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ABSTRACT 

Logic programming has been an attempt to bridge 
the gap betwen specification and programming language 
and thus to simplify the software development process. 
Even though the only difference between a specification 
and a program in a logic programming framework is that 
of efficiency, there is still some conceptual distance to 
be covered between a naive, intuitively correct 
specification and an efficiently executable version of it 
And even though some mechanical tools have been 
developed to assist in covering this distance, no fully 
automatic system for this purpose is yet known. In this 
paper v/t present a general class of first-order logic rela­
tions, which is a subset of the extended Horn clause 
subset of logic, for which we give mechanical means for 
deriving Horn logic programs, which are guaranteed to 
be correct and complete with respect to the initial 
specifications. 

I . INTRODUCTION 

A* Logic program derivation* 

Logic programming is an attempt to bridge the gap 
between specification and programming language 
requirements. By making a clear separation between 
logic and control, it makes it possible for the program­
mer to deal initially with the logic of his problem and 
then derive more efficient, still logically equivalent, ver­
sions of it by altering the control accordingly. The 
apparently simple operational semantics of Horn-clausal 
logic and its various efficient implementations, mainly in 
the form of PROLOG interpreters and compilers, makes 
it quite appealing as a programming language. 

Of course, even though it has been shown that any 
problem expressed in first oider predicate logic can be 
reformulated using only Horn clauses, expressing prob­
lems in Horn clauses is certainly not claimed to be very 
natural. Various attempts have been made - [Bowen 
1982], [Murray 1982], [Stickel 1984] - to implement full 
first-order logic as a programming language but, apart 
from efficiency considerations, the lack of intuitively 
clear operational semantics for ful l first-onier logic 
makes them unusable. 
On the other hand, [Clark & Sickel 1977], [Hannson 
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Some of the inference steps presented here and 
other more complex ones needed for more difficult 
derivations can be easily mechanised, but there remains 
a significant portion of them, -which seems to require 
some inventiveness. It should be emphasised here that 
no complete inference system exists yet for such deriva­
tions. The same applies to transformation techniques 
for improving the efficiency of logic programs. 

Thus, although deduction is a logically sufficient 
tool for creating logic programs from specifications or 
from other programs, this tool requires intelligent con­
trol in order to be practicaL An attempt towards the 
implementation of a semi-automatic tool for assisting 
with such manipulations is reported in [Vasey 1985]. In 
this paper, however, -we restrict our attention to a 
specific class of relations, -which -we identify in section II 
and, for -which fully automatic program derivation is 
possible, as we shall show. And because -we find that a 
systematic treatment of data types in bgic is necessary 
for the adequate formalisation of our results, -we present 
such a treatment below. 

B. Characterising data types in logic 

Clark and Tamlund in [Clark & Tamlund 1977] 
were the first ones to present a uniform way to charac­
terise and deal with data types within the framework of 
first-order logic. Different treatments of data types in 
bgic also appear in [Vasey 1985]. Here, however, we 
restrict our attention to recursively defined data types 
and present a general axiomatic way of characterising 
them, which serves as the basis for formalising some 
results in the next section. 

By data type - or sort - we mean a collection of 
values, a subset of the Herbrand Universe. A simple 
way to characterise data types without departing from 
first-order bgic is to use predicates, since any relation 
can be thought of as defining data types for its argu­
ments ,Le. the sets of values that bebng to the relation. 
For example, consider the unary predicate natural, such 
that is true if and only if is a natural 
number - bebngs to the data type natural This data 
type can be axiomatised with a recursive definition: 

exor (naturul(y) & JO- sucdy)) 
and an equality axiom: 
where exor is the symbol for exclusive or, 1 is a con­
stant and is the successor function; 1 and are 
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I I . A CLASS OF FIRST-ORDER LOGIC RELATIONS 

In [Kowalsld 1985] an extension of Horn clauses is 
identified, called the extended Horn douse subset of 
logic, which offers more expressive power than the 
Horn clause subset and admits efficient computations. 
A clause belongs to the extended Horn clause subset of 
logic if and only if its condition contains a universally 
quantified Horn clause. Additionally, we say that a rela­
tion is defined with an extended Horn clause if and only if 
the if-half of its definition is an extended Horn clause. 
Quite a number of common relations, some of which 
are presented below, fall naturally within this class. 
Here we identify a class of first-order relations, which 
can be defined with a subset of the extended Horn 
clause subset of logic and for which we present means 
for mechanically transforming their definition into Horn 
clausal form. First we present a few examples of rela­
tions in this class and explain the relationship with their 
corresponding programs. 

A. Examples. 

a) The subset relation. 
This has already been presented in ( I) , but here we 
slightly alter the format in the member specification so as 
to conform to our general schema of specifying relations 
over recursive data structures presented in U). Both 
arguments of subset are assumed to be of type list. 

Notice that subset is defined with an extended Horn 
clause and member is defined recursively on its second 
argument is the base case, since is instantiated to 
niL, and S3 contains the recursive occurrence of member 
with , the tail of the original l ist The well-
definedness can be easily proved by induction on lists. 
The corresponding program for subsett as inferred 
above, is: 

Notice that this is a recursive program on the first argu­
ment; PI is the base case clause and P2 the recursive 
one, since it contains a recursive call to subset with its 
first argument being the tail of the original l ist Termi­
nation can be proved by induction on lists. It is essen­
tially the recursion of the first occurrence of member in 
the initial specification - which has been eliminated in 
the above program - that has been transferred onto sub­
set. And, as it will be shown below, one could avoid all 
the trouble of formally inferring this program - as we 
did in (I) - and write it down, more or less directly, fol­
lowing some syntactic rules. 

b)The max relation, 
holds when I is of type list, x of type element 

and is the maximum element of I with respect to some 
ordering relation defined on elements. 
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formally by induction - that a logic program can be ulti­
mately deduced 

The identification and synthesis process for the 
ERR class of relations described in the above theorem 
has been implemented in PROLOG, thus providing with 
an automatic tool for synthesising (naive) programs for 
such relations. 

I I I . CONCLUDING REMARKS 

We have identified a subset of the extended Horn 
clause subset of logic, for which we proved that it can 
be reexpressed in Horn clausal form. Thus, for rela­
tions that are defined with clauses belonging to this sub­
set we gave mechanical means for obtaining a directly 
executable (by standard PROLOG interpreters) pro­
gram. 

The significance of this transformation largely 
depends on two factors. 
The first is the generality of this class: how many rela­
tions are naturally expressed in this way? In [Kowalski 
1985] it is argued that the extended Horn clause subset 
of bgic has great expressive power and many examples, 
as the ones presented above, can be found that fall 
within this class. Moreover our subset is still general 
enough; the only requirement is that the antecedent of 
the universally quantified Horn clause is recursively 
defined with an ultimate direct instantiation of the 
universally quantified variables. Such a case is very 
common when dealing with recursively defined domains 
as indicated by the examples presented. 

The second is whether the recursive Horn clausal 
form, which is the end product of this transformation is 
really more efficiently executable than the initial 
specification. As it is pointed out in [Kowalski 1985] 
one can build interpreters that encompass the extended 
Horn clause subset of logic: "By translating the universal 
quantifier into double negation and interpreting negation 
by failure such clauses can be executed both correctly 
and efficiently, though incompLetely". The source of 
incompleteness is the introduction of negation, which 
means that we cannot get all possible answers to a 
query. For example in the case of the 'subset' example 
this method will work only for queries with both argu­
ments instantiated - to test if the relation holds between 
two known sets - while execution won't terminate in 
any other use. This, of course, is a severe limitation, 
given our expectations from a logic programming 
language that is supposed to offer input-output non-
determinism, and it can be overcome using the recur­
sive programs. 
Furthermore, it is argued that such an iterative execu­
tion - effectively generating every instance of the 
universally quantified variables that satisfies the 

antecedent and checking if it also satisfies the conse­
quent - is more efficient than a recursive one, since it 
does not require a stack- Given that there are efficient 
ways of implementing recursion - tail-recursion in par­
ticular can be turned into iteration - we argue that the 
recursive programs that result from our transformation 
are in general more efficient than the corresponding 
iterative execution of the initial specifications. Addi­
tionally they do not require any extra sophistication 
from the bgic interpreter for their execution. 

In the light of the above discussion a link between 
iteration and recursion should become apparent Furth­
ermore, it should be realised that the above result 
depends very much upon the nature of recursion and it 
is unlikely that similar results can be obtained for more 
general subsets of logic. Obviously, additional domain-
specific knowledge and intelligent manipulation is neces­
sary for the derivation of efficient Horn clause programs 
from arbitrary first-order logic specifications. 
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