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Abstract

Introspection is a general term covering the ability of an
agent to reflect upon the workings of his own cognitive
functions. In this paper we will be concerned with devel-
oping an explanatory theory of a particular type of intro-
spection: arobot agent's knowledge of his own beliefs. The
development is both descriptive, in the sense of being able
to capture introspective behavior as it exist; and prescrip-
tive, in yielding an effective means of adding introspective
reasoning abilities to robot agents.

1 Introduction

Introspection is a general term covering the ability of an
agent to reflect upon the workings of his own cognitive
functions. In this paper we will be concerned with devel-
oping a theory of a particular type of introspection: an
agent's knowledge of his own beliefs. There are at least
two reasons why it is important to develop such a theory,
one descriptive and the other prescriptive. As Collins and
his coworkers have shown (in [1]), an agent often reasons
about his own beliefs and nonbeliefs in deciding the answer
to a posed query; hence a descriptively adequate account
of agents' beliefs must deal with introspection. The sec-
ond reason is that researchers attempting to build artificial
agents must imbue these agents with introspective knowl-
edge if they are to act in an intelligent manner. Moore [11]
gives the example of an agent who must introspect about
his beliefs in order to form a correct plan to achieve a goal.

In this paper we offer an explanatory theory of belief
introspection based on the concept of a belief subsystem
as developed in Konolige [4], [5]. Put simply, a belief
subsytem is the computational structure within an arti-
ficial agent responsible for representing his beliefs about
the world. Because the belief subsystem is "at hand" and
available to the agent, it is possible for the agent to gain
knowledge of his beliefs by simply making recursive calls
to this belief subsystem, perhaps with ever-decreasing re-
source allocations. This, in a nutshell, is the model of
introspection we adopt. Its advantages are that it is an
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adequate explanatory theory of belief introspection, and
that it is immediately prescriptive: the theory shows how
artificial agents that exhibit introspective reasoning of the
requisite sort can be built.

Given the importance of introspective reasoning, it is
perhaps surprising that the problem of finding a good ex-
planatory basis for belief introspection in artificial agents
has scarcely been addressed. In Section 3 we review two
approaches that differ from ours in being nonconstruc-
tive: an ideal agent's introspective reasoning is defined by
putting constraints on her belief set. The disadvantage of
such nonconstructive theories is that, in general, they do
not extend to the case where an agent's reasoning powers
are bounded by resource limitations.

2 The Introspective Machine

We start developing a theory of belief introspection by
considering the computational embodiment of belief in an
artificial agent. We have argued elsewhere (e.g., Konolige
[4]) for the identification of a belief subsystem as a con-
ceptually separste part of an agent's cognitive makeup.
A belief subsystem M coasists of a flnite list of facts the
agent believes to be true of the world (the base set), to-
gether with some computational apparatus for inferring
consequences of these facts. M interacta with other cog-
nitive systams of the agent (e.p., & planning system) as a
query-snawering device. It accepis a query ¢ and attempts
to show that ¢ be derjvad from its base set of facts. The
belief sat of an agent ia the set of all queries thai can be
derived. .

The queries pressnted to M are in an internal language
L; the exact nature of this language is not important, but
there must be expressicns in it that refer to the agent'sown
beliefs. We take those expressions to be of the form D¢,
meaning the agent balieves ¢ to ba one of his own beliefs.
Formulas of L not containing O are called nondozestic; the
stblanguage of L consisting of all nondoxastic sentences is
called the underlying langusge.

When presented with & query in the language L, we as-
sume M operates by either matching the query against
its base net, or applying Inference rules to generate sub-
queries in a backward-chaining masner. For example, in
trying to answer the query Pv @, it may split the disjunc-
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Figure 1: An Introspective Belief Subsystem

tion into two separate queries, and try to answer each of
these. During the course of generating subqueries, it come
upon one that is a question about its own atate, i.e., of the
form O¢. Such a subquery can be answered by making
a recursive call to the belief subaystem again, posing the
query 4. Conceptually we can think of this recursive call
as & call on a hew belief subsystemn IM (the introspective
machine). The IM may have different characteriatics than
M — for instance, it may have only a subset of the facts
available to M, or even have facts that contradict those in
M (according to Hintikka {3], people can have introapec.
tive beliefs of this sort). H the IM must answer a query
about ita self-beliefs, then il relies on another machine, the
ITM; and so on, creating a hierarchy of belief subaystems.
We write I"M to indicate the nth element of the hierar-
chy, with M = I°’M. A belief subaystem that reliea on an
introspective machine to answer queries about self-beliefs
in this manner is called an introspective belief aubsyetem.

A query ¢ that is answered affirmatively by IM means
that the agent, upon introspecting on his own beliefs,
comes to the conclusion that she believes ¢ — that is,
O¢ is one of her beliefs, A negative anawer, on the other
hand, means that she doesn’t believe her belief aubaystem
computes ¢, and so in this case -3¢ is one of her be-
liefs. Figure 1 illustrates the workings of the introspective
machine by showing the way in which M responds to the
query O¢. M poees the subquery $ to the introspective
machine, If IM answers yes, then ¢ is accepted as a
belief, and M also answers affirmatively. If IM answers
no, O¢ is not a belief.

‘There are no restrictions on the inference rules that a
belief subsystem uses, except that they should be sound
with respect to the semantics of the underlying language
{they need not be compiete). In particular, we wish to
exclude rules of an introspective nature, because we want
all properties of introspection to arise from the interaction
of M and IM. For example, if the underlying language is
propositional, the rules should respect the truth-functional
semantics of the boolean connectives. In the case of a first.
order underlying language, rules such as those in Kripks [6]
or Konolige [4] may be used, disaliowing the rules explicitly
dealing with modal operators.

Proposition 1 Suppose M is an introspective belief sub-
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system whose base senlences are nondozastic and coneis-
tent. Then M i consistent.

The proof’ of this proposition follows from noting that
M is atomically consistent. For nondoxastic atoms P, at
moat one of P or =P will be derivable from the base sen-
tences. For atoms O¢, the responses given in Figure 1
indicate that either D¢ or ~0¢ will be provable, but not
both. Note that if IM is inconsistent, D¢ and O-¢ will
be provable in M for some sentence ¢.

2.1 1Ideal Agents

An ideal agent should have perfect knowledge of her own
beliefs. This motivates the following definition.

Definition 1 An ideal introspective belief subsystem M
satinfies three critevia:

1. The belief act of M ia consistent.
2. The inference rules are complete.
& I*'M =M for alin>0.

The firat condition is that an ideal agent’s beliefs not
be contradictory. An interesting case of inconsistency oc-
curs when the base set of M contains doxastic sentences.
For example, suppose the base set of consiats solely of the
sentence O1P. Now the query OFP will be answered af-
firmatively in M (by direct matching}. The query ~0QOP
can also be proven, because it generates the query P to
IM. Since IM has the same base set as M, it answers P
negatively, and so M affirms -3 P.

Not all doxastic base sentences lead to inconsistency,
of course; sometimes their presence is required for useful
inference, Moore {12] gives the following example of an
agent’s introspective reasoning: “I don’t have any broth-
ers, because if 1 did, I would know about them, and 1
have no such knowledge.” 1If we let F stand for “I bave
no brothers,” then the agent’s base set includes the axiom
=P O ~P. Now given the query =P, the agent’s be-
lief subsyatem would use the axiom and set up the goal
of proving ~0OP. This generates a query P for the IM,
which answers negatively. Ilence =1 is proven, and so
in the original query -~P.

The completeness of Lhe inference rules is witdt respoct
to the semantics of the underlying language. If the rules
are complete, the belief set is closed under the appropriate
notion of logical consequencs for the underlying language.
In the case of a propositional language, it is closed under
truth-functional consequence.

The third condition is the requirement that ideal agents
have perfect introspactive knowledge, We enforee this by
assuming that an agent’s view of her own beliel subsystem
(IM]} is exactly the same as the real subsystew (M. Ze-
cause the introspective machine has its own introspective

Space requirements preclude more than sketches of most proofs in
this paper.
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machine (JIM}, this too must be the same as M, and so
on to arbitrary introspective levels.

Proposition 3 In an ideal introspective belief subspstem,

PI; If M responds yes to ¢, il responds yes to 1¢.
NI M responds no Lo ¢, it responds yes lo ~D¢.

To prove this proposition, note that the IM has exactly
the same structure as M, and so has exactly the same be-
havior on a query ¢. Plabbreviates positive introspeciion;
informally, it says that if an agent believes a proposition,
she believes that she believens it. Similarly, NI, or negative
introapection, says that an agent has knowledge of what
she does not believe.

In the beat of all possible worlds, we could actually im-
plement such an introepective belief subsystem, and so pro-
vide artificial agents with an ideal mechaniam for reason-
ing about their own beliefs. Unfortunately, except under
fairly strict conditions on the underlying language, there
does not exist any realizable computational structure that
will implement an ideal introspective belief subsystem.

Dafinition 2 A belief sudsystems M is decidable if there
cxisly an algorithm that will relurn yes when ¢ is derivabie
and no when not; il i semi-decidable if there exists en
algorithm which will return yes when ¢ iz derivable; il s
undecidable if it 1o not semidecidable.

When we talk about the decidability of an introspective
belief subsystemn M, we normally take derivability to in-
clude the derivation of introspective beliefs via IM. Some-
times, however, we want to refer to the decidability of M
without the introspective rules; to make this clear, we say
“the decidability of nonintrospective M.”

Proposition 3 Let M be an sdeal introspective delief sub-
ayatem. If monintrospechive M is not decidable, M is un-
decidable.

The proof is simple: suppose M is semidecidable. Then
there is an algorithm for determining that M returns yes
on ~O¢ and D¢, where ¢ is an arbitrary sentence. Thus
there ie an algorithm for determining whether ¢ is derived
or not by IM, contradicting the assumption that IM is
not decidable.

Proposition 4 If the underlying language is proposi-
tional, and its base $et i$ nondoxastie, an ideal introspec-
tive belief subsystem is decidable.

The proof here is straightforward: any query will have a
finite maximum embedding n of self-belief operators. One
need only look at the (decidable) theorems produced by
the first n levels of the introspective machine. As long as
queries do not include any quantification into the context
of the self-belief operator, we can extend this result to any
underlying language which can be decided by reduction to

the propositional calculus. For example, monadic predi-
cate calculus (PC) and the class of 3¥-sentences have this
property.

These two propositions to some extent delimit the na-
ture of decidability for introspective subsystems. A natu-
ral question to ask is if Proposition 4 can be extended to
the case of any decidable underlying language. The answer
to this has important consequences for adding introspec-
tive ability to artificial agents, because these agents are
(nonintrospectively) decidable: they must answer a belief
query in a finite amount of time.

Proposition 5 // the underlying language is monadic
PC, and its base set is nondoxastic, an ideal introspective
belief subsystem is decidable.

The proof of this proposition relies on Kripke's result in
[7] that monadic modal PC is not decidable. The difference
between monadic modal PC and propositional modal lan-
guages is that the former allows quantifying into the modal
context. As we mentioned, queries without quantifying-
in are decidable for monadic PC. Thus the presence of
quantifying-in seems to pose an inherently difficult compu-
tational problem for introspective systems. Yet the expres-
sivity of quantifying-in is desirable in many applications;
Levesque [9] gives the example of a question-answering sys-
tem in which sentences of the form Jz{ P{z) A ~OP(z)]
express the fact that there are individuals with property
P whose identity is unknown to the database.

Proposition 5 is discouraging, since it means that in con-
structing introspective agents, we must either use a very
weak underlying language, or give up some of the three
conditions of ideality. We discuss the latter method in the
next section. Note that even without Proposition 5, there
are reasons for developing the theory of non-ideal agents.
First, even with a very weak underlying language and a
decidable subsystem, an agent may have limited resources
for derivation of beliefs, and can only compute an approxi-
mation to the conditions of Definition 1. Second, we men-
tioned that human agents are not always ideal agents, and
we would like to model their cognitive behavior.

2.2 Real Agents

In Figure 1, a belief subsystem had to respond either yes or
no to every query. In a computational setting with finite
resource bounds, it may not be possible to do this in a
consistent way. For example, if the underlying language
is PC, there are some (nondoxastic) queries that do not
have a derivation, and hence the belief subsystem should
respond no; but there is no algorithm for determining this
in a finite amount of time. To accommodate this situation,
we allow a subsystem to return und (undecided) as one of
its answers.

Let R be a resource bound. If M derives a query ¢
within this bound, we write M{g#, R):yes; if it decides that
¢ is not derivable, we write M(#, R):no; and if it cannot



decide one way or the other witkin the bounds R, we write
M(4, R):und. (We abbreviate Vr.M(g,r):z by M(¢):z.)
Note that real agents are computationally oriented; the
inference rules specify which derivations are possible, but
the subsystem has the option of responding und if ita re-
sources are not sufficient to actually compute a derivation.

The response of the introspective machine in Figure 1
is extended in the following way: whenever IM returns
und on ¢, M returns und on both 0O and ~D¢é. We can
summarize the response of M to self-belief queries of the
form D¢ and =3¢ by conaidering the behavior of the IM
on ¢. R is the bound for the self-belief query, and R' for
the introspective query.

IM(¢, R'):yes — M(Dé, R):yes, M{~0O¢, R)ino
IMi¢, R'):no  — M(O4, R)no, M({-00, R):yes
IM(p, R :und — M(DO¢, R):und, M(-~D09¢, R):und

Note that we want to leave open the possibility that a real
agent has no knowledge of some of her own beliefs, and
this is where the “undecided” answer plays a crucial role.
If IM returns und, then M will be undecided about its
introspective belief.

One obvious result of the imposition of resource bounds
is that condition (2) of Definition ! must be abandoned
for sufficiently hard underlying languages. Further, we
may also have to give up condition {3). Given resource
bounds, the behavior of IM may differ significantly from
M, even when they have the same base sentences and in-
ference rules. For example, let the query to M be the sen-
tence a A 18 with resource bound R. The control strategy
of M might apply a rule to break this sentence into two
conjunctive subqueries, & and 0O 5. The solution of & may
consume a large fraction or M’s computational resources.
Thus when it asks IM to solve the query 4, it may give
IM 2 significantly lower resource bound than R. Thus
although M would respond yes to § posed simpliciter, it
won't be able to derive the subquery O 4, because IM does
not have enough reaources to do so.

I constraints (2} and (3) of Definition 1 do not hold
for real agents, can we fiud weaker correspondents? For
condition (2) we have already done the best we can, by
assuming that the answers returned by a subsystem re-
spect the intended semantics of the underlying language
and self-belief operator. Because of this, real agents as
we have defined them abay a monotonicity condition: for
R' > R, the only difference in the behavior of 3 belief aub-
systern can be to changs some undecided queries to yes or
no. Thus & belief subsystem with a large resource bound
is never further away from consequential closurs than one
with a smali bound. However, we may pot want real agents
to abide by monotonicity — perbaps, if & query cannot be
derived within a resource bound, we may waat to jump to
the conclusion that it cannot be derived.? In this sense our

¥This type of nonmonotonic reasoning differs from thas of McCarthy
110), whick s based instead on the potion of a mipimal mode] of &
theory. McCartby is not copcerned with ibe problem of rescurce-
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definition of belief subaystem may be too strict for some
purposes.

We can obtain weaker versions of condition (3) by con-
sidering two interesting constraints between IM and M:
Joithfulness and fulfillment. Roughly, an IM is faithful
if whenever it returns a definite answer (yes or no) on a
query, M also returns the same answer on that query. Ful-
fillment is the converse: whenever M returns a yes (or no)
on a query, IM must also.

Definition 3 Ar introapective belief subaystemm M da
faithful if it has the following properiiea for every intro-
apective pair I'M, I"'M:

poaitive faithfulness (pfa).

IrI"*Mip, r)i:iyes — ~I"M(¢):ne
negafive faithfulness nfa):

Ir.I"M(g, ri:ne — ~I*M(¢):yes

Proposition 8 In a faithful introspective belief aubsystem
M,

pfe IrM(O¢, r)iyes — Yr.~M([d.r).n0o
nfe; IrM(~0Od¢, R):iyes — ¥r.~Mip, r):yes

This proposition follows readily from the definition of
faithfulness and the monotonicity of responses with in-
creasing resource bounds. Faithfulness is about the weak-
et conatraint we can impose on introspective systems, and
is 8 kind of soundnesa condition on introspective reason-
ing. That is, IM should not contradict M, in the sense
that if IM ever decides a query, M should never decide
the opposite.

Definition 4 An introspective belicf subaystem M is ful-
filled ff ¢t has the following properties for cvery introspec-
ttve pair I'M, I"M'M and resouree R:

positive fulfillment (pfu):

I'M(4, R):yes — P+‘M(¢|R):,.’
negative fulfillment (nfu):

I"M{#, E):ne — I"H'M(4, R}no

Propadition 7 In ¢ fulfilled introapective delief aubsyatem
M,

pfe: M($, R):yes ~— 3r 2 RM(014, r):yes
nfa: M(¢, R):no — 3r > RM(-0¢, K):yes

This proposition follows from the definition of fulfilimeat
and the monotonicity of definite responses. Fulfiliment I»
s kind of completeness property for introspection, in the
sense that, if M derives ¢, there is some resource bound at
which it will also derive 04 {or ~O@, if 4 is not a belief).

lmited derivation, but rather with the lnabillty or wpdeslrabliity of
stating sll conditions which do not abiain la & situation.
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Figure 2: Lattice of domination relations

Fulfiliment and faithfulness are not independent. For
example, if we take the contrapositive of pfu, we get (for
arbitrary R) ~ IM(¢, R):yas — ~M($, R):yes. But if IM
responds no to a query ¢, it never responds yes to the same
query, so we also have 3r.IM{é, r}:no — ~ IM(¢, R):yes.
By the elementary laws of propositional logic, we then can
derive 3rIM(¢, r):no — ~ M{¢é, R):yes from the contra-
positive of pfu, and this is the condition nfa, because R is
arbitrary. In a similar manner, we can show that negative
folfillment implies poeitive faithfulness (nfu — pfa).

These two relations are the only interdependencies of
the constraints. There are thus nine distinct combina-
tions that can be arranged in a lattice as in Figure 2.2.
The arrows indicate domination relations; the constraint
pfutnfu is thus the strongest of the possible conditions on
introspective belief, in the sense that every introspective
belief subsystem that obeys it also obeys every other pos-
sible combination of the faithfulness and fulfillment con-
straints. Note that positive fulfilled systems dominate neg-
ative faithful ones, and negative fulfilled systems dominate
positive faithful ones.

Example 1 The use of introspective belief subsystems as
a descriptive model of human belief will be illustrated with
one example, drawn from Hintikka [3]. He argues that if
someone believes §, she also believes that she believes it (at
least in the absence of strict resource limitations on rea-
soning). This is our condition of positive fulfillment, where
the resource R is always taken to be arbitrarily large, and
we consider only the first level of introspection (M and
IM). Hintikka goes on to argue that people will often have
false ideas about their own beliefs, e.g., an utterance of the
form

S believes that eke believes that$ although she (1)
does not believe it

can be a true statement about the state of S's beliefs In
terms of the introspective model, we would say that human
belief subsystems are not positive faithful (and hence not
negative fulfilled).

*This is sentence 83 on page 126 of Hintikka [S).

There is an additional curiousity to Hintikka's theory.
Although the first level of introspection is characterized as
being positive fulfilled but not necessarily positive faith-
ful, it appears that subsequent levels are considered to be
totally faithful. For example, the utterance

5 believes the following: that she believes that (2)
she believes @, although she does not believe it

which is the statement of (1) as applied to S's idea of
herself, is taken to be always false. In our introspective
model, this is a statement about self-belief sentences of the
introspective machine M. To capture this behavior, we
simply let IM's concept of self-belief be positive faithful.

2.3 Computational Issues

We now present some of our computational results on in-
trospective machines. Generally, we are interested in the
problem of converting a nonintrospective belief subsystem
into an introspective one; one can imagine retrofitting an
existing knowledge base with a mechanism for reasoning
about its own beliefs. The questions we pose will have the
following form: given a particular introspective constraint
(a point in the lattice of Figure 2.2), and perhaps other
conditions on nonintrospective behavior, can we imple-
ment a belief subsystem obeying these constraints? Thai
is, we would like to find an algorithm that will return a
definite answer (yes or no) to every query, given the con-
straints, so that the introspective belief subsystem is de-
cidable. We first make this notion of decidability precise
for resource-limited agents.

Definition & Let R(¢) de a function mapping gueries inlo
Jinite reaource bounds. A belief subsysiem M is decidable
if there ezisla an algorithm and function R fur M nurﬁ H‘mf
Jor all quema @, ~M(é, Rid):und; il dswomi ot
whenever ¢ s derivable, Mg, R{d)):yes;

if it ia nol semidecidable.

The following proposition relates real and ideal agents.

Proposition 8 Suppoae o real inlrospective belief aubays-
tem M obeys the following conalraints:

1. M i» consistent.
2 The inference rules of I"M are complete for afln 2 0.
8. M ia fulfilled {plu and nfu Aold).

Then M iz an ideal introspective belief subsyatem iff il is
decidable.

The proof is to show that all three conditions of an ideal
introspective agent in Definition 1 are satisfied. The first
two obviously are. By inspection, we note that the con-
straint pfu+nfu menns that ali "M have the same behav-
ior; hence the third condition is satisfied. Finally, if M
is decidable, there is a function R(¢) for which M always
returns a definite answer; hence the belief set of M ia the



same as that of an ideal agent. Note that a real agent
is ideal only if she has an algorithm that will decide any
query @ in the finite resource bound R(#). Real agents are
always computational.

Now let us assume the first two conditions of Defini-
tion 8 hold, and explore the computational nature of be-
lief systems obeying various introspection conditions. By
"nondoxastic M" we mean that the base set of every belief
subsystem of M is nondoxastic.

Proposition 9 Let the introspection constraint be pfu+nfu
/I the underlying language is

1. semidecidable, M is undecidable;
2. propositional, nondoxastic M is decidable;

S. monadic PC, nondoxastic M is undecidable.

This proposition just collects the results of the last sec-
tion (Propositions 3-5 with respect to real agents. Note
that, except in the case of a propositional language, M
must return und for some queries, no matter what re-
sources are available. In these cases, real agents are not
even approximations of ideal agents, since there is no limit
in which their behavior becomes the same.

Now suppose we are given a nonintrospective belief sub-
system M(whose base set is nondoxastic), and we are
asked to construct an introspective subsystem M' whose
first component is M. We are free to choose the introspec-
tive components, as long as they satisfy conditions (1) and
(2) of Proposition 8. The following proposition tells us the
best we can do in terms of satisfying various introspective
constraints.

Proposition 10 Suppose the underlying language of M
is decidable. Then if the introspection constraint is

J. pfu+nfu, M' is undecidable;
2. pfu+pfa, M' can be semidecidable;

S. nfa+ pfa, M' can be decidable.

The first result is simply (1) of Proposition 9. The sec-
ond says that if we only want to enforce positive fulfillment
and positive faithfulness, the best we can do is to construct
an introspective subsystem that is semidecidable. And fi-
nally, if the introspection constraint is simple faithfulness,
we can construct a decidable M'. Of course, we can do
better than this for particular underlying language* (e.f.,
propositional), but there exists a decidable language for
which these bounds are strict (namely, monadic PC).

Let us put these results into perspective. If we are given
a nonintrospective agent whose inference rules are com-
plete and whose beliefs are decidable, the best we can
do in retrofitting introspective reasoning is to make the
agent's self-beliefs faithful. However, if we start with an
agent whose rules are incomplete, or we are willing to give
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up completeness, we can enforce stricter introspective con-
straints. But now these constraints are relative to a much
weaker notion of belief derivation. For example, suppose
an agent has no inference rules at all, so that her only
nonintrospective beliefs are the base sentences. Certainly
we can form a decidable introspective belief subsystem in
which pfu+nfu holds; O¢ is a belief if ¢ is a member of
the base sentences, and =3¢ is a belief if not, and mem-
bership in the finite base set is decidable.

3 Comparison to Related Work

Our definition of an ideal introspective agent has many
points of similarity with work by Halpern and Moses [2]
and Moore [12]. In both these latter cases an underlying
propositional language is used, and beliefs sets are defined
nonconstructively as stable sets (Stalnaker [13], although
his original definition did not include consistency).

Definition 6 A stable set S obeys the following con-
straints:

1. § is consistent.
2. S is closed under truth-functional conaeguence

3 €S, then Q¢ €S, and
ifod@s, then =Dge S,

Now we would like an ideal rational agent's beliefs to be
a stable set. To build an agent with ideally rational beliefs,
we require favorable answers to the following questions.

(a) Given a sentence & that represents the initial beliefs of
an agent, what is the appropriate stable set containing
a that should be the belief set of the agent?

(b) Is there an algorithm for computing it?

The answer to (a) is not as simple as might be supposed,
because it involves finding a stable set that includes a,
and makes the fewest assumptions about what the agent
believes in addition to @. The presence of doxastic sen-
tences in & complicates matters, and indeed Halpern and
Moses differ from Moore in identifying an appropriate be-
lief set. However, if & is consistent and nondoxastic, both
approaches converge on a single stable set. Further, this
stable set is identical to the belief set of an ideal introspec-
tive agent with base set &, so that by Proposition 4 there
exists an algorithm for deciding membership in the stable
set (the algorithm D= of Halpern and Moses [2] decides
the stable set in this case).

From Definition 1 and Proposition 2, an |(Iml mhmpm -
tive subaystem, if it exists, is & stable set it S

propositional case it yields the appropiate .00 L o
the sense of question (a) above, taking o to be the base
set of M. Now we can use the results of Section 2.1 to an-
alyze the computational nature of stable sets in the case
of quantified languages. By Proposition 5, even for the
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relatively simple case of monadic PC and nondoxastic a,
the question of membership in the stable set is undecid-
able. Thus for these systems we must answer question (b)
in the negative.

4 Conclusion

We have developed a theory of introspection based on the
idea that an agent can use a model of her own belief sub-
system to reason about self-belief. The theory can serve as
a descriptive tool, since we can describe agents with vary-
ing degrees of self-knowledge; hence it may be useful to
researchers interested in modelling the cognitive state of
users (e.g., in domains such as natural-language systems,
tutoring systems, intelligent front ends to databases, and
so on). The theory also is a guide to building agents with
introspective capabilities, or retrofitting these capabilities
onto existing artificial agents.

Introspective belief subaystems can be related to the
standard propositional modal logics for belief, weak $4
and §5 (the axiom schema [1p O p is discarded). An ideal
introspective agent is described by weak S5 plus a con-
sistency axiom OOp O —~O=p, since by Proposition 2 both
Op > 0p and =Op O O-0Op are true of such agents.
An introspective agent with complete inference rules obey-
ing pfs is described by weak S4 plus consistency. There
are no standard epistemic logics for agents which simply
obey the faithfulness constraint; we could construct these
by adding ODp D Op and O~0p O ~Op to the modal
logic X.

There are many interesting questions about introspec-
tive subsystems that have not been answered in this pa-
per, eapecially relating to ideal agents. There is obvioualy
a cloge connection between our definition of an ideal in-
troapective agent and the autoepistemic theoties of Moore
{12], yet we have compared them only for the case of non-
doxastic base sets. Given a (perhaps doxastic) sentence «,
Moore definea T" to be a alable expansion of o if T is equal
to the set of truth-functional consequences of

{o} J{Op:pe T} H~Dp:pe T}

Some sentences have no stable expansions, some have just
one, and some have more than ome. For example, a =
(=OFP 2 @} A {(~OQ D P} has two stable expansions,
one containing P, the othar Q. What happens to an ideal
introspective subsystem when o is its base set? Given the
query P, M will try fo prove ~0@Q, and issue the query
Q to IM. IM will then try to prove "0 F, and issue the
query P to 'M. Thus there is no terminating derivation
of P, and similarly for Q. However, at some point we
could notice that the query delivered to I*M is exactly
the same as that for I*~*M, and decide that there is no
derivation of the query. If we decide this when the query
is P, we will get the stable set containing Q; convarsely,
if we decide that @ is not derivable, we will arrive at the
stable set containing P.

Although this example is suggestive, we do not yet have
any definitive results on the relationship between Moore's
autoepistemic theories and ideal introspective subsystems.
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