
A N E Q U A T I O N A L APPROACH T O T H E O R E M PROVING
IN FIRST-ORDER PREDICATE CALCULUS

Deepak Kapur* and Paliath Narendran

Computer Science Branch
Corporate Research and Development

General Electric Company
Schenectady, New York

A B S T R A C T

A new approach for proving theorems in first-order predi
cate calculus is developed based on term rewriting and
polynomial simplification methods. A formula is translat
ed into an equivalent set of formulae expressed in terms
of 'true', 'false', 'exclusive-or', and 'and' by analyzing the
semantics of its top-level operator. In this representation,
formulae are polynomials over atomic formulae with 'and'
as multiplication and 'exclusive-or' as addition, and they
can be manipulated just like polynomials using familiar
rules of multiplication and addition.

Polynomials representing a formula are converted into
rewrite rules which are used to simplify polynomials. New
rules are generated by overlapping polynomials using a
critical-pair completion procedure closely related to the
Knuth- Bendix procedure. This process is repeated until a
contradiction is reached or it is no longer possible to gen
erate new rules. It is shown that resolution is subsumed
by this method.

Key Words: Theorem Proving, Automated Reasoning,
Equational Approach, Term Rewriting, Knuth-Bendix
Completion Procedure, Polynomial Simplification.

1 . I N T R O D U C T I O N
A new approach for proving theorems in first-order

predicate calculus is presented. The approach is based on
term rewriting and polynomial simplification methods,
and is simple to understand. A key idea is the observa
tion that formulae can be viewed as polynomials over
atomic formulae when they are expressed solely in terms
of boolean connectives 'exclusive-or', 'and' and constants
1 and 0 which stand for truth and falsity, respectively. In

this representation, formulae can be manipulated just like
polynomials using familier rules of multiplication and ad
dition; the addition ('+') is 'exclusive-or' and multiplica
tion ('*') is 'and.' Further, the polynomials we encounter
are simple because we neither see coefficients other than 1
nor degrees more than 1; these polynomials satisfy the
additional properties that for any polynomial p,
p +p =0 and p * p = p. The method works well ir
respective of whether the input formula has a clausal or a
non-clausal representation (Chang and Lee, 1973). For
applications of theorem proving in artificial intelligence,
program verification and synthesis, specification analysis,
etc , an interested reader may wish to look at (Chang and
Lee, 1973; Robinson, 1965; Slagle, 1974).

In our method, if a formula is to be proved valid
(unsatisfiable, respectively), it is asserted to be 0 (1,
respectively), and a contradiction is derived. Towards this
end, an equivalent set of formulae (polynomials) ex
pressed using 'exclusive-or,' and,' and 'true', are generat
ed from this assertion. This is done using the natural
deduction approach by analyzing the semantics of the
top-level operator. It is checked whether a contradiction
1 = 0 can be derived from these polynomials. One good
way of checking for a contradiction is to use the rewriting
concepts to generate a Grobner basis of the original set of
polynomials by suitably modifying the method developed
in (Kandri-Rody and Kapur, 1984) for computing the
Grobner basis of an ideal over polynomial rings over the
integers. Checking whether a contradiction is derivable
from a set of polynomials is equivalent to checking
whether their Grobner basis is trivial in the sense it in
cludes 1.

For the propositional calculus, this approach is a

Partially supported by the National Science Foundation grant MCS-82-11621.

D. Kapur and P. Narendran 1147

straightforward application of the Grobner basis, algo
rithm developed in (Kandri-Rody and Kapur, 1084). For
first-order predicate calculus, additional techniques are
developed based on identifying equivalences among for
mulae using unification. Polynomials are first
transformed into rewrite rules and the Grobner basis is
computed by generating critical-pairs among rewrite
rules The critical-pair generation is similar to resolution
but is more powerful and allows a lot more of flexibility;
in fact, it is shown that it subsumes resolution. New poly
nomials are generated from the critical pairs to augment
the basis set of polynomials to obtain a Grobner basis. If
the Grobner basis consists merely of the rule 1 — 0 then
we know that the original formula is unsatisfiable or valid
depending upon what we were contradicting.

This approach is particularly useful for reasoning
about domains which can be axiomatized using a finite
set of equations, Term rewriting approach for developing
decision procedures for equational theories can be in
tegrated well with lirst-order predicate calculus as first-
order predicate calculus itself can be handled using
rewrite rules.

The proposed approach is motivated by Hsiang's
method for theorem proving in first-order predicate cal
culus based on term rewriting (Ilsiang and Dershowitz,
1983) and the approach for generating a Grobner basis of
a polynomial ideal over the integers in (Kandri-Rody and
Kapur, 1981). At the theoretical level, the major distinc
tion between our approach and Hsiang's method is that
our method is based on the Grobner basis computation
whereas Hsiang's method is based on the extensions of
the Knuth and Bendix completion procedure for handling
associative and commutative operators developed in
(Lankford and Ballantyne, 1977; Peterson and Stickel,
1981). Further, we believe our definitions of unification of
monomials, rewriting, superposition and critical pairs are
conceptually simpler to understand than Hsiang's. At the
implementation level, our approach seems to be easier to
implement than Hsiang's, as it does not need to use
associative-commutative unification algorithm or its vari
ation, called BN-unification by Hsiang, to handle boolean
operators. An implementation of our method is under
way. At this stage, it is difficult to make any comparison
between the running times of Hsiang's method and our
method; however, initial results seem to suggest that our

method is more efficient than Hsiang's. Further, it is too
early to say how our method compares with resolution or
other theorem proving methods. However, in case of pro-
positional calculus, preliminary experiments suggest that
our method is more efficient than the resolution-based
LMA theorem prover.

In this paper, we give an overview of the approach ex
hibiting how first-order formulae can be viewed as poly
nomials and rewrite rules. The method is illustrated us
ing examples. Further technical details and proofs of the
theorems in this paper are given in (Kapur and Naren
dran, 1984).

2. PROPOSIT IONAL CALCULUS

Given a formula / , it is asserted to be l or o depend
ing upon whether / is to be shown unsatisfiable or valid,
respectively, and it is checked whether a contradiction
can be derived. In order to do so, the resulting equation
is first translated into an equivalent set of polynomials
expressed using 'exclusive-or' (+), 'and' (*), 'true' (l) and
'false' (0). (Since a + a — 0 as well as a - a = 0, we use
' + ' and '-' interchangably in the paper; we also often
omit ' * ' among atomic formulae.) This can be done by
analyzing the outermost operator of the left-hand-side of
the equation; see (Kapur and Narendran, 1981) for de-
tails. In many cases, we may able to generate the con
tradiction 1 = () in the process of obtaining an equivalent
set of polynomials, in which case we are done. If not,
then the translation gives a set of polynomial equations,
say {p, = 0 | 1 < i < n }.

To check whether the polynomial equations lead to a
contradiction or not, we generate its Grobner basis
(Buchberger and Loos, 1982; Kandri-Rody and Kapur,
1984). Informally, a finite set of polynomials constitute a
Grobner basis if and only if evey polynomial has a unique
normal form when simplified or reduced using polynomi
als in the basis. To generate a Grobner basis, each poly
nomial equation is converted into a rewrite rule. This is
done by totally ordering atomic formulae which is always
possible in the case of propositional calculus. This order
ing is extended to monomials (products of atomic formu
lae) based on degree (i.e., size) and lexicographic ordering
(cf. Buchberger and Loos, 1982; Kandri-Rody and Kapur,
1984). (In fact any ordering which satisfies the following
properties will do: (a) 0 < l < m for any monomial m

1148 D. Kapur and P. Narcndran

different from 1 and for
every monomial S.) Under a total ordering on monomials,
every polynomial has a unique head-monomial, which
serves as the left-hand-side of its rule; the rest of the po
lynomial serves as the right-hand-side of the rule.

We also include a rule A','"' -> A', for each propositional
variable A, (idempotency rules) as well as another rule
2 -+ 0. Thus we do not have to deal with any indeter
minate of degree more than 1 nor do we have to deal
with coefficients other than 0 or 1. There is also a rule
P + 0 -- />, but this is taken care of automatically in the
Grobner basis computation.

The rules thus obtained are used to rewrite polynomials.
From these rules, new rules are generated to look for a
contradiction. For each pair of distinct rules, the overlap
of their left-hand-sides is generated by taking the least
common multiple (1cm) of the left-hand-sides. Consider
two distinct rules L, -♦ R x and L2-+ R2. Let /. be the Icm
of Lx and Ay, so I =- FX L, = F2 L2.

Then < F , Ru F2R2> is a critical pair generated by the
two rules, and FXRX F2R2 is its S-polynomial (Buch-
berger and Loos, 1U82; Kandri-Rody and Kapur, 1Q84).
If the two polynomials in a critical pair do not reduce to
the same normal form (or equivalently, the corresponding
S-polj nomial does not reduce to 0), a new rule is added
from the normal forms thus obtained. This process is re
peated antil no new rules are generated. The resulting
basis is a Grobner basis of the input polynomials. For
proofs of correctness and termination of this algorithm,
see (Kandri-Rody and Kapur, 1684) as this algorithm is a
special case of the algorithm for generating the Grobner
basis of an ideal over polynomial rings over the integers.

We would like to point out that in order to deduce a
contradiction from a finite set of polynomials, it is not
necessary to consider superpositions with the idempoten
cy rules; however, these superpositions are needed if a
Grobner basis is to be generated. In many cases, generat
ing superpositions with idempotency rules gives rise to
simpler rules which perform considerable reduction.

E X A M P L E : Consider the problem of checking whether
the following propositional formula / is unsatisfiable.

To prove the formula to be unsatisfiable, we equate / to
1. Using the semantics of A and translating s into +, we
obtain the following polynomials:

Transforming these into rewrite rules using the ordering
on propositional variables which in

duces an ordering on products of propositional variables
based on size and lexicographic ordering, we get

We cannot use these rules to reduce each other. So, we
generate new rules by superposing these rules on each
other. Overlapping rules 1 and 2, we obtain a product
*! x2 *« on which rules 1 and 2 can be applied.

If we further reduce these polynomials using the above
rules, we obtain *8 on one side and ya on the other side
and all other products cancel with each other. This gives
us a new polynomial * a + ys = 0. The new rule for this
polynomial is: 4. xs — y8. Now rules 3 and 4 give us
the contradiction 1 — 0.

There is a much simpler way of doing the above ex
ample by factoring the above polynomials; see (Kapur
and Narendran, 1984) for details. Formulae involving
many equivalence connectives are known to often give a
lot of trouble to theorem-provers based on resolution, na
tural deduction and semantic trees. In the case of propo
sitional calculus, they can be easily taken care of in our
approach because 'exclusive-or' is one of the main opera
tors.

2.1 Theoretical Foundations

Formulae in polynomial form, as stated above, are ele
ments of a polynomial ring over a Boolean ring,
B = ({o, l}, +, *). Let B\Xlf...,Xn\ denote the ring of po-

D. Kapur and P. Narendran 1149

lynomials over B with the additional property that
A', *A, = A, for each A',. Thus if A',, ..., A'„ are the atomic
formulae (propositional variables) in / , then / is an ele
ment of B[X1....,Xn\.

Theorem 2.1: Let / be a propositional formula with
propositional variables A'l ... ,Xn. Let / be the set of all
polynomials in B\Xlt ... ,Xn] which evaluate to 0 for all
assignments of A'1 ..., A'„ on which / evaluates to 0.
Then / is an ideal of B\X1 ... ,Xn].

Henceforth we refer to the ideal / mentioned in the
above theorem as 'the ideal generated by / \ One way to
check whether a formula / is valid or unsatisfiable is to
analyze the ideal generated by / .

Theorem 2.2: A propositional formula / is valid if and
only if the ideal generated by / over B\XX,. .X„), wheTe
the A,s are propositional variables in / , is trivial (i.e.,
the whole polynomial ring).

An analogous theorem for an unsatisfiable formula /
is that the ideal generating by / +1 is trivial. The trivial
ity of an ideal can be checked by generating its Grobner
basis. If the Grobner basis of an ideal contains 1, then it
is trivial. The method discussed in the previous subsec
tion for testing validity or unsatisfiability is based on
Theorem 2.2 and the Grbner-basis-based test for triviali
ty of an ideal.

3. FIRST-ORDER PREDICATE CALCULUS

The approach discussed in the previous section ex
tends to first-order predicate calculus. The following ob
servations are crucial in working out this extension. First
ly, the atomic formulae in first-order predicate calculus
play the role of propositional variables. Secondly,
quantifiers can be handled by the method of introducing
Skolem functions, known as 'Skolemization' (Chang and
Lee, 1973). Thirdly, there are in general infinitely many
atomic formulae; however unlike in the case of proposi
tional calculus where propositional variables are indepen
dent and unrelated to each other, atomic formulae in
first-order predicate calculus are related through the
mechanism of substitution for variables. Intuitively, this
captures the forall rule: \{\ix) A(x)\ => A{t), where ap
propriate restrictions are placed on the term t which is
substituted for an occurrence of x (cf. Chang and Lee,
1973). Another technical issue is that in general, it may
not be possible to totally order atomic formulae in the

case of predicate calculus (again unlike the case of the
propositional calculus); by relaxing this requirement, we
also allow more flexibility as well as obtain more general
results. The rule corresponding to a polynomial form of a
first-order formula thus may have more than one mono
mial on its left-hand-side. As we show later, if a formula
is represented in clausal form (i.e., CNF), then every poly
nomial in the set of polynomials equivalent to the formu
la ha,s a unique head-monomial; furthermore, it is also
sufficient to consider those critical pairs which lead to po
lynomials with a unique head-monomial.

We first briefly discuss how to handle quantifiers. If
the top-level operator of a formula / = 1 is a V quantifier
and the associated variable is z,, then remove the
quantifier. If the top-level operator is a "1 quantifier and
associated variable is x,, then introduce a Skolem func
tion .v,, and replace the occurrences of x, bound to this
quantifier by 5, (x1 **), where xh ..., xk are the free vari
ables in / . Similarly, we have the dual case for the equa
tion / -a o, i.e., we Skolemize \f quantifiers and remove E
quantifiers. We do not need to bring the formula / into
prenex normal form first for Skolemization. Instead we
Skolemize the quantifiers in place after performing min-
iseoping so that each Skolem function depends upon as
few number of free variables as possible (Bledsoe and Ty
son, 1978). This is done by assigning signs with each of
the quantifiers and formulae, and giving rules about how
the signs change under various boolean connectives; see
(Bledsoe and Tyson, 1978) for details.

3.1 DERIV ING A C O N T R A D I C T I O N

Assume that we have obtained a set of polynomials
following Skolemization from the original formula
without encountering a contradiction; we call this set a
basis of the formula. Like in the case of propositional
calculus, we generate new polynomials from those in the
basis using the method of critical pairs and add them to
form a new basis. This completion process (which is relat
ed to the Knuth-Bendix completion procedure (Knuth
and Bendix, 1970)) is continued until it is no longer possi
ble to obtain new rules; In the case of first-order predi
cate calculus also, we abuse the terminology and call the
resulting basis a Grobner basis. As discussed in (Kapur
and Narendran, 1984), the Grobner basis of a finite set of
first-order formulae has the property that every polyno
mial in their first-order ideal reduces to 0; however, it

1150 D. Kapur and P. Narendran

does not satisfy the other property that every first-order
polynomial has a unique normal form with respect to the
basis. For propositional calculus, this procedure for gen
erating a Grobner basis is guaranteed to terminate. How
ever, for first-order polynomials, the process of generation
of new polynomials may never terminate in some cases.
Thus a Grobner basis in the first-order case may be
infinite.

The theoretical basis of the Grobner basis approach
for first-order predicate calculus is an extension of the
results for propositional calculus discussed in Section 2;
for details, see (Kapur and Narendran, 1984). We intro-
duce there the notion of a first-order ring of polynomials
which generalizes the concept of a boolean ring of polyno
mials, the algebraic structure embodying propositional
calculus. We also define a first-order ideal to characterize
first-order inference in an equational way. This gives us a
new way to study first-order predicate calculus in terms
of equational logic.

We also show in (Kapur and Narendran, 108-1) that
the Cirobner basis approach is refutation-complete, or, in
other words, if a formula is unsatisfiable, then the
Grobner basis computation will terminate with the rule
l — o.

3.2 FIRST-ORDER FORMULAE AS REWRITE
RULES

A first-order polynomial P can be represented as a
multiset of monomials (which is a conjunction of atomic
formulae*) in P; a monomial other than 0 or 1 is assumed
not to contain 0 or 1. Let SAf(P) denote the multiset of
monomials in P. A monomial is represented as a multiset
of atomic formulae.1 Given two first-order polynomials
f'\, P*, P\ is included in P2, written as / ' , C P2, if and
only if SM[PX) is a subset of $Af{P2).

Two monomials A/, and M2 are said to be unifiable if
and only if there is a substitution a such that
CT{MJ) = o[M2) when considered as multisets. Monomials
A/, and A/2 overlap if and only if there is a substitution a
such that cr{MV) and cr{A12) have a non-trivial greatest com-

1 . Before a polynomial is rewritten using a rule, it i,s always
assumed to he flat. The result of rewriting however may pro
duce a polynomial that is not flat. That is the reason for view
ing a monomial as a multiset of atomic formulae and a polyno
mial as a multiset of monomials Heneeforth, operations U, fl,
etc., are on multisets.

moii divisor (gcd); i.e., a unifies at least one atomic formu
la each from Mx and A/2 (in other words, the intersection
of (T(M\) and <7(A/2), viewed as multisets, is non-empty).

3.2.1 Part ia l Weil-Founded Orderings on Mono
mials

Let < be a well-founded simplification ordering of
atomic formulae and terms that is closed under substitu
tions. An example of a class of such orderings is the 're
cursive path ordering' scheme of Dershowitz (Dershowitz,
1082). The ordering < can be extended to a well-founded
ordering « on monomials using the multiset ordering
given in (Dershowitz, 1982). The ordering « on monomi
als extends naturally to a partial ordering on polynomials
considered as multisets of monomials.

Using the ordering « on monomials, we can define
head-monomials, denoted by HI)(P), of a polynomial /' as
the set of maximal monomials in P. In general, HD{P)
can have more than one monomial. Let
TL (/') = P - III) (P). Details of an ordering on atomic
formulae are discussed in (Kapur and Narendran, 1984).

3.2.2 Rewrite Relation

The rule corresponding to a polynomial /' is
HI)[P) — TL{P). The rewrite relation -> induced by a
rule is defined as follows: a polynomial Q can be rewrit
ten using a rule hd -*■ tl if and only if there exist a mono
mial m and substitution B such that m * e{hd)C Q. We
replace m * 0{hd) by m * 6{tl) and get
Q' =* [Q m * 0{hd)) \j m * ${tl) and say that Q — Q' by
the rule hd — tl.

As in the case of propositional calculus, the following
rules are also used for rewriting in addition to the rules
corresponding to polynomials:
(#,) p + 0 - » p , where p is a variable ranging over poly
nomials; this rule is built into the Grobner basis compu
tation.
(D2) for every n-ary predicate symbol P:
P(x1....xn) * P(x l .,xn) - P(xlt...,xn).
(B3) 1 + 1 - 0 .

The reflexive, transitive closure of — is denoted by
—'. As is usually done in the literature, we often say P
reduces to Q if P -► * Q . It should not be hard to see
that for any finite set R of polynomials, the rewrite rela
tion induced by H is Noetherian (i.e. the rewriting process
terminates).

D. Kapur and P. Narendran 1151

1152 D. Kapur and P. Narendran

3.4 GROBNER BASIS

The above process of generating critical pairs is re-
peated until the contradiction 1 — 0 is generated or it is
no longer possible to generate any new rule. In the first
case, we are done; in the second case, the original formula
is falsified (respectively, satisfiable) if it is being proved
valid (respectively, unsatisfiable). The Grbbner basis thus
obtained provides a way to construct a model for
falsifiability (satisfiability) of the formula as an example
in the next section illustrates. As stated earlier, the pro
cess of generating critical pairs could continue forever for
formulae which are not valid (respectively, unsatisfiable).

4. EXAMPLES

Consider a simple formula: All unicorns are qua
drupeds and there is a quadruped imply that there is a
unicorn. If V stands for something being a unicorn and Q
stands for something being a quadruped, then this formu-

6 . R E L A T I N G RESOLUTION TO T H E
GROBNER BASIS APPROACH

The process of generating critical pairs of first-order
polynomials is similar to resolving the corresponding for
mulae. Below, we show that resolution can be simulated
by the critical-pair-generation process. In fact, for certain
formulae for which resolution does not give any meaning
ful result, computing critical pairs of the corresponding
polynomials may still produce useful inferences.

To prove this formula to be a theorem, we assert it to 0
and deduce a contradiction. Translating the assertion to
equivalent set of polynomials gives us the following
rewrite rules: the constant symbols c and b are the
Skolem functions introduced to get rid of quantifiers.

D. Kapur and P. Narondran 1153

nomial form of (*) + l can be obtained from an S-
polynomial of the polynomial form of s + l and the rule
(B2)

Theorem 5.2 shows that the process of computing factors
of clauses (cf. Chang and Lee, 1973, p. 80), which is part

1. REFERENCES

|1] Bledsoe, W. W.f and Tyson, M. The UT Interactive Prover,"
Automatic Theorem Proving Project, ATP-17A, Department
of Mathematics and Computer Sciences, University of Texas,
Austin, June, 1978.

|2] Buchberger, B., and Loos, R. "Algebraic Simplification" In
Computer Algebra: Symbolic and Algebraic Computation (Eds.
B. Buchberger, G.E. Collins and R. Loos), Computing Suppl.
4, Springer Verlag, New York, 1982, pp. 11-43.

[3] Chang, C-L. and Lee, R.C. Symbolic Logic and Mechanical
Theorem Proving. Academic Press, New York, 1973.

|4] Dershowitz, N. "Orderings for Term Rewriting Systems."
Theoretical Computer Science 17 (1982), pp. 279-301.

[5] Hsiang, J. and Dershowiti:, N. "Rewrite Methods for Clausal
and Non-clausal Theorem Proving" In Proc. 10th EATCS Intl.
Colloq. on Automata, Languages, and Programming, Spain,
1983.

[6] Kandri-Rody, A., and Kapur, D. "Computing the Grobner
Basis of a Polynomial Ideal over Integers" In Proc. Third
MACSYMA (Jeers' Conference, Schenectady, NY, July 1984,
pp. 436-461.

of the resolution method, can be simulated by repeated
overlapping of polynomial rules with the rule (B2). Thus
resolution is built into the critical pair generation process
as each of the four cases in the definition of a resolvent in
(cf. Chang and Lee, 1973, pp. 80-81), can be simulated.

[7] Kapur, D., and Narendran, P. "An Equational Approach to
Theorem Proving in First-Order Predicate Calculus,"
84CRD296, General Electric Corporate Research and Develop
ment Report, Schenectady, NY, March, 1984; Revised, Dec,
1984.

|8] Knuth, D.E. and Bendix, P.B "Simple Word Problems in
Universal Algebras" In Computational Problems in Abstract
Algebras. (Ed. J. Leech), Pergamon Press, 1970, pp 263-297

[9] Lank ford, D.S., and Ballantyne, A.M., "Decision Procedures
for Simple Equational Theories with Commutative-Associative
Axioms: Complete Sets of Commutative-Associative Reduc
tions," Automatic Theorem Proving Project, Dept. of Math,
and Computer Science, University of Texas, Austin, TX
78712, Report ATP-39, August 1977.

[10] Peterson, G.L., and Stickel, M.E., "Complete Sets of Reduc
tions for Some Equational Theories," JACM 28 (1981), pp.
233-264.

[11] Robinson, J. A. "A Machine-Oriented Logic Based on the
Resolution Principle." JACM 12 (1965), pp. 23-41

[12] Slagle, J. R. "Automated Theorem Proving for Theories with
Simplifies, Commutativity and Associativity." JACM 21
(1974), pp. 622-642.

[13] van der Waerden, B.L., Modern Algebra. Vols. I and II,
Fredrick Ungar Publishing Co., New York, 1966.

