
P L A N L O G : A LANGUAGE FRAMEWORK FOR THE INTEGRATION 

OF PROCEDURAL AND LOGICAL PROGRAMMING 

Bertram Fronhdfer 

In i t i tu t fu r Informatik, T U Munchen, 

ABSTRACT 

Based on a logic-oriented mechanism for planning, a 
language framework, called PLANLOG, is developed, which 
enables the combination of two styles of programming; 
what is clearly logical can be written in PLANLOG in a 
logical way; what is procedural by nature can be expressed 
in form of plans. Starting with a detailed exposition of our 
motives, we will subsequently present the basic principles 
of PLANLOG and discuss the role of plan generation and 
plan execution. Finally, our vision of PLANLOG is sum­
marized. 

0. INTRODUCTION : PLAN OF THE PAPER 

The aim of this paper is to present a logic-oriented 
framework, called PLANLOG, which is suited to material­
ize combinations of logical/functional and procedural con­
structs of programming languages. 

In section 1 we sketch the disposition of current logi­
cal and functional programming languages towards pro­
cedural programming and outline the relationship between 
procedural programming tasks and plan generation in robot 
problem solving. In section 2 we show how logic program­
ming can be integrated in a plan generation system. Since 
we see procedural programs as plans, we have thus linked 
logic programming with procedural programming. In sec­
tion 3 we discuss the role of built-ins, which entails a sharp 
distinction between the generation of a plan and its execu­
tion. In section 4, the conclusion, we summarize the 
potential of PLANLOG. 

1. BACKGROUND MOTIVATION 

Although we are fully aware of the conceptual advan­
tages of functional and logical programming, and the pro­
found insight into the non-procedural nature of many appli­
cations of computing obtained this way, in this paper a 
case shall be made for the procedural, where it goes 
together with naturalness and conceptual simplicity. 

1.1. PROCEDURAL CONTAMINATION 

Actual logical and functional languages, as are the 
various dialects of LISP and PROLOG, are apparently pro­
cedurally contaminated, as is already evidenced by notions 
as pure LISP or pure PROLOG. 

Examples of procedurally would be the predicates 
"assert" and "retract" in PROLOG, which add or delete 
knowledge. Another example is the following PROLOG 
clause which is a primitive user interface around a logic 
program for the concatenation of two lists. 

Pbftfach 202420, D-8000 Munchcn 2 

Head :- write(prompt),read(U,V),append(U,V,R),write(R) 
Here the order of execution of the literals seems to be 
more important than their truth values. 

1.2. PLANNING AND THE NATURALTY OF THE PRO-
CEDURAL STYLE 

In spite of the high esteem which we share for logical 
and functional programming, we are nevertheless con­
vinced, that the existence and use of procedural features 
are primarily due not to bad habits of language designers 
and programmers, but to the nature of the world we live 
in, and the tasks we want to perform. 

The main reason for these procedural features lies in 
the fact that the conceptual basis of logic programming is 
deduction from a single fixed theory, while many applica­
tions must deal with deduction from varying or alternative 
theories (see [BOW 82], p. 153) Of course, through the 
introduction of a (time) parameter into the theory, many 
problems of this kind disappear immediately, but another 
one shows up : the frame problem. 

Natural formulations of many problems in Artificial 
Intelligence involve noncommutative systems ([NIL 82]). 
The plan generation systems used for robot problem solv­
ing are standard examples. Furthermore, the use of plans 
and plan generation techniques in automatic programming 
should be mentioned in our context (see [WAL 77], [RIC 
81]). 

2. THE BASIC IDEA : HORN CLAUSE REASONING AS 
PLAN GENERATION 

A possibility to reconcile logical and procedural pro­
gramming showed up when we noticed that linear proofs 
(see [BIB 86]), though invented for the description and 
generation of plans (or procedural programs), also allow 
the simulation of ordinary Horn clause reasoning. 

We will view a theorem prover as a kind of robot 
whose job might be called theorem construction. In every 
proof a plan for its construction, is trivially contained. 
Consequently, the activity of a Horn clause interpreter, 
i.e. finding a proof of the goal clause, can be understood 
as plan generation. 

2.1. US EAR PROOFS FOR PLAN GENERATION 

As we shall see, the above given view of a Horn 
clause interpreter can easily be modelled in the frame­
work for plan generation, proposed in [BIB 86]. As several 
others, this approach equates plan generation to proving 

Fronhofer 15 



During this proof the variables are substituted and 
the value of the variable Z can be interpreted as a plan to 
derive append([a,b],[c,d],R) from the given facts and rules: 
it tells in which order the rules must be selected and how 
they must be instantiated. As in PROLOG, the variable R 
is finally bound to the concatenated list [a,b»c,d]. 

3. TOWARDS WORKING WITH PLANLOG 

It we implement PLANLOG based on a mechanism 
which generates linear proofs through backward chaining, 
we can do ordinary Horn clause reasoning and on the other 
hand are able to do plan generation. 

But up to now we sti l l live in a purely logically given 
world, where non-logical objects like files, a data base or 
a terminal are not admitted to exist. (For reasons of e f f i ­
ciency we must exclude working with logical descriptions 
of such objects, where it would be possible.) 

Links to an extenal world are created by allowing 
some of the predicates of our language to be built-ins. 
This means, that some relations are not represented logi­
cally, i.e. by means of facts or derivable by rules, but 
coded in the interpreter itsself. For instance, reading 
from the terminal would be implemented by a predicate 
which retrieves some text from the terminal and makes it 
the value of one of its variables. 

Using such built-in literals in our rules has the severe 
consequence, that we have to distinguish between the 
generation of a plan and its execution. In a completely 
logically given world a plan's existence already implicitly 
represented the situation of the world after its imagined 
execution. It was given by the set of unconnected literals 
both in the init ial situation and the left sides of the used 
rules. But if the rules contain built-in predicates, which 
reflect and cause modifications of an external world, then 
the generated plans must be executed to realize these 
modifications. 

There is a further difference between logical and 
procedural programs: One of the characteristics of logic 
programs is the emphasis on 'what* shall be computed, 
while trying to care as l i t t le as possible about the 'how1. 
Since with many procedural programs the way they 

16 ARCHITECTURES AND LANGUAGES 



'behave' is more important than the result they finally 
compute, we even believe that with many 'typical' pro-
cedural tasks the 'what' reduces to a side aspect of the 
'how'. Consequently, to generate a procedural program 
from a goal may be rather difficult, just because this goal 
may be extremely difficult to formalize. Therefore, a 
major role will be played by the execution of prefabri­
cated plans. On the other hand, the completely prefabri­
cated plan is hardly feasible, because it will often depend 
on information which is only available at run-time. For 
instance, the exact form of a plan to append two lists 
depends on the length of the lists, which will be communi­
cated to the program at run-time. 

For this reason, we have to intermingle plan genera­
tion and execution. If a partial plan is sufficiently worked 
out, i.e. the first actions are determined, then they will be 
executed and based on the information thus acquired the 
plan generation process is resumed. Let us illustrate the 
issues just discussed by considering how a primitive user 
interface to the logic program for appending two lists can 
be treated in PLANLOG. 

The plan must be read top-down. We assume a 
prompt symbol already to be stored in a special register 
called ace. The built-in write predicate in the first rule 
writes it on the terminal. The built-in read predicate in 
the next rule reads two lists and stores them in two regis­
ters regl and reg2. The third rule calls the append pro­
gram. Since the input values for this predicate are now 
known, a subplan can be generated which computes R. The 
last rule writes R on the screen. 

4. THE PROMISE OP PLANLOG. 

Viewing PLANLOG as a procedural language, it is 
distinguished by the following remarkable features: 

PLANLOG can be termed a "declarative procedural 
language". This goes without saying for the logical part, 
for which declarativity is characteristic, but due to the 
specification of the procedural entities, i.e. the actions, in 
form of logical implications, we obtain 'declarative pro­
cedures'. 

PLANLOG can be termed a "predicative procedural 
language". The data structure it works on are relations 
and formulas: It might be seen as a high level database 
language. 

PLANLOG can be termed an "open procedural 
language". Adding a new procedural rule is as easy as 

defining a new function in LISP, but in contrast to a tradi­
tional procedural language, we have extended the 
language by a new statement and not just written another 
procedure. 

PLANLOG can be termed a "knowledge-based pro­
cedural language". Since declarative knowledge, i.e. logi­
cal implications, are transformed into rules, we finally 
obtain a procedural language, the statements of which 
reflect chunks of knowledge. 

PLANLOG is a means to overcome the procedural 
contamination of PROLOG. This is not only of theoretical 
interest: The more we create systems which process or 
extend logic programs, e.g. program transformation and 
synthesis systems, incorporation of function handling, ... , 
the easier are these enterprises if our programs are writ­
ten in pure logic. 

PLANLOG might give a new impetus to program syn­
thesis. Having PLANLOG as a target language might force 
the synthesized programs to become more procedural and, 
consequently, more efficient. 

Due to the representation of plans as (partial) proofs, 
potential parallelism in plans should be uncovered by 
analysis of the connection structure and thus facilitated 
the parallel execution. 

Due to the availability of several programming styles 
as pure Horn clause reasoning, plan generation from goals 
and traditional procedural programming in the same 
language, the programmer is obliged to decide explicitly, 
which style he wants to adopt and for which task. 

ACKNOWLEDGEMENTS 

Besides our Munich AI group, I owe very special 
thanks to Ricardo Caferra, Reinhard Enders, Ulrich Fur-
bach, Paul Jacquet and Philippe Schnoebelen for their 
patient sympathy with my dizzy explanations in the days 
when PLANLOG began to loom. Wolfgang Bibel, Christoph 
Kreitz and Reinhold Letz provided a lot of comments on 
the present as well as on earlier draft versions. 

REFERENCES 

[BIB 82] Bibel, W.: Automated Theorem Proving (second 
edition), Vieweg 1986. 

[BIB 86] Bibel, W.: A deductive solution for plan genera­
tion, New Generation Computing 4 (1986) 115-132. 

[BOW 82] Bowen, K.A., Kowalski, R.A.: Amalgamating 
language and metalanguage in logic programming, in: 
Clark, K.L., Tarnlund, S.-A.: Logic Programming, 
Academic Press 1982. 

[NIL 80] Nilsson, N.J.: Principles of Artificial Intelligence, 
Springer 1980. 

[R1C 81] Rich, C: Inspection methods in programming, 
Ph.D.Thesis, MIT 1981. 
[WAL 77] Waldinger, R.: Achieving several goals simul­
taneously, Machine Intelligence 8, Edinburgh University 
Press 1977. 

[WIL 83] Wilensky, R.: Planning and Understanding, 
Addison-Wesley 1983. 

Fronhofer 17 


