
LOGIC PROGRAM DERIVATION FOR A CLASS OF FIRST ORDER LOGIC RELATIONS

George Dayantis *

Cognitive Studies Division, University of Sussex
Falmer, Brighton, BN1 9QN

G. BRITAIN

ABSTRACT

Logic programming has been an attempt to bridge
the gap betwen specification and programming language
and thus to simplify the software development process.
Even though the only difference between a specification
and a program in a logic programming framework is that
of efficiency, there is still some conceptual distance to
be covered between a naive, intuitively correct
specification and an efficiently executable version of it
And even though some mechanical tools have been
developed to assist in covering this distance, no fully
automatic system for this purpose is yet known. In this
paper v/t present a general class of first-order logic rela­
tions, which is a subset of the extended Horn clause
subset of logic, for which we give mechanical means for
deriving Horn logic programs, which are guaranteed to
be correct and complete with respect to the initial
specifications.

I . INTRODUCTION

A* Logic program derivation*

Logic programming is an attempt to bridge the gap
between specification and programming language
requirements. By making a clear separation between
logic and control, it makes it possible for the program­
mer to deal initially with the logic of his problem and
then derive more efficient, still logically equivalent, ver­
sions of it by altering the control accordingly. The
apparently simple operational semantics of Horn-clausal
logic and its various efficient implementations, mainly in
the form of PROLOG interpreters and compilers, makes
it quite appealing as a programming language.

Of course, even though it has been shown that any
problem expressed in first oider predicate logic can be
reformulated using only Horn clauses, expressing prob­
lems in Horn clauses is certainly not claimed to be very
natural. Various attempts have been made - [Bowen
1982], [Murray 1982], [Stickel 1984] - to implement full
first-order logic as a programming language but, apart
from efficiency considerations, the lack of intuitively
clear operational semantics for ful l first-onier logic
makes them unusable.
On the other hand, [Clark & Sickel 1977], [Hannson

* Research supported by the Greek Slate Scholarships Foundation.

Dayantis 9

Some of the inference steps presented here and
other more complex ones needed for more difficult
derivations can be easily mechanised, but there remains
a significant portion of them, -which seems to require
some inventiveness. It should be emphasised here that
no complete inference system exists yet for such deriva­
tions. The same applies to transformation techniques
for improving the efficiency of logic programs.

Thus, although deduction is a logically sufficient
tool for creating logic programs from specifications or
from other programs, this tool requires intelligent con­
trol in order to be practicaL An attempt towards the
implementation of a semi-automatic tool for assisting
with such manipulations is reported in [Vasey 1985]. In
this paper, however, -we restrict our attention to a
specific class of relations, -which -we identify in section II
and, for -which fully automatic program derivation is
possible, as we shall show. And because -we find that a
systematic treatment of data types in bgic is necessary
for the adequate formalisation of our results, -we present
such a treatment below.

B. Characterising data types in logic

Clark and Tamlund in [Clark & Tamlund 1977]
were the first ones to present a uniform way to charac­
terise and deal with data types within the framework of
first-order logic. Different treatments of data types in
bgic also appear in [Vasey 1985]. Here, however, we
restrict our attention to recursively defined data types
and present a general axiomatic way of characterising
them, which serves as the basis for formalising some
results in the next section.

By data type - or sort - we mean a collection of
values, a subset of the Herbrand Universe. A simple
way to characterise data types without departing from
first-order bgic is to use predicates, since any relation
can be thought of as defining data types for its argu­
ments ,Le. the sets of values that bebng to the relation.
For example, consider the unary predicate natural, such
that is true if and only if is a natural
number - bebngs to the data type natural This data
type can be axiomatised with a recursive definition:

exor (naturul(y) & JO- sucdy))
and an equality axiom:
where exor is the symbol for exclusive or, 1 is a con­
stant and is the successor function; 1 and are

10 ARCHITECTURES AND LANGUAGES

I I . A CLASS OF FIRST-ORDER LOGIC RELATIONS

In [Kowalsld 1985] an extension of Horn clauses is
identified, called the extended Horn douse subset of
logic, which offers more expressive power than the
Horn clause subset and admits efficient computations.
A clause belongs to the extended Horn clause subset of
logic if and only if its condition contains a universally
quantified Horn clause. Additionally, we say that a rela­
tion is defined with an extended Horn clause if and only if
the if-half of its definition is an extended Horn clause.
Quite a number of common relations, some of which
are presented below, fall naturally within this class.
Here we identify a class of first-order relations, which
can be defined with a subset of the extended Horn
clause subset of logic and for which we present means
for mechanically transforming their definition into Horn
clausal form. First we present a few examples of rela­
tions in this class and explain the relationship with their
corresponding programs.

A. Examples.

a) The subset relation.
This has already been presented in (I) , but here we
slightly alter the format in the member specification so as
to conform to our general schema of specifying relations
over recursive data structures presented in U). Both
arguments of subset are assumed to be of type list.

Notice that subset is defined with an extended Horn
clause and member is defined recursively on its second
argument is the base case, since is instantiated to
niL, and S3 contains the recursive occurrence of member
with , the tail of the original l ist The well-
definedness can be easily proved by induction on lists.
The corresponding program for subsett as inferred
above, is:

Notice that this is a recursive program on the first argu­
ment; PI is the base case clause and P2 the recursive
one, since it contains a recursive call to subset with its
first argument being the tail of the original l ist Termi­
nation can be proved by induction on lists. It is essen­
tially the recursion of the first occurrence of member in
the initial specification - which has been eliminated in
the above program - that has been transferred onto sub­
set. And, as it will be shown below, one could avoid all
the trouble of formally inferring this program - as we
did in (I) - and write it down, more or less directly, fol­
lowing some syntactic rules.

b)The max relation,
holds when I is of type list, x of type element

and is the maximum element of I with respect to some
ordering relation defined on elements.

Dayantis 11

12 ARCHITECTURES AND LANGUAGES

Dayantis 13

formally by induction - that a logic program can be ulti­
mately deduced

The identification and synthesis process for the
ERR class of relations described in the above theorem
has been implemented in PROLOG, thus providing with
an automatic tool for synthesising (naive) programs for
such relations.

I I I . CONCLUDING REMARKS

We have identified a subset of the extended Horn
clause subset of logic, for which we proved that it can
be reexpressed in Horn clausal form. Thus, for rela­
tions that are defined with clauses belonging to this sub­
set we gave mechanical means for obtaining a directly
executable (by standard PROLOG interpreters) pro­
gram.

The significance of this transformation largely
depends on two factors.
The first is the generality of this class: how many rela­
tions are naturally expressed in this way? In [Kowalski
1985] it is argued that the extended Horn clause subset
of bgic has great expressive power and many examples,
as the ones presented above, can be found that fall
within this class. Moreover our subset is still general
enough; the only requirement is that the antecedent of
the universally quantified Horn clause is recursively
defined with an ultimate direct instantiation of the
universally quantified variables. Such a case is very
common when dealing with recursively defined domains
as indicated by the examples presented.

The second is whether the recursive Horn clausal
form, which is the end product of this transformation is
really more efficiently executable than the initial
specification. As it is pointed out in [Kowalski 1985]
one can build interpreters that encompass the extended
Horn clause subset of logic: "By translating the universal
quantifier into double negation and interpreting negation
by failure such clauses can be executed both correctly
and efficiently, though incompLetely". The source of
incompleteness is the introduction of negation, which
means that we cannot get all possible answers to a
query. For example in the case of the 'subset' example
this method will work only for queries with both argu­
ments instantiated - to test if the relation holds between
two known sets - while execution won't terminate in
any other use. This, of course, is a severe limitation,
given our expectations from a logic programming
language that is supposed to offer input-output non-
determinism, and it can be overcome using the recur­
sive programs.
Furthermore, it is argued that such an iterative execu­
tion - effectively generating every instance of the
universally quantified variables that satisfies the

antecedent and checking if it also satisfies the conse­
quent - is more efficient than a recursive one, since it
does not require a stack- Given that there are efficient
ways of implementing recursion - tail-recursion in par­
ticular can be turned into iteration - we argue that the
recursive programs that result from our transformation
are in general more efficient than the corresponding
iterative execution of the initial specifications. Addi­
tionally they do not require any extra sophistication
from the bgic interpreter for their execution.

In the light of the above discussion a link between
iteration and recursion should become apparent Furth­
ermore, it should be realised that the above result
depends very much upon the nature of recursion and it
is unlikely that similar results can be obtained for more
general subsets of logic. Obviously, additional domain-
specific knowledge and intelligent manipulation is neces­
sary for the derivation of efficient Horn clause programs
from arbitrary first-order logic specifications.

REFERENCES

[I] Bo wen, K. Programming with ful l first-order logic
Machine Intelligence, VoL10, pp.421-440, 1982.
[2] Burstall, R.M. & J. Darlington. A transformation
system for developing recursive programs. JACM,
VoL24, pp.44-67, 1977.
[3] Clark, K. Synthesis and verification of logic pro­
grams. Research Report CCD, Imperial College, 1977.
L4] Clark, K. & S. Sickel Predicate logic.A calculus for
deriving programs. In Proc. IJCAI-77, pp.419-20, 1977.

[5] Clark, K. & S. Tamlund. A first order theory of data
and programs. Information Processing (IFIP) '77,
North-Holland, pp.939-944, 1977.
[6] Clocksin, W.F. & C.S. Mellish. Programming in Pro­
log. Springe r-Verlag, 1981.
[7] Darlington, J. An experimental program transforma­
tion and synthesis system. Artificial Intelligence, V0L16,
pp. 1-46, 1981.
[8] Hannson, A. A formal development of programs.
Ph.D. thesis, Dept of Information Processing, Univ. of
Stockholm, Sweden, 1980.
[9] Hogger, C.J. Program synthesis in predicate bgic. In
Proc. A1SB Conf. on A.I . , pp. 138-146, Hamburg, 1978.
[10] Hogger, C.J. Derivation of Logic Programs. Ph.D
thesis. University of London, Imperial College, 1978.
[11] Hogger, C.J. Derivation of Logic Programs.
JACM, Vol28, No.2, pp.372-392, 1981.
[12] Kowalski, R. Logic for problem solving. North-
Holland, 1979.
[13] Kowalski, R. The relation between bgic program­
ming and bgic specification. In: (eds.) Hoare, C.A.R. &
J.C. Sheperdson. Mathematical bgic and programming
languages. Prentice-Hall, 1985.
[14] Murray, N. Completely non-clausal theorem prov­
ing. Artificial Intelligence, V0L18, pp.67-87, 1982.
[15] Stickel, M. A Probg Technobgy Theorem Prover
IEEE Symposium on Logic Programming, 1984.
[16] Vasey, P.E. First-Order Logic Applied to the
Description and Derivation of Programs. Ph.D thesis,
Imperial College, 1985.

14 ARCHITECTURES AND LANGUAGES

