
A n E f f i c i e n t 

C o n t e x t - f r e e P a r s i n g A l g o r i t h m 

F o r N a t u r a l L a n g u a g e s 1 

Masaru Tomita 
Computer Science Department 

Carnegie-Mellon University 
Pittsburgh, PA 15213 

A b s t r a c t 

This paper introduces an efficient context-free parsing 
algorithm and emphasizes its practical value in natural 
language processing. The algorithm can be viewed as an 
extended LR parsing algorithm which embodies the concept 
of a "graph-structured stack." Unlike the standard LR, the 
algorithm is capable of handling arbitrary non cyclic 
context-free grammars including ambiguous grammars, 
while most of the LR parsing efficiency is preserved. The 
algorithm seems more efficient than any existing algorithms 
including the Cocke Younger Kasami algorithm and Earley's 
algorithm, as far as practical natural language parsing is 
concerned, due to utilization of LR parsing tables. The 
algorithm is an all-path parsing algorithm; it produces all 
possible parse trees (a parse forest) in an efficient 
representation called a "shared-packed forest." This paper 
also shows that Earley's forest representation has a defect 
and his algorithm cannot be used in natural language 
processing as an all-path parsing algorithm. 

1 I n t r o d u c t i o n 

In past decades, many context-free parsing algorithms have 
been developed, and they can be classified into two groups: 
algorithms for programming languages and algorithms for 
general context-free languages. The former group of algorithms 
are intended to handle only a small subset of context-free 
grammars sufficient for programming languages. Such 
algorithms include the LL parsing algorithm, the operator 
precedence parsing algorithm, the predictive parsing algorithm 
and the LR parsing algorithm. They can handle only a subset of 
context free grammars called LL grammars, operator precedence 
grammars, predictive grammars and LR grammars, respectively 
[1]. These algorithms are tuned to handle a particular subset of 
context free grammars, and therefore they are very efficient with 
their type of grammars. In other words, they take advantage of 
inherent features of the programming language. 

The other group of algorithms, often called general context-free 
parsing algorithms, are designed to handle arbitrary context-free 
grammars. This group of algorithms includes Earley's 
algorithm (9] and the Cocke Younger Kasami algorithm [19, 11]. 
General context-free languages include many difficult 
phenomena which never appear in programming languages, 
such as ambiguity and cycle. Algorithms in this group have not 
been widely used for programming languages, because their 
constant factors are too large to be used in practical compilers, 
as Earley admitted in his thesis [8]. This is not surprising, 

This research was sponsored by the Defense Advanced Research Projects 
Agency (DOD). ARF'A Order No. 3597, monitored by the Air Force Avionics 
Laboratory Under Contract F33615-81 -K 1539. The views and conclusions 
contained in this document are those of the authors and should not be Interpreted 
as representing the official policies, either expressed or implied, of the Defense 
Advanced Research Projects Agency or the US Government. 

because those algorithms are not tuned for any particular subset 
of context-free grammars, and must be able to handle all difficult 
phenomena in context-free grammars. In other words, they do 
not take advantage of inherent features of the programming 
language. Intuitively speaking, algorithms in this group are 
efficient for "hard" grammars by sacrificing efficiency on "easy" 
grammars. 

No parsing algorithm has been designed that takes advantage 
of inherent features of natural languages. Because natural 
languages include slightly more difficult phenomena than 
programming languages, we cannot simply use the first group of 
algorithms for natural languages. Natural languages are a little 
"harder" than programming languages, but they are still much 
"easier" than general context-free languages As we have seen 
above, we have context-free parsing algorithms at two extremes. 
The one is very efficient but not powerful enough to handle 
natural languages. The other is too powerful and it turns out to 
be inefficient. We need something in between. 

This paper introduces such a context-free parsing algorithm, 
which can be viewed as an extended LR parsing algorithm which 
embodies the concept of a "graph-structured stack." The fragile 
point of the standard LR parsing algorithm is that it cannot handle 
a non-LR grammar, even if the grammar is almost LR. Unlike the 
standard LR parsing algorithm, our algorithm can handle non-LR 
grammars with little loss of LR efficiency, if its grammar is "close" 
to LR. Foriunateiy, natural language grammars are considerably 
"close" to LR, compared with other general context-free 
grammars. 

A primitive version of the algorithm was described in the 
author's previous work [15]. Because the primitive algorithm 
used a "tree-structured stack", exponential time was required, 
whereas the current algorithm uses the "graph-structured stack" 
and runs in polynomial time. Also, the primitive algorithm was a 
recognizer; that is, it did not produce any parses, while the 
current algorithm produces all possible parses in an efficient 
representation. A "graph-structured stack" was proposed in the 
author's more recent work [16]. The algorithm was previously 
called the MLR parsing algorithm. All ideas presented in those 
two previous papers are included in this paper, and the reader 
does not need to refer to them to understand the current 
discussion. 

2 T h e S t a n d a r d L R P a r s i n g A l g o r i t h m 

The LR parsing algorithms [1, 2] were developed originally for 
programming languages. An LR parsing algorithm is a shift-
reduce parsing algorithm which is deterministically guided by a 
parsing table indicating what action should be taken next. The 
parsing table can be obtained automatically from a context-free 
phrase structure grammar, using an algorithm first developed by 
DeRemer[6, 7]. I do not describe the algorithms here, referring 
the reader to chapter 6 in Aho and Ullman [31. I assume that the 
reader is familiar with the standard LR parsing algorithm (not 
necessarily with the parsing tabie construction algorithm). 



M.Tomita 757 

The LR paring algorithm is one of the most efficient parsing 
algorithms. It is totally deterministic and no backtracking or 
search is involved. Unfortunately, we cannot directly adopt the 
LR parsing technique for natural languages, because it Is 
applicable only to a small subset of context-tree grammars called 
LR grammars, and it is almost certain that any practical natural 
language grammars are not LR. If a orammar is non-LR, its 
parsing table will have multiple entries ; one or more of the 
action table entries will be multiply defined. 

Figures 1 and 2 show an example of a non-LR grammar and its 
parsing table. Grammar symbols starting with "*" represent pre­
terminals. Entries "sh n" in the action table (the left part of the 
table) indicate the action "shift one word from input buffer onto 
the stack, and go to state n". Entries "re n" indicate the action 
"reduce constituents on the stack using rule n". The entry "ace" 
stands for the action "accept", and blank spaces represent 
"error". Goto table (the right part of the table) decides to what 
state the parser should go after a reduce action. The exact 
definition and operation of the LR parser can be found in Aho and 
Ullman [3]. 

We can see that there are two multiple entries in the action 
table; on the rows of state 11 and 12 at the column labeled 
"*prep". It has been thought that, for LR parsing, multiple entries 
are fatal because once a parsing table has multiple entries, 
deterministic parsing is no longer possible and some kind of non-
determinism is necessary. However, in this paper, we extend a 
stack of the LR parsing algorithm to be "graph-structured," so 
that the algorithm can handle multiple entries with little loss of LR 
efficiency. 

3 H a n d l i n g M u l t i p l e E n t r i e s 

As mentioned above, once a parsing table has multiple entries, 
determimst'C parsing is no longer possible and some kind of non-
determinism is necessary. We handle multiple entries with a 
special technique, named a graph-structuied stack. In order to 
introduce the idea of a graph-structured stack, I first give a 
simpler non determinism, and make refinements on it. 
Subsection 3.1 describes a simple and straightforward non-
determinism, i.e. pseudo-parallelism (breath-first search), in 
which the system maintains a number of stacks simultaneously. I 
call the list of stacks Stack List. A disadvantage of the stack list is 
then described. The next subsection describes the idea of stack 
combination, which was introduced in my earlier research [15], to 
make the algorithm much more efficient. With this idea, stacks 
are represented as trees (or a forest). Finally, a further 
refinement, the graph-structured stack, is described to make the 
algorithm even more efficient; efficient enough to run in 
polynomial time. 

3.1 With Stack List 
The simplest idea is to handle multiple entries non-

deterministically. I adopt pseudo-parallelism (breath first search), 

maintaining a list of stacks called a Stack List. The pseudo-
parallelism works as follows. 

A number of processes are operated in parallel. Each process 
has a stack and behaves basically the same as in standard LR 
parsing. When a process encounters a multiple entry, the 
process is split into several processes (one for each entry), by 
duplicating its stack. When a process encounters an error entry, 
the process is killed, by removing its stack from the stack list. All 
processes are synchronized; they shift a word at the same time so 
that they always look at the same word. Thus, if a process 
encounters a shift action, it waits until all other processes also 
encounter a (possibly different) shift action. 

Figure 3 shows a snapshot of the stack list right after shifting 
the word "with" in the sentence "I saw a man on the bed in the 
apartment with a telescope" using the grammar in figure 1 and 
the parsing table in figure 2. For the sake of convenience, I 
denote a stack with vertices and edges. The leftmost vertex is the 
bottom of the stack, and the rightmost vertex is the top of the 
stack. Vertices represented by a circle are called state vertices, 
and they represent a state number. Vertices represented by a 
square are called symbol vertices, and they represent a grammar 
symbol. Each stack is exactly the same as a stack in the standard 
LR parsing algorithm. The distance between vertices (length of 
an edge) does not have any significance, except it may help the 
reader understand the status of the stacks. 

We notice that some stacks in the stack list appear to be 
identical. They are, however, internally different because they 
have reached the current state in different ways. Although we 
shall describe a method to compress them into one stack in the 
next section, we consider them to be different in this section. 

A disadvantage of the stack list method is that there are no 
interconnections between stacks (processes) and there is no way 
in which a process can utilize what other processes have done 
already. The number of stacks in the stack list grows 
exponentially as ambiguities are encountered. For example, 
these 14 processes in figure 3 will parse the rest of the sentence 
"the telescope" 14 times in exactly the same way. This can be 
avoided by using a tree structured stack, which is described in 
the following subsection. 

3.2 With a Tree-structured Stack 

If two processes are in a common state, that is, if two stacks 
have a common state number at the rightmost vertex, they will 
behave in exactly the same manner until the vertex is popped 
from the stacks by a reduce action. To avoid this redundant 
operation, these processes are unified into one process by 
combining their stacks. Whenever two or more processes have a 
common state number on the top of their stacks, the top vertices 
are unified, and these stacks are represented as a tree, where the 
top vertex corresponds to the root of the tree. I call this a tree-
structured stack. When the top vertex is popped, the tree-
structured stack is split into the original number of stacks. In 
general, the system maintains a number of tree-structured stacks 



758 M.Tomita 

in parallel, so stacks are represented as a forest. Figure 4 shows 
a snapshot of the tree-structured stack immediately after shifting 
the word "with". 

Although the amount of computation is significantly reduced by 
the stack combination technique, the number of branches of the 
tree-structured stack (the number of bottoms of the stack) that 
must be maintained still grows exponentially as ambiguities are 
encountered. The next subsection describes a further 
modification in which stacks are represented as a directed 
acyclic graph, in order to avoid such inefficiency. 

3.3 With a Graph-structured Stack 
So far, when a stack is split, a copy of the whole stack is made. 

However, we do not necessarily have to copy the whole stack: 
Even after different parallel operations on the tree-structured 
stack, the bottom portion of the stack may remain the same. Only 
the necessary portion of the stack should therefore be split. 
When a stack is split, the stack is thus represented as a tree, 
where the bottom of the stack corresponds to the root of the tree. 
With the stack combination technique described in the previous 
subsection, stacks are represented as a directed acyclic graph. 
Figure 5 shows a snapshot of the graph stack. It is easy to show 
that the algorithm with the graph-structured stack does not parse 
any part of an input sentence more than once in the same way. 
This is because if two processes had parsed a part of a sentence 
in the same way, they would have been in the same state, and 
they would have been combined as one process. 

So far, we have focussed on how to accept or reject a sentence. 
In practice, however, the parser must not only simply accept or 
reject sentences, but also build the syntactic structure(s) of the 
sentence (parse forest). The next section describes how to 
represent the parse forest and how to build it with our parsing 
algorithm. 

4 An E f f i c i e n t R e p r e s e n t a t i o n o f a P a r s e 
F o r e s t 

Our parsing algorithm is an all-path parsing algorithm; that is, it 
produces all possible parses in case an input sentence is 
ambiguous. Such all-path parsing is often needed in natural 
language processing to manage temporarily or absolutely 
ambiguous input sentences. The ambiguity (the number of 
parses) of a sentence grows exponentially as the length of a 
sentence grows. Thus, one might notice that, even with an 
efficient parsing algorithm such as the one we described, the 
parser would take exponential time because exponential time 
would be required merely to print out ail parse trees (parse 
forest). We must therefore provide an efficient representation so 
that the size of the parse forest does not grow exponentially. 

This section describes two techniques for providing an efficient 
representation: sub-tree sharing and local ambiguity packing. It 
should be mentioned that these two techniques are not 
completely new ideas, and some existing systems already 
adopted these techniques, either implicitly or explicitly. To the 
author's knowledge, however, no existing system has explicitly 
adopted both techniques at the same time. 

4.1 Sub-tree Sharing 

If two or more trees have a common sub-tree, the sub-tree 
should be represented only once. For example, the parse forest 
for the sentence "I saw a man in the park with a telescope" 
should be represented as in figure 6. Our parsing algorithm is 
very well suited for building this kind of shared forest as its 
output, as we shall see in the following. 

To implement this, we no longer push grammatical symbols on 
the stack; instead, we push pointers to a node3 of the shared 



M.Tomita 759 

forest. When the parser "shifts" a word, it creates a leaf node 
labeled with the word and the preterminal, and instead of 
pushing the pre-terminal symbol, a pointer to the newly created 
leaf node Is pushed onto the stack. If the exact same leaf node 
(i.e. the node labeled with the same word and the same pre­
terminal) already exists, a pointer to this existing node is pushed 
onto the stack, without creating another node. When the parser 
"reduces" the stack, it pops pointers from the stack, creates a 
new node whose successive nodes are pointed to by those 
popped pointers, and pushes a pointer to the newly created node 
onto the stack. 

Using this relatively simple procedure, our parsing algorithm 
can produce the shared forest as its output without any other 
special book-keeping mechanism, because the algorithm never 
does the same reduce action twice in the same manner. 

4.2 Local Ambiguity Packing 

I define that two or more subtrees represent local ambiguity if 
they have common leaf nodes and their top nodes are labeled 
with the same non-terminal symbol. That is to say, a fragment of 
a sentence is locally ambiguous if the fragment can be reduced to 
a certain non-terminal symbol in two or more ways. If a sentence 
has many local ambiguities, the total ambiguity would grow 
exponentially. To avoid this, we use a technique called local 
ambiguity packing, which works in the following way. The top 
nodes of subtrees that represent local ambiguity are merged and 
treated by higher-level structures as if there were only one node. 
Such a node is called a packed node, and nodes before packing 
are called subnodes of the packed node. Examples of a shared-
packed forest is shown in figure 7. 

Local ambiguity packing can be easily implemented with our 
parsing algorithm as follows. In the graph-structured stack, if two 

or more symbol vertices have a common state vertex immediately 
on their left and a common state vertex immediately on their right, 
they represent local ambiguity. Nodes pointed to by these symbol 
vertices are to be packed as one node. In figure 5 for example, 
we see one 5-way local ambiguity and two 2-way local 
ambiguities. 

The algorithm will be made clear by an example in the next 
section. 

5 T h e E x a m p l e 

This section gives a trace of the algorithm with the grammar In 
figure 1, the parsing table in figure 2 and the sentence "I saw a 
man in the park with a telescope." 

At the very beginning, the stack contains only one vertex 
labeled 0, and the parse forest contains nothing. By looking at 
the action table, the next action "shift 4" is determined as In 
standard LR parsing. 

Figu re 8: Trace of the Parser 
When shifting the word " I " , me algorithm creates a leaf node in 

the parse forest labeled with the word " I " and its preterminal 
"*n", and pushes a pointer to the leaf node onto the stack. The 
next action "reduce 3" is determined from the action table. 

We reduce the stack basically in the same manner as standard 
LR parsing. It pops the top vertex "4" and the pointer "0" from 
the stack, and creates a new node in the parse forest whose 
successor is the node pointed to by the pointer. The newly 
created node is labeled with the left hand side symbol of rule 3, 
namely "NP". The pointer to this newly created node, namely 
" 1 " , is pushed onto the stack. The action "shift 7" is determined 
as the next action. Now, we have figure 10. 



760 M. Tomita 

Figure 13: Trace of the Parser (cont.) 
The next action is "reduce 4". It pops pointers, "3" and "4M, 

and creates a new node in the parse forest such that node 3 and 
node 4 are its successors. The newly created node is labeled 
with the left hand side symbol of rule 4, i.e. "NP". The pointer to 
this newly created node, "5", is pushed onto the stack. We now 
have figure 14. 

Figu re 14: Trace of the Parser (cont.) 
At this point, we encounter a multiple entry, "reduce 7" and 

"shift 6", and both actions are to be executed. Reduce actions 
are always executed first, and shift actions are executed only 
when there is no reduce action to execute. After executing 
"reduce 7", the stack and the parse forest look like the following. 
The top vertex labeled "12" is not popped away, because it still 
has an action which is not yet executed. Such a top vertex, or 
more generally, vertices with one or more actions yet to be 
executed, are called active. Thus, we have two active vertices in 
the stack above: one labeled "12", and the other labeled "8". 
The action "reduce 1" is determined from the action table, and is 
associated with the latter vertex. 

Figu re 15: Trace of the Parser (cont.) 

Because reduce actions have a higher priority than shift 
actions, the algorithm next executes "reduce 1" on the vertex 
labeled "8". The action "shift 6" is determined from the action 
table. 

Figu re 17: Trace of the Parser (cont.) 
After about 20 steps (figure 18), the action "accept" is finally 

executed. It returns "25" as the top node of the parse forest, and 
halts the process. The final parse forest is shown in figure 19. 



M.Tomita 761 

6 C o m p a r i s o n w i t h O t h e r A l g o r i t h m s 

There have been several general parsing algorithms that run in 
polynomial timo. Theoretically speaking, the fastest algorithm at 
present is Valiant's algorithm. Valiant [18] reduced the context-
free parsing problem to the Boolean Matrix Multiplication problem 
[10], and his algorithm runs in time 0(n?B1). This algorithm is, 
however, of only theoretical interest, because the coefficient of 
n281 is so large that the algorithm runs faster than conventional 
n algorithms only when an input sentence is tremendously long. 
Practically speaking, on the other hand, the most well-known 
parsing algorithm is Earley's algorithm [9, 8,1,11], which runs In 
time 0(n3). 

All other practical algorithms seem to bear some similarity with 
or relation to Earley's algorithm. Another algorithm which is as 
well-known as Earley's algorithm is the Cocke-Younger-Kasami 
(CYK) algorithm [19, 11, 1]. Graham ei al. [12], however, revealed 
that the CYK algorithm is "almost" identical to Earley's algorithm, 
by giving an improved version of the CYK algorithm which is very 
similar to Earley's algorithm. The chart parsing algorithm is 
basically the same as the CYK algorithm. The active chart 
parsing algorithm is basically the same as Earley's algorithm, 
although it does not necessarily have to parse from left to right. 
Bouckaert et al. [4] extended Earley's algorithm to perform tests 
similar to those introduced in LL and LR algorithms. Improved 
nodal span [5] and LINGOL [131 are also similar to Earley's 
algorithm, but both of them require grammars to be in Chomsky 
Normal Form (CNF). 

These all practical general parsing algorithms seem to be like 
Earley's algorithm, in that they employ the tabular parsing 
method; they all construct well formed substring tables [14]. In 
chart parsing, such tables are called charts. The representation 
of one well formed substring is called an "edge" in active chart 
parsing, a "state" in Earley's algorithm, a "dotted rule" in 
Grahams algorithm and an "item" in Aho and Ullman[1]. 
Throughout this paper, we call a well-formed substring an item. 

6.1 Recognition time 
No existing general parsing algorithm utilizes LR parsing tables. 

All of the practical algorithms mentioned above construct sets of 
items by adding an item to a set, one by one, during parsing. Our 
algorithm, on the other hand, is sufficiently different; it 
precomputes sets of items in advance during the time of parsing 
table construction, and maintains pointers (i.e., state numbers) to 
the precomputed sets of items, rather than maintaining items 
themselves. 

Because of this major difference, our algorithm ha3 the 
following three properties. 

• It is more efficient, if a grammar is "close" to LR: that is, if 
its LR parsing table contains relatively few multiple 
entries. In general, less ambiguous grammars tend to 
have fewer multiple entries in their parsing table. In an 
extreme case, if a grammar is LR, our algorithm is as 
efficient as an LR parsing algorithm, except for minor 
overheads. 

• It is less efficient, if a grammar is "densely" ambiguous as 
in figure 20. This kind of grammar tends to have many 
multiple entries in its LR parsing table. Our algorithm may 
take more than 0(n3) time with "densely" ambiguous 
grammars. 



762 M.Tomita 

• It is not able to handle infinitely ambiguous grammars and 
cyclic grammars4 (figure 21 and 22), although it can 
handle e grammars and left recursive grammars. If a 
grammar is cyclic, our algorithm never terminates. The 
existing general parsing algorithms can parse those 
sentences (figure 20, 21 and 22) still in time proportional 
ton.. 

It is certain that no natural language grammars have infinite 
ambiguity or cyclic rules. It is also extremely unlikely that a 
natural language grammar has dense ambiguity such as that 
shown in figure 20. It is therefore safe to conclude that our 
algorithm is more efficient than any existing general parsing 
algorithms in terms of recognition time as far as practical natural 
language grammars are concerned. 

produce a parse forest in 0(n3) space, but they require their 
grammars to be Chomsky Normal Form (CNF). Theoretically 
speaking every context free grammar can be mechanically 
transformed into CNF. Practically speaking, however, it is usually 
not a good idea to mechanically transform a grammar into CNF, 
because the parse forest obtained from a CNF grammar will make 
little sense in practical applications; it is often hard to figure out a 
parse forest in accordance with its original grammar. 

6.3 Defect of Earley's Forest Representation 
This subsection identifies the defect of Earley's representation. 

Consider the following grammar G1 and the sentence in figure 
23. Figure 24 is the parse forest produced by Earley's algorithm. 
The individual trees underlying in this representation are shown 
in figure 25. They are exactly what should be produced from the 
grammar and the sentence. 

6.2 Parse Forest Representation 
Some of the existing general parsing algorithms leave a well-

formed substring table as their output. In my opinion, these well-
formed substring tables are not appropriate as a parser's final 
output, because it is not straightforward to simply enumerate all 
possible parse trees out of the tables; another search must be 
involved. Thus we define a parse forest as a representation of all 
possible parse trees out of which we can trivially enumerate all 
trees without any substantial computation. 

For most natural language grammars, our shared-packed forest 
representation, described in section 4, takes less than or equal to 
O(n3) space. This representation, however, occasionally takes 
more than 0(n3) space with densely ambiguous grammars. For 
example, it takes 0(n5) space with the grammar in figure 20. 

Earley, on the other hand, gave in his thesis [8] a parse forest 
representation which takes at most 0(n3) space for arbitrary 
context-free grammars. However, the next subsection shows that 
his representation has a defect, and should not be used in natural 
language processing.5 There exist some other algorithms that 

Those two kinds of grammars are equivalent. 
Several existing chart parsers seem to build a parse forest by adding pointers 

between edges. Since none of them gave a specification of the parse forest 
representation, we cannot make any comparisons In any event, however, if they 
adopt Earley's representation then they must have the defect, and if they adopt 
my representation then they must occasionally take more than 0(n ) time. 



M. Tomita 763 

Similarly, out of the sentence 'xxxx' with the same grammar G2, 
the algorithm produces a representation which over-represents 
36 trees including 31 wrong trees along with 5 correct parse 
trees. 

A grammar like G2 is totally unrealistic in the domain of 
programming language, and this kind of defect never appears as 
a real fault in that context. Productions like 

S -> SS 
in G2 look rather tricky and one might suspect that such a 
problem would arise only in a purely theoretical argument. 

Unfortunately, that kind of production is often included in 
practical natural language grammars. For example, one might 
often include a production rule like 

N --> NN 

to represent compound nouns. This production rule says that 
two consecutive nouns can be compounded as a noun, as in 'file 
equipment' or 'bus driver.' This production rule is also used to 
represent compound nouns that consist of three or more nouns 
such as 'city bus driver or 'IBM computer file equipment.' In this 
case, the situation is exactly the same as the situation with the 
grammar G2 and the sentence 'xxx' or 'xxxx', making the defect 
described in the previous section real in practice. 

Another defective case is that using conjunctive rules such as 
NP -> NP conj NP 
VP -> VP conj VP 

which are even more often included in practical grammars. The 
same problem as that above arises when the algorithm parses a 
sentence with the form: 

NP and NP and NP. 
Yet another defective case which looks slightly different but 

which causes the same problem is that with the following 
productions: 

NP -> HP PP 
PP -> prep NP 

We could think of an algorithm that takes the defective representation as its 
argument, and enumerate only the intended parse trees, by checking the 
consistency of leaf nodes of each tree. Such an algorithm would, however, 
require the non-trivial amount of computation, violating our definition of parse 
forest. 

These represent prepositional phrase attachment to noun 
phrases. The fault occurs when the algorithm parses sentences 
with the form: 

NP prep NP prep NP 
As we have seen, it is highly likely for a practical grammar to 

have defective rules like those above, and we conclude that 
Earleys representation of a parse forest cannot be used for 
natural languages. 

7 C o n c l u d i n g R e m a r k s 

Our algorithm seems more efficient than any of the existing 
algorithms as far as practical natural language parsing Is 
concerned, due to its utilization of LR parsing tables. Our shared-
packed representation of a parse forest seems to be one of the 
most efficient representations which do not require CNF. 

The following extensions of this paper can be found in my 
doctorate dissertation [17]: 

• The algorithm is implemented and tested against four 
sample English grammars and about 50 sample 
sentences, to verify the feasibility of the algorithm to be 
used in practical systems. 

• Earleys algorithm is also implemented and practical 
comparisons are made. The experiments show that our 
parsing algorithm is about 5 to 10 times faster than 
Earleys algorithm, as far as natural language processing 
is concerned. 

• The algorithm's precise specification, as well as the 
source program, is presented. 

• Multi part-of speech words and unknown words are 
handled by the algorithm without any special mechanism. 

• An interactive disambiguation technique out of the 
shared-packed forest representation is described. 

• An application to natural language interface, called 
left-to-right on-line parsing, is discussed, taking 
advantage of the algorithms left-to-right-ness. 

A c k n o w l e d g e m e n t 

I would like to thank Jaime Carbonell, Phil Hayes, Herb Simon 
and Ralph Grishman for thoughtful comments on an earlier 
version of this paper, and Cynthia Hibbard for helping to produce 
this document. 



764 M. Tomita 

R e f e r e n c e s 

[I] Aho, A. V. and Ullman, J. D. 
1 he theory of Parsing, Translation and Compiling. 
Prentice-Hall, Englewood Cliffs, N. J., 1972. 

[2] Aho, A. V. and Johnson, S. C. 
LR parsing. 
Computing Surveys 6:2:99 124, 1974. 

[3] Aho, A. V. and Ullman, J. D. 
Principles of Compiler Design. 
Addison Wesley, 1977. 

[4] Bouckaert, M., Pirotte, A. and Snelling, M. 
Efficient Parsing Algorithms for General Context-free 

Grammars. 
Inf. Sci. 8(1)-1-26, Jan, 1975. 

[5] Cocke, J. and Schwartz, J. I. 
Programming Languages and Their Compilers. 
Courant Institute of Mathematical Sciences, New York 

University, New York, 1970. 

[6] Deremer, F. I. 
Practical Translators for LR(k) Languages. 
PhD thesis, MIT, 1969. 

[7] DeRemer, F. L. 
Simple LR(k) grammars. 
Comrn. ACM 14:7:453 460, 1971. 

[8] Earley, J. 
An Efficient Context free Parsing Algorithm. 
PhD thesis, Computer Science Department, Carnegie-

Mellon University, 1968. 

[9] Earley, J. 
An Efficient Context free Parsing Algorithm. 
Communication of ACM 6(8):94-102. February, 1970. 

[10] Fischer, M. J. and Meyer, A. R. 
Boolean Matrix Multiplication and Transitive Closure. 
In IEEF Conf. Rec. Symp. Switching Automata Theory, 

pages 129-131. 1971. 

[11] Graham, S. L. and Harrison, M. A. 
Parsing of General Context-free Languages. 
Academic Press, New York, 1976, pages 77-185. 

[12] Graham, S. L., Harrison, M. A. and Ruzzo, W. L. 
An Improved Context free Recognizer. 
ACM Transactions on Programming Languages and 

Systems 2(3):415-4G2, July, 1980. 
[13] Pratt, V. R. 

LINGOL - A Progress Report. 
In Proc. of 4th IJCAI, pages pp.327-381. August, 1975. 

[14] Sheil, B. 
Observations on context free parsing. 
Statistical Methods in Linguistics :71-109, 1976. 

[15] Tomita, M. 
LR Parsers For Natural Languages. 
In COLING'84. 1984. 

[16] Tomita, M. 
An Efficient All-Paths Parsing Algorithm for Natural 

Langauges. 
Technical Report CMU-CS-84-163, Computer Science 

Department, Carnegie-Mellon University, Oct., 1984. 

[17] Tomita, M. 
An Efficient Context-free Parsing Algorithm for Natural 

Languages and Its Applications. 
PhD thesis, Computer Science Department, Carnegie-

Mellon University, May, 1985. 

[18] Valiant, L. 
General Context-free Recognition in Less than Cubic 

Time. 
J. Comput Syst. Sci. 10:308-315, 1975. 

[19] Younger, D. H. 
Recognition and Parsing of Context-free Languages in 

time n3. 
Information and Control 10(2): 189-208, 1967. 

T a b l e o f C o n t e n t s 

1 Introduction 
2 The Standard LR Parsing Algorithm 
3 Handling Multiple Entries 

3.1 With Stack List 
3.2 With a Tree-structured Stack 
3.3 With a Graph-structured Stack 

4 An Efficient Representation of a Parse Forest 
4.1 Sub tree Sharing 
4.2 Local Ambiguity Packing 

5 The Example 
6 Comparison with Other Algorithms 

6.1 Recognition time 
6.2 Parse Forest Representation 
6.3 Defect of Earley's Forest Representation 

7 Concluding Remarks 


