) 

3.5 Define expreaalons 

Define expressions are represented and treated much 
in the same way as in Core Scheme, except for the 
case when the value is a predicate: if the atom 
already evaluates to a predicate, then these two 
predicates are appended, a fuc i l i t y for the 
def in i t ion of multiple clause predicates. 

3.6 Call expressions 

Call expressions are a l l other expressions. They 
are interpreted here as predicate applications. To 
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be legal, their head must be an atom or a clause 
expression, and must evaluate to a predicate or a 
variable closure. In the f i r s t case, the value 
returned is the l i s t of a l l instances of the cal l 
expression that can be deduced from the predicates 
defined in the current functional environment. In 
the second, an empty l i s t is returned. Predicate 
applications are handled by function Search, which, 
following most Prolog interpreters, performs a 
depth- f i rs t , le f t - to- r ight search for the l i s t of 
appropriate instances, and uses the unification 
algorithm without the occur check. The arguments 
of function Search are: 

- a query closure, associating a cal l expression 
whose arguments have been evaluated, and two 
environments 

Example 

If variables X and ?X are unbound in their 
current environment, the call expression 

- if there is no calls ( i .e the query has been 
reduced to a fact) , then function Search returns 
a l i s t containing the query with i ts arguments 
instantiated in their associated logical 
environment 

- otherwise, if it is not undefined, the f i r s t ca l l 
is passed to function TryEach, together with a 
continuation containing the remaining cal ls. 

Function Instance returns a copy of i t s f i r s t 
argument with a l l i t s logical variables evaluated 
and their associated values instantiated in turn. 
Function TryEach constructs the l i s t of a l l 
deducible instances by trying in turn each of the 
clause closures contained in the predicate: 

function TryEach(Query,Pred,CallArg,Cont:List) .List; 
begin if Null(Pred) 

then TryEach:=NewList 
elss TryEach:"Append(Try(Query,CartPred),CallArg,Cont), 

TryEach(Query,Cdr(Pred),Cal1Arg, 
Cont)) 

(GDFATHER X JIM) 

w i l l produce the query closure 

(GDFATHER ?X JIM)["environments"] 

- a l i s t of cal ls, each of them formed by the 
association of a predicate and an argument 
closure, this closure associating i tse l f an 
unevaluated l i s t of arguments and a pair of 
environments. 

Example 

The cal l expression 

(GDFATHER X JIM) 

could produce a l i s t of just one ca l l , defined as 

((((CLAUSE (?X ?Z) (FATHER ?X ?Y) (FATHER ?Y ?Z)) 
["environments") 
(CLAUSE (?X ?Z) (FATHER ?X ?Y) (MOTHER ?Y ?Z)) 
["environments"]).(X JIM)["environments"])) 

Function Search is defined as follows: 

function Search(Query,Calla:Liat) :Llst; 
begin if Null(Call*) 

then Search:*Cona(Cona(Car(Query), 
Instance(Cdr(Query), 

LogEnvlQuery))), 
NewLlat) 

elae oaae TypoOfOp(Car(Car(Calle))) of 
PredOp:Search:"TryEach(Query, 

Car(Car(Calle>), 
Cdr(Car(Calla)), 
Cdr(Call.)); 

UndefOp:Search:>NewLlat 
end 

end; 
Function Search works as follows: 

Function Try attempts to unify the current cal l 
arguments in their associated logical environment, 
with the candidate clause argument.** in a new 
environment. In case of success, function Search is 
entered recursively after adding to the continuation 
the calls from the candidate clause body. A l l 
arguments are evaluated before unif ication: 

function Try(Query,Clause,CallArg,Cont:Liat):Liat; 
var ClauaeLogEnv.TralJ:List; 
begin ClauaeLogEnv:*NewEnv; 

Trail:«NewList; 
if Unify(EvalLiEt(CallArg,FunEnv(CallArg) , 

LogEnvfCallArg)), 
LogEnv(Ca11Arg), 
EvalLlst(Car(Cdr(Clause)),FunEnv(Clause), 

ClauseLogEnv), 
ClauaeLogEnv, 
Trail) 

then Try:«3earch(Query, 
Append (EvalBody( Cdr (Cdr (Clauae) )., 

FunEnv(Clauae) ,* 
ClauseLogEnv), 

Cont)) 
elae Try:=NewList; 
ReetaurefTrall) 

end; 
Function EvalBody returns the l i s t of calls from the 
candidate clause body. 

In the unif ication process, when a free variable is 
unif ied with a term, the environment associated with 
this variable gets a new binding associating the 
variable and the term instance in i ts current 
logical environment. In order to allow backtracking 
( i . e . to be able to restaure logical environments in 
the state they were before trying a particular 
candidate clause), a t r a i l is used to keep track of 
the chronological order of bindings. 

4. Logical Scheaie: the Integration of Core 
and i t s logical variant 

Logical Scheme, the integration of Core Scheme and 
i t s logical variant, allows to define and apply 
functions and predicates. Furthermore, expressions 
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of both kinds can be freely mixed. 

Exaaple 

For i l lus t ra t ion purposes, we shall rely on an 
extended Core Scheme, where numeric atoms, as well 
as arithmetic operators, are self-evaluating 
expressions. The following expressions are then 
meaningful expressions of Logical Scheme: 

(DEFINE AGE (CLAUSE I'JIM 20)]) 

(DEFINE YOUNG (CLAUSE (?X) (AGE ?X ?Y) l< ?Y 25))) 

(DEFINE AND (LAMBDA IP Q) (CLAUSE (?X) (P ?X ?Y) 
(Q ?X)))) 

(DEFINE YOUNGFATHER (AND FATHER YOUNG)) 

While the clause expression assigned to atom YOUNG 
contains a function application, the body of the 
lambda expression assigned to atom AND is a clause 
expression. Finally, atom YOUNGFATHER is defined as 
a clause expression resulting from a function 
application whose arguments evaluate to predicates. 

The interpreter for Logical Scheme is the union of 
the two previous interpreters, with i ts last case 
element modified as follows: 

CallExpr: 
case TypeOfCall (Eval (Car (Expr ) , FuriEnv, LogEnv ) ) of 

FunCall:Eval:=Apply(Eval(Car(Expr),FunEnv,LogEnv), 
EvalLiat(Cdr(Expr),FunEnv,LogEnv), 
LogEnv); 

PredCall:Eval:=Search(EvalQuery(Expr,FunEnv,LogEnv), 
Eva 1Ca11s(Expr,FunEnv,LogEnv)) 

end 
In order to allow predicate applications within 
function applications, function Apply has an 
additional argument. Conversely, in order to allow 
function applications within predicate applications, 
function Search has now the following form: 

function Search(Query.Calls:Ltst):List; 
begin 
If Null(Calls) 
then Search:=Con*(Cons(Car(Query), 

Ins tance(Cdr(Query),LogEnv(Query))), 
NewList) 

else case TypeOfCal1(Car(Car<Calls))) of 
FunCall:if Nul1(Apply(Car(Car(Calls)), 

EvalLi»t(Cdr(Car(CallB)), 
FunEnv(Cdr(Car(Calla))), 
LogEnv(Cdr(Car(Calla)))), 

LogEnv(Cdr(Car(Calla))))) 
then Search:=NewList 
else Search:»S©arch<Query,Cdr(Calls)); 

PredCall̂ case TypeOfOp(Car(Car(Calls))) of 
PredOp:Search:«TryEach(Query, 

Car(Car(Calls)), 
CdrfCar(Calls)), 
Cdr(Calls)); 

UndefOp:Search:*NewList 
end 

end 
end; 

This new function definit ion reflects the 
interpretation given, in a predicate body, to a 
function application: if this function evaluates to 
false, the predicate fa i l s ; otherwise the predicate 
evaluation goes on. Furthermore, since clause 
arguments are evaluated before unif ication, it 

follows that arguments of clauses can be function 
applications (as shown in the introductory example 
defining the RAPPEND relation), and vice-versa. 

5. Query Scheie: a query language within Scheae 

In the previous example, the predicate application 

(YOUNGFATHER ?X) 

follows the defini t ion of a function AND returning 
the conjunction of two predicates of respectively 
two and one arguments. A query language is a 
f ac i l i t y for applying the disjunction and/or the 
conjunction, as well as the negation, of any number 
of predicates of any number of arguments. 

Example 

In the query language introduced in [6 ] , predicate 
YOUNGFATHER could be defined by 

(RULE (YOUNGFATHER ?X) (AND (FATHER ?X ?Y) 
(AGE ?X ?Z) 
(< ?Z 25))) 

while, in Query Scheme, it would be is defined by 

(DEFINE YOUNGFATHER (CLAUSE (?XJ (AND 
(FATHER ?X ?Y) 
(AGE ?X ?Z) 
{< ?Z 25)))) 

In both, this application would also be legal: 

(AND (FATHER ?X ?Y) (AGE ?X ?Z) (< ?Z 25)) 

It must be noted however that, in [6 ] , the query 
language is not a part of Scheme. The syntax of 
Query Scheme being the same as that of Logical 
Scheme, the new types of expressions are: 

5.1 Self-evaluating expressions 

In addition to the self-evaluating atoms introduced 
earl ier, the self-evaluating atoms AND, OR and NOT 
stand for the usual operators defined on predicates. 

5.2 Negative clause expressions 

Negative clause expressions have the form: 

(NEGATION ("arguments") "body") 

where body is a single cal l expression. The value 
returned by the interpreter is a predicate 
containing a negative clause closure. Negative 
clauses are used to represent negative cal l 
expressions, i .e. expressions prefixed with the NOT 
operator. 

Exaaple 

The negative cal l expression 
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(NOT (YOUNGFATHER 'BILL)) 

w i l l become the negative clause application 

((NEGATION (?X) (YOUNGFATHER ?XJJ BILL] 

5.3 Predicate expressions 

Predicate expressions have the following form: 

(PREDICATE clause expr." . . . clause expr.") 

The value returned by the interpreter is a 
predicate. Predicate expressions are thr non-closure 
representation of multiple clause predicates. They 
w i l l be used to represent disjunctive calls 
expressions (see 5.4). 

5.4 Call expressions 

Call expressions now include conjunctive, 
disjunctive as well as negative calJ expressions, 
i .e . expressions whose head is equal to the atom 
AND, OR or NOT, respectively. These particular cal l 
expressions are treated as predicate applications 
whith a l i s t of calls containing: 

- for each conjunction, a clause expression 
- for each disjunction, a predicate expression 
- for each negation, a negative clause expression. 

Example 

(AND (FATHER ?X ?Yj 
(NOT (YOUNG ?X)) 
(OR (HEALTHY ?X) (YOUNG ?Y)))J 

w i l l be regarded as €;quivalent to 

((CLAUSE (?X) (FATHER ?X ?Y] 
((NEGATION (?X) (YOUNG ?X)j ?X) 
((PREDICATE 

(CLAUSE (?X ?Y) (HEALTHY ?X)) 
(CLAUSE (?X ?Y] (YOUNG ?Y))) 

?X ?Y)] 
?XJ 

6. Conclusions 

The interpretation of expressions involving function 
and predicate applications, as given above, mirrors 
the tradit ional use of both function applications 
within logic programming languages such an Prolog, 
and predicate applications within query languages. 
It is by no means the only possible way to evaluate 
such expressions, but not unt i l a clear denotational 
semantics is agreed upon wi l l an operational 
semantics possibly be called correct. 
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While a predicate cal l reduces to a predicate 
application, negative clause call.'., are handled as in 
most PROLOG implementations, using the closed world 
assumption: a negative clause succeeds if i ts calls 
cannot be sat isf ied, and fa i ls otherwise. This is 
reflected in an extension of function TryEach: 

function TryEach(Query,Pred,CallArg,Cont:Ptr> :Ptr ; 
begin 
if Null(Pred) 
then TryEach:»NewList 
else 
cat* TypeOfExpr(Car(Pred)) of 
ClauseExpr:TryEach:"Append(Try(Query,Car(Pred ) , 

CailArg,Cont) , 
TryEach(Query,Cdr<Pr«d) , 

CallArg,Cont)>; 
NegExprtif Null(TrytQuery,Car(Prad>,CallArg,NewLi»t)) 

than TryEach:*Append(Search(Query,Cont) . 
TryEach(Query.Cdr(Pred), 

CallArg.Cont)) 
else TryEach:*TryEach<Query,Cdr(Pred), 

CallArg.Cont) 
•nd 

end; 

Bonzon 23 


