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A B S T R A C T 

A new approach for proving theorems in first-order predi
cate calculus is developed based on term rewriting and 
polynomial simplification methods. A formula is translat
ed into an equivalent set of formulae expressed in terms 
of 'true', 'false', 'exclusive-or', and 'and' by analyzing the 
semantics of its top-level operator. In this representation, 
formulae are polynomials over atomic formulae with 'and' 
as multiplication and 'exclusive-or' as addition, and they 
can be manipulated just like polynomials using familiar 
rules of multiplication and addition. 

Polynomials representing a formula are converted into 
rewrite rules which are used to simplify polynomials. New 
rules are generated by overlapping polynomials using a 
critical-pair completion procedure closely related to the 
Knuth- Bendix procedure. This process is repeated until a 
contradiction is reached or it is no longer possible to gen
erate new rules. It is shown that resolution is subsumed 
by this method. 
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1 . I N T R O D U C T I O N 
A new approach for proving theorems in first-order 

predicate calculus is presented. The approach is based on 
term rewriting and polynomial simplification methods, 
and is simple to understand. A key idea is the observa
tion that formulae can be viewed as polynomials over 
atomic formulae when they are expressed solely in terms 
of boolean connectives 'exclusive-or', 'and' and constants 
1 and 0 which stand for truth and falsity, respectively. In 

this representation, formulae can be manipulated just like 
polynomials using familier rules of multiplication and ad
dition; the addition ('+') is 'exclusive-or' and multiplica
tion ('*') is 'and.' Further, the polynomials we encounter 
are simple because we neither see coefficients other than 1 
nor degrees more than 1; these polynomials satisfy the 
additional properties that for any polynomial p, 
p +p =0 and p * p = p. The method works well ir
respective of whether the input formula has a clausal or a 
non-clausal representation (Chang and Lee, 1973). For 
applications of theorem proving in artificial intelligence, 
program verification and synthesis, specification analysis, 
etc , an interested reader may wish to look at (Chang and 
Lee, 1973; Robinson, 1965; Slagle, 1974). 

In our method, if a formula is to be proved valid 
(unsatisfiable, respectively), it is asserted to be 0 (1, 
respectively), and a contradiction is derived. Towards this 
end, an equivalent set of formulae (polynomials) ex
pressed using 'exclusive-or,' and,' and 'true', are generat
ed from this assertion. This is done using the natural 
deduction approach by analyzing the semantics of the 
top-level operator. It is checked whether a contradiction 
1 = 0 can be derived from these polynomials. One good 
way of checking for a contradiction is to use the rewriting 
concepts to generate a Grobner basis of the original set of 
polynomials by suitably modifying the method developed 
in (Kandri-Rody and Kapur, 1984) for computing the 
Grobner basis of an ideal over polynomial rings over the 
integers. Checking whether a contradiction is derivable 
from a set of polynomials is equivalent to checking 
whether their Grobner basis is trivial in the sense it in
cludes 1. 

For the propositional calculus, this approach is a 
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straightforward application of the Grobner basis, algo
rithm developed in (Kandri-Rody and Kapur, 1084). For 
first-order predicate calculus, additional techniques are 
developed based on identifying equivalences among for
mulae using unification. Polynomials are first 
transformed into rewrite rules and the Grobner basis is 
computed by generating critical-pairs among rewrite 
rules The critical-pair generation is similar to resolution 
but is more powerful and allows a lot more of flexibility; 
in fact, it is shown that it subsumes resolution. New poly
nomials are generated from the critical pairs to augment 
the basis set of polynomials to obtain a Grobner basis. If 
the Grobner basis consists merely of the rule 1 — 0 then 
we know that the original formula is unsatisfiable or valid 
depending upon what we were contradicting. 

This approach is particularly useful for reasoning 
about domains which can be axiomatized using a finite 
set of equations, Term rewriting approach for developing 
decision procedures for equational theories can be in
tegrated well with lirst-order predicate calculus as first-
order predicate calculus itself can be handled using 
rewrite rules. 

The proposed approach is motivated by Hsiang's 
method for theorem proving in first-order predicate cal
culus based on term rewriting (Ilsiang and Dershowitz, 
1983) and the approach for generating a Grobner basis of 
a polynomial ideal over the integers in (Kandri-Rody and 
Kapur, 1981). At the theoretical level, the major distinc
tion between our approach and Hsiang's method is that 
our method is based on the Grobner basis computation 
whereas Hsiang's method is based on the extensions of 
the Knuth and Bendix completion procedure for handling 
associative and commutative operators developed in 
(Lankford and Ballantyne, 1977; Peterson and Stickel, 
1981). Further, we believe our definitions of unification of 
monomials, rewriting, superposition and critical pairs are 
conceptually simpler to understand than Hsiang's. At the 
implementation level, our approach seems to be easier to 
implement than Hsiang's, as it does not need to use 
associative-commutative unification algorithm or its vari
ation, called BN-unification by Hsiang, to handle boolean 
operators. An implementation of our method is under
way. At this stage, it is difficult to make any comparison 
between the running times of Hsiang's method and our 
method; however, initial results seem to suggest that our 

method is more efficient than Hsiang's. Further, it is too 
early to say how our method compares with resolution or 
other theorem proving methods. However, in case of pro-
positional calculus, preliminary experiments suggest that 
our method is more efficient than the resolution-based 
LMA theorem prover. 

In this paper, we give an overview of the approach ex
hibiting how first-order formulae can be viewed as poly
nomials and rewrite rules. The method is illustrated us
ing examples. Further technical details and proofs of the 
theorems in this paper are given in (Kapur and Naren
dran, 1984). 

2. PROPOSIT IONAL CALCULUS 

Given a formula / , it is asserted to be l or o depend
ing upon whether / is to be shown unsatisfiable or valid, 
respectively, and it is checked whether a contradiction 
can be derived. In order to do so, the resulting equation 
is first translated into an equivalent set of polynomials 
expressed using 'exclusive-or' ( + ), 'and' (*), 'true' (l) and 
'false' (0). (Since a + a — 0 as well as a - a = 0, we use 
' + ' and '-' interchangably in the paper; we also often 
omit ' * ' among atomic formulae.) This can be done by 
analyzing the outermost operator of the left-hand-side of 
the equation; see (Kapur and Narendran, 1981) for de-
tails. In many cases, we may able to generate the con
tradiction 1 = () in the process of obtaining an equivalent 
set of polynomials, in which case we are done. If not, 
then the translation gives a set of polynomial equations, 
say {p, = 0 | 1 < i < n }. 

To check whether the polynomial equations lead to a 
contradiction or not, we generate its Grobner basis 
(Buchberger and Loos, 1982; Kandri-Rody and Kapur, 
1984). Informally, a finite set of polynomials constitute a 
Grobner basis if and only if evey polynomial has a unique 
normal form when simplified or reduced using polynomi
als in the basis. To generate a Grobner basis, each poly
nomial equation is converted into a rewrite rule. This is 
done by totally ordering atomic formulae which is always 
possible in the case of propositional calculus. This order
ing is extended to monomials (products of atomic formu
lae) based on degree (i.e., size) and lexicographic ordering 
(cf. Buchberger and Loos, 1982; Kandri-Rody and Kapur, 
1984). (In fact any ordering which satisfies the following 
properties will do: (a) 0 < l < m for any monomial m 
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different from 1 and for 
every monomial S.) Under a total ordering on monomials, 
every polynomial has a unique head-monomial, which 
serves as the left-hand-side of its rule; the rest of the po
lynomial serves as the right-hand-side of the rule. 

We also include a rule A','"' -> A', for each propositional 
variable A, (idempotency rules) as well as another rule 
2 -+ 0. Thus we do not have to deal with any indeter
minate of degree more than 1 nor do we have to deal 
with coefficients other than 0 or 1. There is also a rule 
P + 0 -- />, but this is taken care of automatically in the 
Grobner basis computation. 

The rules thus obtained are used to rewrite polynomials. 
From these rules, new rules are generated to look for a 
contradiction. For each pair of distinct rules, the overlap 
of their left-hand-sides is generated by taking the least 
common multiple (1cm) of the left-hand-sides. Consider 
two distinct rules L, -♦ R x and L2-+ R2. Let /. be the Icm 
of Lx and Ay, so I =- FX L, = F2 L2. 

Then < F , Ru F2R2> is a critical pair generated by the 
two rules, and FXRX F2R2 is its S-polynomial (Buch-
berger and Loos, 1U82; Kandri-Rody and Kapur, 1Q84). 
If the two polynomials in a critical pair do not reduce to 
the same normal form (or equivalently, the corresponding 
S-polj nomial does not reduce to 0), a new rule is added 
from the normal forms thus obtained. This process is re
peated antil no new rules are generated. The resulting 
basis is a Grobner basis of the input polynomials. For 
proofs of correctness and termination of this algorithm, 
see (Kandri-Rody and Kapur, 1684) as this algorithm is a 
special case of the algorithm for generating the Grobner 
basis of an ideal over polynomial rings over the integers. 

We would like to point out that in order to deduce a 
contradiction from a finite set of polynomials, it is not 
necessary to consider superpositions with the idempoten
cy rules; however, these superpositions are needed if a 
Grobner basis is to be generated. In many cases, generat
ing superpositions with idempotency rules gives rise to 
simpler rules which perform considerable reduction. 

E X A M P L E : Consider the problem of checking whether 
the following propositional formula / is unsatisfiable. 

To prove the formula to be unsatisfiable, we equate / to 
1. Using the semantics of A and translating s into +, we 
obtain the following polynomials: 

Transforming these into rewrite rules using the ordering 
on propositional variables which in

duces an ordering on products of propositional variables 
based on size and lexicographic ordering, we get 

We cannot use these rules to reduce each other. So, we 
generate new rules by superposing these rules on each 
other. Overlapping rules 1 and 2, we obtain a product 
*! x2 *« on which rules 1 and 2 can be applied. 

If we further reduce these polynomials using the above 
rules, we obtain *8 on one side and ya on the other side 
and all other products cancel with each other. This gives 
us a new polynomial * a + ys = 0. The new rule for this 
polynomial is: 4. xs — y8. Now rules 3 and 4 give us 
the contradiction 1 — 0. 

There is a much simpler way of doing the above ex
ample by factoring the above polynomials; see (Kapur 
and Narendran, 1984) for details. Formulae involving 
many equivalence connectives are known to often give a 
lot of trouble to theorem-provers based on resolution, na
tural deduction and semantic trees. In the case of propo
sitional calculus, they can be easily taken care of in our 
approach because 'exclusive-or' is one of the main opera
tors. 

2.1 Theoretical Foundations 

Formulae in polynomial form, as stated above, are ele
ments of a polynomial ring over a Boolean ring, 
B = ( {o, l}, +, * ). Let B\Xlf...,Xn\ denote the ring of po-
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lynomials over B with the additional property that 
A', *A, = A, for each A',. Thus if A',, ..., A'„ are the atomic 
formulae (propositional variables) in / , then / is an ele
ment of B[X1....,Xn\. 

Theorem 2.1: Let / be a propositional formula with 
propositional variables A'l ... ,Xn. Let / be the set of all 
polynomials in B\Xlt ... ,Xn] which evaluate to 0 for all 
assignments of A'1 ..., A'„ on which / evaluates to 0. 
Then / is an ideal of B\X1 ... ,Xn]. 

Henceforth we refer to the ideal / mentioned in the 
above theorem as 'the ideal generated by / \ One way to 
check whether a formula / is valid or unsatisfiable is to 
analyze the ideal generated by / . 

Theorem 2.2: A propositional formula / is valid if and 
only if the ideal generated by / over B\XX,. .X„), wheTe 
the A,s are propositional variables in / , is trivial (i.e., 
the whole polynomial ring). 

An analogous theorem for an unsatisfiable formula / 
is that the ideal generating by / +1 is trivial. The trivial
ity of an ideal can be checked by generating its Grobner 
basis. If the Grobner basis of an ideal contains 1, then it 
is trivial. The method discussed in the previous subsec
tion for testing validity or unsatisfiability is based on 
Theorem 2.2 and the Grbner-basis-based test for triviali
ty of an ideal. 

3. FIRST-ORDER PREDICATE CALCULUS 

The approach discussed in the previous section ex
tends to first-order predicate calculus. The following ob
servations are crucial in working out this extension. First
ly, the atomic formulae in first-order predicate calculus 
play the role of propositional variables. Secondly, 
quantifiers can be handled by the method of introducing 
Skolem functions, known as 'Skolemization' (Chang and 
Lee, 1973). Thirdly, there are in general infinitely many 
atomic formulae; however unlike in the case of proposi
tional calculus where propositional variables are indepen
dent and unrelated to each other, atomic formulae in 
first-order predicate calculus are related through the 
mechanism of substitution for variables. Intuitively, this 
captures the forall rule: \{\ix) A(x)\ => A{t), where ap
propriate restrictions are placed on the term t which is 
substituted for an occurrence of x (cf. Chang and Lee, 
1973). Another technical issue is that in general, it may 
not be possible to totally order atomic formulae in the 

case of predicate calculus (again unlike the case of the 
propositional calculus); by relaxing this requirement, we 
also allow more flexibility as well as obtain more general 
results. The rule corresponding to a polynomial form of a 
first-order formula thus may have more than one mono
mial on its left-hand-side. As we show later, if a formula 
is represented in clausal form (i.e., CNF), then every poly
nomial in the set of polynomials equivalent to the formu
la ha,s a unique head-monomial; furthermore, it is also 
sufficient to consider those critical pairs which lead to po
lynomials with a unique head-monomial. 

We first briefly discuss how to handle quantifiers. If 
the top-level operator of a formula / = 1 is a V quantifier 
and the associated variable is z,, then remove the 
quantifier. If the top-level operator is a "1 quantifier and 
associated variable is x,, then introduce a Skolem func
tion .v,, and replace the occurrences of x, bound to this 
quantifier by 5, (x1 **), where xh ..., xk are the free vari
ables in / . Similarly, we have the dual case for the equa
tion / -a o, i.e., we Skolemize \f quantifiers and remove E 
quantifiers. We do not need to bring the formula / into 
prenex normal form first for Skolemization. Instead we 
Skolemize the quantifiers in place after performing min-
iseoping so that each Skolem function depends upon as 
few number of free variables as possible (Bledsoe and Ty
son, 1978). This is done by assigning signs with each of 
the quantifiers and formulae, and giving rules about how 
the signs change under various boolean connectives; see 
(Bledsoe and Tyson, 1978) for details. 

3.1 DERIV ING A C O N T R A D I C T I O N 

Assume that we have obtained a set of polynomials 
following Skolemization from the original formula 
without encountering a contradiction; we call this set a 
basis of the formula. Like in the case of propositional 
calculus, we generate new polynomials from those in the 
basis using the method of critical pairs and add them to 
form a new basis. This completion process (which is relat
ed to the Knuth-Bendix completion procedure (Knuth 
and Bendix, 1970)) is continued until it is no longer possi
ble to obtain new rules; In the case of first-order predi
cate calculus also, we abuse the terminology and call the 
resulting basis a Grobner basis. As discussed in (Kapur 
and Narendran, 1984), the Grobner basis of a finite set of 
first-order formulae has the property that every polyno
mial in their first-order ideal reduces to 0; however, it 
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does not satisfy the other property that every first-order 
polynomial has a unique normal form with respect to the 
basis. For propositional calculus, this procedure for gen
erating a Grobner basis is guaranteed to terminate. How
ever, for first-order polynomials, the process of generation 
of new polynomials may never terminate in some cases. 
Thus a Grobner basis in the first-order case may be 
infinite. 

The theoretical basis of the Grobner basis approach 
for first-order predicate calculus is an extension of the 
results for propositional calculus discussed in Section 2; 
for details, see (Kapur and Narendran, 1984). We intro-
duce there the notion of a first-order ring of polynomials 
which generalizes the concept of a boolean ring of polyno
mials, the algebraic structure embodying propositional 
calculus. We also define a first-order ideal to characterize 
first-order inference in an equational way. This gives us a 
new way to study first-order predicate calculus in terms 
of equational logic. 

We also show in (Kapur and Narendran, 108-1) that 
the Cirobner basis approach is refutation-complete, or, in 
other words, if a formula is unsatisfiable, then the 
Grobner basis computation will terminate with the rule 
l — o. 

3.2 FIRST-ORDER FORMULAE AS REWRITE 
RULES 

A first-order polynomial P can be represented as a 
multiset of monomials (which is a conjunction of atomic 
formulae*) in P; a monomial other than 0 or 1 is assumed 
not to contain 0 or 1. Let SAf(P) denote the multiset of 
monomials in P. A monomial is represented as a multiset 
of atomic formulae.1 Given two first-order polynomials 
f'\, P*, P\ is included in P2, written as / ' , C P2, if and 
only if SM[PX) is a subset of $Af{P2). 

Two monomials A/, and M2 are said to be unifiable if 
and only if there is a substitution a such that 
CT{MJ) = o[M2) when considered as multisets. Monomials 
A/, and A/2 overlap if and only if there is a substitution a 
such that cr{MV) and cr{A12) have a non-trivial greatest com-

1 . Before a polynomial is rewritten using a rule, it i,s always 
assumed to he flat. The result of rewriting however may pro
duce a polynomial that is not flat. That is the reason for view
ing a monomial as a multiset of atomic formulae and a polyno
mial as a multiset of monomials Heneeforth, operations U, fl, 
etc., are on multisets. 

moii divisor (gcd); i.e., a unifies at least one atomic formu
la each from Mx and A/2 (in other words, the intersection 
of (T(M\) and <7(A/2), viewed as multisets, is non-empty). 

3.2.1 Part ia l Weil-Founded Orderings on Mono
mials 

Let < be a well-founded simplification ordering of 
atomic formulae and terms that is closed under substitu
tions. An example of a class of such orderings is the 're
cursive path ordering' scheme of Dershowitz (Dershowitz, 
1082). The ordering < can be extended to a well-founded 
ordering « on monomials using the multiset ordering 
given in (Dershowitz, 1982). The ordering « on monomi
als extends naturally to a partial ordering on polynomials 
considered as multisets of monomials. 

Using the ordering « on monomials, we can define 
head-monomials, denoted by HI)(P), of a polynomial /' as 
the set of maximal monomials in P. In general, HD{P) 
can have more than one monomial. Let 
TL (/') = P - III) (P ). Details of an ordering on atomic 
formulae are discussed in (Kapur and Narendran, 1984). 

3.2.2 Rewrite Relation 

The rule corresponding to a polynomial /' is 
HI)[P) — TL{P). The rewrite relation -> induced by a 
rule is defined as follows: a polynomial Q can be rewrit
ten using a rule hd -*■ tl if and only if there exist a mono
mial m and substitution B such that m * e{hd)C Q. We 
replace m * 0{hd) by m * 6{tl) and get 
Q' =* [Q m * 0{hd)) \j m * ${tl) and say that Q — Q' by 
the rule hd — tl. 

As in the case of propositional calculus, the following 
rules are also used for rewriting in addition to the rules 
corresponding to polynomials: 
(#,) p + 0 - » p , where p is a variable ranging over poly
nomials; this rule is built into the Grobner basis compu
tation. 
(D2) for every n-ary predicate symbol P: 
P(x1....xn) * P(x l .,xn) - P(xlt...,xn). 
(B3) 1 + 1 - 0 . 

The reflexive, transitive closure of — is denoted by 
—'. As is usually done in the literature, we often say P 
reduces to Q if P -► * Q . It should not be hard to see 
that for any finite set R of polynomials, the rewrite rela
tion induced by H is Noetherian (i.e. the rewriting process 
terminates). 



D. Kapur and P. Narendran 1151 



1152 D. Kapur and P. Narendran 

3.4 GROBNER BASIS 

The above process of generating critical pairs is re-
peated until the contradiction 1 — 0 is generated or it is 
no longer possible to generate any new rule. In the first 
case, we are done; in the second case, the original formula 
is falsified (respectively, satisfiable) if it is being proved 
valid (respectively, unsatisfiable). The Grbbner basis thus 
obtained provides a way to construct a model for 
falsifiability (satisfiability) of the formula as an example 
in the next section illustrates. As stated earlier, the pro
cess of generating critical pairs could continue forever for 
formulae which are not valid (respectively, unsatisfiable). 

4. EXAMPLES 

Consider a simple formula: All unicorns are qua
drupeds and there is a quadruped imply that there is a 
unicorn. If V stands for something being a unicorn and Q 
stands for something being a quadruped, then this formu-

6 . R E L A T I N G RESOLUTION TO T H E 
GROBNER BASIS APPROACH 

The process of generating critical pairs of first-order 
polynomials is similar to resolving the corresponding for
mulae. Below, we show that resolution can be simulated 
by the critical-pair-generation process. In fact, for certain 
formulae for which resolution does not give any meaning
ful result, computing critical pairs of the corresponding 
polynomials may still produce useful inferences. 

To prove this formula to be a theorem, we assert it to 0 
and deduce a contradiction. Translating the assertion to 
equivalent set of polynomials gives us the following 
rewrite rules: the constant symbols c and b are the 
Skolem functions introduced to get rid of quantifiers. 
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nomial form of (*) + l can be obtained from an S-
polynomial of the polynomial form of s + l and the rule 
(B2) 

Theorem 5.2 shows that the process of computing factors 
of clauses (cf. Chang and Lee, 1973, p. 80), which is part 
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