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ABSTRACT 

fn t h i s paper we propose a new 
h i e r a r c h i c a l s t r u c t u r e fo r d e s c r i b i n g 5-0 
o b j e c t s , c a l l e d the Prism Tree. This 
ternar> t ree s t r u c t u r e , i n s p i r e d from the 
p lanar S t r i p Tree, is b u i l t from an 
i n i t i a l t r i a n g u i a t i o n o f the ob jec t by 
us ing a po l yhed ra l approx imat ion 
a l g o r i t h m . D i f f e r e n t p r o p e r t i e s o f t h i s 
r e p r e s e n t a t i o n are shown, as we l l as 
a l go r i t hms fo r i n t e r s e c t i n g o b j e c t s and 
neighbor f i n d i n g t echn iques . 

INTRODUCTION 

M u l t i l e v e l r e p r e s e n t a t i o n s h a v e 
been found use fu l in Computer V i s i on fo r 
seve ra l years now [ l , 3 , 4 , 5>] . By a l l o w i n g 
the access and man ipu la t i on of reg ions and 
o b j e c t s a t va r i ous l e v e l s o f d e t a i l s , they 
p rov ide a n a t u r a l data s t r u c t u r e fo r 
t h i n k i n g about o b j e c t s in the context of a 
g iven t ask . They a lso are e x c e l l e n t t o o l s 
f o r speeding up va r i ous a l go r i t hms by the 
f ac t that " d i v i d e and conquer" techniques 
are e a s i l y implemented on such data 
s t r u c t u r e s . In t h i s paper we propose a 
r e p r e s e n t a t i o n fo r 3-D o b j e c t s which is a 
g e n e r a l i z a t i o n o f B a l l a r d ' s S t r i p Trees 
[1] • In t h i s method space curves or 
su r faces are h i e r a r c h i c a l l y approximated 
by us ing a pr ism as enc los ing box, 
y i e l d i n g a t e r n a r y t ree s t r u c t u r e c a l l e d 
the Prism Tree. One advantage of t h i s 
s t r u c t u r e i s tha t i t i s i n t r i n s i c t o the 
ob jec t shape, and t h e r e f o r e i n v a r i a n t 
th rough r i g i d t r a n s f o r m a t i o n s . Moreover, 
t h i s t ree s t r u c t u r e a l lows to implement 
e f f i c i e n t l y neighbor f i n d i n g ope ra t i ons 
and sur faces i n t e r s e c t i o n s as t ree 
t r a v e r s a l a l g o r i t h m s . We f i r s t e x p l a i n the 
genera l p r i n c i p l e of our approach and show 
how to b u i l d a Prism Tree from a 
p o l y h e d r a l r e p r e s e n t a t i o n of an o b j e c t , 
then prove a theorem that a l lows to 
e f f i c i e n t l y t e s t i n t e r s e c t i o n s o f 
s u r f a c e s , and descr ibe a l go r i t hms f o r 
pe r f o rm ing va r i ous o p e r a t i o n s on o b j e c t s . 
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I I POLYHEDRAL APPROXIMATION t r i a n g l e . This t r i a n g l e is then s p l i t in a 
AND PRISM TREE CONSTRUCTION way q u i t e analog to the SPLIT STEP, so the 

s t a r t i n g GP descr ibes a 6 faces polyhedron 
We assume that at the lowest made of two t e t r a h e d r a shar ing a face that 

l e v e l , the o b j e c t s are represented b> i s the i n i t i a l t r i a n g l e ( f i g . 4 ) . But 
po l yhed ra : Our data is the graph GO n o t i c e tha t any o ther t r i a n g u l a t i o n cou ld 
de f ined by the p o i n t s in 3-D space, and be used as w e l l . It is now t ime to de f ine 
the po l yhedra l edges j o i n i n g them. There c l e a r l y the meaning of ST and the way to 
are severa l ways of o b t a i n i n g such cut i t in three (or two for the 
po lyhedra from range data [7 , 8 ] - ad jus tments ) p a r t s . In fac t there are two 

poss ib l e a l g o r i t h m s , denoted ALGRA and 
i. 1 .Po lyhedra l approximation ALGLI) : 

We use a top-do wn approach. We 
cons ider a t r i a n g u l a t i o n of the ob jec t 
which is r e f i n e d at each step u n t i l some 
e r r o r t h resho ld THR is reached. During the 
execu t ion of the a l g o r i t h m , the 
t r i a n g u l a t i o n is considered as a 
" f a c e " - g r a p h GP . We assoc ia te to each 
t r i a n g l e T a node w i th d iverse a t t r i b u t e s : 
the v e r t i c e s , denoted P, 0, R, the "pa r t 
ST of the sur face assoc ia ted to T" (we 
w i l l see l a t e r what we mean by these 
words) , and the cor respond ing e r ro r ERR 
( e . g . The maximal d is tance from the 
t r i a n g l e to the s u r f a c e ) . The edges of GP 
are de f i ned by the ne ighbor ing r e l a t i o n s 
of the t r i a n g l e s (two t r i a n g l e s shar ing an 
edge are n e i g h b o r s ) . The a l go r i t hm loops 
over the f o l l o w i n g steps 

.SPLIT STEP ( f i g . 2) 
Po1 each t r i a n g l e T v e r i f y i n g ERR g rea te r 
than THR do 
F ind M, po in t of ST l y i n g at maximum 

d is tance of T 
Let T l , T2, T3 be the nodes de f ined b>: 

the v e r t i c e s of Tl are P, Q, M 
the v e r t i c e s of T2 are Q, R, M 
the v e r t i c e s of T3 are R, P, M 
ST "has been s p l i t " i n t o three pa r t s 

co r respond ing to T l , T2, T3, ERR1, ERR2, 
ERR3 are the cor respond ing e r r o r s , then 
rep lace the node T by T l , T2, T3 in the 
graph ( i n p a r t i c u l a r update the ne ighbors 
of T ) . 

ADJUSTMENT STEP ( f i g . 3) 
if we only used the SPLIT STEP , o l d edges 
would ever rema in , even i f they are very 
fa r from the s u r f a c e . T h i s is the reason 
why we add t h i s s tep which removes the 
edge between two faces having j us t been 
s p l i t 
Por each pa i r T l , T2 of such t r i a n g l e s do 

f i n d M, po in t of STl union ST2 which is 
the c losest , from the b i s s e c t o r plane of Tl 
and T2 , and the f u r t h e s t from t h e i r 
common edge 

s p l i t T l i n two t r i a n g l e s o f v e r t i c e s 
P1,Q,M and P1,R,M, s p l i t T2 in two 
t r i a n g l e s of v e r t i c e s P2,Q,M and P2,R,M 
update the graph the same way as in the 

SPLIT STEP. 

Let us add some d e t a i l s . P i r s t 
the a l g o r i t h m has to be i n i t i a l i z e d w i t h a 
s t a r t i n g g raph : i t i s usua l l y ob ta ined by 
t a k i n g three p o i n t s which de f i ne a f i r s t 

The f i r s t one, descr ibed in [ 2 ] , 
works f o r o b j e c t s de f i ned by po lyhedra 
w i thout holes (genus z e r o ) . I t uses the 
p rope r t y that in t h i s case GO is p l a n a r , 
so each cyc le drawn on t h i s graph cu ts it 
i n t o two connected components. Let us 
cons ider a pa i r of ne ighbo r i ng t r i a n g l e s 
Tl and T2 of GP, l e t Q and R be t h e i r 
common v e r t i c e s , if we assoc ia te w i t h each 
of these p a i r s a path (Q,R) in GO, we 
de f i ne fo r each node T of GP a cyc le 
(P,Q) , ( Q , R ) , ( R , P ) of GO and, as it is a 
p lanar g raph , a connected subset ST of GO. 
Thus we on ly have to g ive an a l go r i t hm fo r 
f i n d i n g non i n t e r s e c t i n g paths to de f i ne a 
p a r t i t i o n of the sur face in ST ' s . We 
de f i ne them r e c u r s i v e l y by us ing the SPLIT 
STEP ( the case of the ADJUSTMENT STEP is 
qu i t e analog and w i l l be o m i t t e d ) . Let T 
be a node to s p l i t ( f i g . 5 ) , and M the 
s p l i t t i n g p o i n t . We suppose the paths 
( P , Q ) , (Q ,R) , and (R,P) d e f i n e d . Let T l , 
T2, and T3 be the t r i a n g l e s PQM, QRM, and 
RPM , and P I , P2, and P3 the b i s s e c t o r 
planes of the p a i r s T2,T3 , T1,T3 , and 
T1,T2. We de f i ne (P,M) as the path in ST 
which is the c l oses t to the plane P2. The 
path (Q,M) is de f i ned s i m i l a r l y us ing the 
plane P3 and only c o n s i d e r i n g p o i n t s which 
do not belong to (P ,M) . These two paths 
and the path (P,Q) de f ine a cyc le which 
cu ts ST in two components CI and C2. Let 
Ci be the component which con ta ins R, we 
now f i n d a path (R,M) in Ci by us ing the 
plane P I . The three paths do not 
i n t e r s e c t , and they s p l i t ST i n t o three 
components ST l , ST2, and ST3 which 
correspond to the cyc les (P ,M,Q) , (Q,M,R) , 
and (R,M,P) . 

The second p o s s i b l e way of 
d e f i n i n g the ST's does not make e x p l i c i t 
use of the graph GO. ST is no more a 
subgraph but. s imply a l i s t of p o i n t s . We 
w i l l a lso de f i ne i t r e c u r s i v e l y by us ing 
the SPLIT STEP. Suppose ST is de f i ned fo r 
a t r i a n g l e T t h a t we are going to s p l i t . 
We keep the same n o t a t i o n s and s t i l l c a l l 
P I , P2, P3 the th ree b i s s e c t o r planes 
de f i ned by the s p l i t t i n g . STl w i l l s imply 
be the subset of ST composed of the p o i n t s 
of ST which l i e between the planes P2 and 
P 3, ST2 and ST3 w i l l be de f i ned s i m i l a r l y , 
and it is c l e a r tha t we so ob ta i n a 
p a r t i t i o n of ST. We must though remark 
tha t there is in genera l no guaranty tha t 
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ST is connected ( f i g . 6), so ws have to be 
cau t i ous when using t h i s method ( i n the 
case of a convex shape, one can 
never the less e a s i l y prove that the ST's 
stay connec t e d ) . 

2) Prism Tree . c o n s t r u c t i o n 

We now cons ider GF at some l e v e l 
of the r e c u r s i o n . Let T be one of i t s 
nodes, and ST the assoc ia ted part of the 
sur face (which can be e i t h e r a l i s t or a 
subgraph) . We wish to de f ine an enc los ing 
box of ST. With i t s three ne ighbor ing 
t r i a n g l e s , T de f i nes three b i s s e c t o r 
planes P I , P2, and P3 ( f i g . 7 ) . The 
"P r i sm" assoc ia ted to T w i l l be the 
smal les t 5- faces polyhedron of which three 
faces are p a r a l l e l to P I , P 2 , and P3, and 
the two remain ing ones are p a r a l l e l to the 
PQR p l a n e , tha t con ta ins a l l the p o i n t s of 
ST ( f i g . 8 ) . These f i v e planes w i l l be 
denoted PP1, PP2, PP3, P31, and PB2 and 
the two t r i a n g l e s of the pr ism p a r a l l e l to 
T w i l l be denoted TBI and TB2. We can now 
b u i l d a t e rna ry t ree as the r e c u r s i o n 
proceeds. Al though i t i s s u r e l y not the 
most concise d e s c r i p t i o n of a p r i s m , we 
suppose fo r the sake of c l a r i t y and 
e f f i c i e n c y tha t one f i n d s 3t each node of 
the t ree the f o l l o w i n g i n f o r m a t i o n s : P, Q, 
R, PP1, PP2, PP3, TBI , TB2, three f l a g 
b i t s REG , MARK (we w i l l e x p l a i n t h e i r use 
in the sequel ) and ADJ (=1 if the node has 
been ob ta ined through an a d j u s t m e n t ) , and 
four p o i n t e r s S0N1, SON2, S0N3, and 
FATHER. The root p o i n t s on two nodes 
( f i r s t p o i n t e r a t NIL) assoc ia ted to the 
two h a l f su r faces de f i ned by the i n i t i a l 
t r i a n g l e . We define, the c h i l d r e n nf :. 

. A t r i a n g l e T s p l i t i n t o three 
s u b - t r i a n g l e s T i ,T2 ,T3 corresponds to a 
node the three c h i l d r e n of which are 
de f ined by T1,T2,T3. An ad jus ted t r i a n g l e 
has on ly two c h i l d r e n , the t h i r d p o i n t e r 
being set at NIL. In t u r n , each c h i l d 
p o i n t s towards i t s f a t h e r . In the s e q u e l , 
a p o i n t e r to a node w i l l be denoted PT, 
and the cor respond ing node PT*. F i g . 9 
show3 an example of Pri3m Tree fo r a 
s imple objec t . 

I l l SOME PROPERTIES OF THE PRISM TREES 

In order to prove some impor tan t 
p r o p e r t i e s of Prism Trees, we need to 
de f ine a regu la r p r i s m : a pr ism w i l l be 
sa id to be regu la r i f the assoc ia ted ST is 
connec ted , and i f i t s th ree planes PP1, 
PP2, and PP3 are P I , P2, and P3 themselves 
( f i g . 10 ) . This n o t i o n i s qu i t e s i m i l a r t o 
the regu la r s t r i p s o f B a l l a r d [ l ] and 
p revents p a t h o l o g i c a l c o n f i g u r a t i o n s ( f i g . 
8 ) . This is the reason why at each node of 
the Prism Tree we keep the r e g u l a r i t y b i t 
REG which w i l l be set if the cor respond ing 
pr ism i s r e g u l a r . 

It. is c l ea r that a node of a 

By us ing t h i s theorem and the 
obvious fac t that i f two pr isms do not 
i n t e r s e c t (NULL i n t e r s e c t i o n ) then the 
u n d e r l y i n g su r faces do not i n t e r s e c t 
e i t h e r , the next two Sect ions w i l l show 
how one can check whether two su r faces 
i n t e r s e c t , and f i n d t h e i r i n t e r s e c t i o n 
curve cons idered as a Prism Tree. Prom now 
on , we suppose tha t we dispose of two 
f u n c t i o n s VOL(PT) and PRISMINT(PT,PT') . 
VOL(PT) r e t u r n s the volume of the pr ism 
assoc ia ted to PT*. PR ISM INT(PT,PT•) 
r e t u r n s CLEAR, POSSIBLE, or NULL accord ing 
to the type of i n t e r s e c t i o n of the pr isms 
assoc ia ted to PT* and P T ' * . Moreover, i f a 
node is not r egu la r (REG=0) PRISMINT w i l l 
never r e t u r n CLEAR un less both nodes are 
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leaves ( i n t h i s case we assume that the 
i n t e r s e c t i o n is e i t h e r CLEAR or NULL). I f 
one of the p o i n t e r s is NIL, PRISMINT 
r e t u r n s NULL. As they are h i g h l y 
r e c u r s i v e , we w i l l express our 
i n t e r s e c t i o n a lgo r i t hms in a pseudo PASCAL 
form and, f o l l o w i n g B a l l a r d , we take the 
h e u r i s t i c t o d i v i d e f i r s t the l a rges t 
pr ism dur ing the r e c u r s i o n (so the pr isms 
compared are always app rox ima t i ve l y equal 
s i zed ) . 

When the execu t ion of the 
a l g o r i t h m is comple te , a l l nodes having a 
"CLEAR" descendant have been marked, and 
no descendant of a "NULL" node has been 
marked. To ob ta in the i n t e r s e c t i o n c u r v e , 
one has on ly to v i s i t one of the t rees and 
to prune it from a l l the nodes marked 0 
( i n that case, the r e g u l a r i t y f l a g o f a i l 
the ancestors of these nodes must be set 
to 0). Not ice that we have two 
r e p r e s e n t a t i o n s of the cu rve , one f o r each 
t r e e . 

VI A NEIGHBOR FINDING ALGORITHM 

A lgor i thms which operate on 
h i e r a r c h i c a l s t r u c t u r e s o f t e n need to 
exp lo re the "ne i ghbo rs " o f the v i s i t e d 
nodes [ 5 ] , In our case, the ne ighbors of a 
node are c l e a r l y de f i ned : During the 
c o n s t r u c t i o n of the t r e e , a graph 
s t r u c t u r e has been m a i n t a i n e d . So at each 
l e v e l of the t r e e , the ne ighbors of a node 
T can be de f i ned as the nodes 
cor respond ing to the ne ighbors in GP of 
the t r i a n g l e assoc ia ted to T. By s t o r i n g 
GP at each l e v e l of the t r e e , one would 
have an easy, but very memory consuming, 
way of f i n d i n g the ne i ghbo rs . We w i l l show 
in t h i s Sec t ion how one can f i n d the 
ne ighbors of each node without, s t o r i n g the 

V INTERSECTION OP TWO SURFACES 

We now wish to f i n d the 
i n t e r s e c t i o n curve of two s u r f a c e s . This 
w i l l be done by f i n d i n g and marking (us ing 
the MARK f l a g ) in the two t rees a l l the 
nodes whose pr ism i n t e r s e c t s the other 
s u r f a c e . We use the obvious p rope r t y tha t 
i f a node i n t e r s e c t s a s u r f a c e , then a l l 
i t s ancestors i n t e r s e c t t h i s s u r f a c e . 
Converse ly , a l l the descendants of a node 
that does not i n t e r s e c t a sur face do not 
i n t e r s e c t i t e i t h e r . This g ives the 
f o l l o w i n g a l g o r i t h m , where a l l the f l a g s 
MARK have p r e v i o u s l y been i n i t i a l i z e d 0. 
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GF's . Not ice f i r s t that the only t ree 
t r a n s f o r m a t i o n we have de f i ned is the 
SURP_INTER procedure , which prunes the 
t ree w i thou t mod i f y ing i t 3 s t r u c t u r e , so 
that each node of a t ree has always three 
ne ighbo rs , some of them being e v e n t u a l ! ) 
empty (NIL p o i n t e r ) . 

We f i r s t de f i ne the " e l d e s t " son 
of a node. When s p l i t t i n g a node by us ing 
the approx imat ion a l g o r i t h m , three new 
t r i a n g l e s , and three new edges are 
c r e a t e d , so that each t r i a n g l e has always 
two "new" and one " o l d " edge. The c h i l d of 
a node which corresponds to t h i s " o l d " 
edge w i l l be c a l l e d the e ldes t son of the 
node ( e . g . in f i g . 9 , the t r i a n g l e 353 is 
an e ldes t s o n ) . In the case of an 
ad jus tment , i t i s c l e a r tha t the e ldes t 
son w i l l be the miss ing one. Dur ing the 
c o n s t r u c t i o n the p o i n t e r SQN1 w i l l always 
represent the e ldes t son. 

We f i r s t cons ider the case where 
no adjustment has occu red . Then we f i n d 
the three ne ighbors of a node using the 
f o l l o w i n g a l g o r i t h m : 

Let T be the node v i s i t e d 
.two of i t s ne ighbors are i t s two 
brothers 

l e t E be the remain ing edge ( i t can be 
found by examining the v e r t i c e s of T) 

i f T is an e ldes t son 
then ascend the t ree u n t i l the cu r ren t 
node is no more an e ldes t son. l e t Tl 
be t h i s son 
else T1:= T 

. l e t T2 be the f a the r of Tl 

.descend the t ree by v i s i t i n g at each 
l e v e l the on ly son that shares E w i t h T 
u n t i l the node is a l ea f or i t is at the 
same l e v e l as T 
. t h i s node i s the t h i r d ( e x t e r i o r ) 
neighbor of T 

I t is easy to see tha t the a l g o r i t h m 
" w o r k s " : i f a node is an e ldes t son, i t s 
f a t he r shares E w i t h a neighbor which is 
not i t s b ro the r ( o b v i o u s ) , so we have to 
ascend the t r e e . Moreover the edge E of a 
node is always the " o l d " one, suppose tha t 
the node is not an e ldes t son , then E is 
an edge of i t s f a t h e r , but cannot be i t s 
" o l d e s t " one, so the f a t h e r shares i t w i t h 
one o f i t s b r o t h e r s . 

We can now extend t h i s method to 
the case of the ad jus ted nodes ( A D J = l ) . 
The d i f f e r e n c e is tha t an ad jus ted node T 
ha3 not two ne ighbo r ing b r o t h e r s , but on ly 
one, the t h i r d one is i t s adjustment 
n e i g h b o r ( e . g . t r i a n g l e s 753 and 736 in 
P i g . 9 ) . Let E be the cor respond ing edge. 
We f i n d the two usual ne ighbors by the 
p rev ious a l g o r i t h m . For the adjustment 
n e i g h b o r , we look at the f a t h e r T l . Tl has 
been ad jus ted w i t h one of i t s ne ighbors 
T2, which is i t s e x t e r i o r ne ighbo r . We 

simply have to f i n d T2 by the p rev ious 
a l g o r i t h m , and the neighbor of T is the 
son of T2 which shares E w i t h T. 

V I I INTERSECTION OP TWO VOLUMES 

In [ l ]» B a l l a r d g ives an 
a l g o r i t h m fo r computing the i n t e r s e c t i o n 
of two areas de f ined by the S t r i p Trees of 
t h e i r bounda r i es . The method c o n s i s t s in 
f i n d i n g in each of the t rees a l l the nodes 
which i n t e r s e c t or are i ns i de the other 
a rea . The i n t e r s e c t i o n area is then 
ob ta ined b> c o n s i d e r i n g a l l these nodes. 
Let us denote A and A' the areas , and S 
and S' the cor respond ing t r e e s . B a l l a r d 
uses a f u n c t i o n STRIP INSIDE to check 
wether a node of S which has a NULL 
i n t e r s e c t i o n w i t h S ' l i e s or not i n s i d e 
A ' . This is v e r i f i e d by t r a v e r s i n g the 
whole t ree S ' , and coun t ing the number of 
CLEAR i n t e r s e c t i o n s of a s e m i - i n f i n i t e 
S t r i p issued from the node w i t h S ' . I f 
t h i s number is odd the node l i e s i n s i d e A' 
(analog to the usual method fo r t e s t i n g 
wether a po in t l i e s w i t h i n a p o l y g o n ) . The 
d isadvantage o f t h i s a l g o r i t h m i s tha t i t 
computes the f u n c t i o n STRIP_INS1DE fo r 
each NULL i n t e r s e c t i o n node, imp l y i ng at 
each t ime a f u l l t r a v e r s a l of S' . 

Such a method could be used for 
Prism Trees. A 5-D s o l i d is de f ined oy i t s 
c losed s u r f a c e , and the assoc ia ted Prism 
Tree PT. Any pr ism can be c l a s s i f i e d in 
one (and one o n l y ) of the three f o l l o w i n g 
t ypes : 

1: the i n t e r s e c t i o n of the pr ism w i t h the 
sur face is non empty 

2 : pr ism f u l l y i n s i d e the sur face 
3 : p r i s m f u l l y ou t s i de the sur face 

Let us cons ider two o b j e c t s represented by 
two Prism Trees PT and PT ' , it is poss ib le 
to mark a l l t h e i r nodes of type 1 by us ing 
the a l g o r i t h m of s e c t i o n V. Tes t ing the 
type of a NULL i n t e r s e c t i o n node can be 
made by the f o l l o w i n g 3-D equ i va l en t 
(P_INSIDE) of the f u n c t i o n STRIP_INSIDE: 
Let us cons ider a node T of PT. We can 
assoc ia te to i t a s e m i - i n f i n i t e s t r a i g h t 
l i n e L normal to T, issued from the 
barycen te r of t h i s t r i a n g l e on the TBI 
s ide ( P i g . 13 ) . The n o t i o n of CLEAR 
i n t e r s e c t i o n can be extended by say ing 
t ha t L has a CLEAR i n t e r s e c t i o n w i t h a 
regu la r pr ism T ' i f i t i n t e r s e c t s the 
co r respond ing TB I ' and TB2 ' . Prom Lemma 2 
we deduce tha t in t h i s case L i n t e r s e c t s 
ST1 an odd number of t i m e s . The f u n c t i o n 
P_INSIDE is then computed by t r a v e r s i n g 
PT' and coun t i ng the number of these CLEAR 
i n t e r s e c t i o n s , i t r e t u r n s the type (2 or 
3) of the node. The i n t e r s e c t i o n of the 
two o b j e c t s is desc r ibed by the two t rees 
pruned of t h e i r nodes of type 3. Remark 
tha t a node of type 2 or 3 has a l l i t s 
descendants of same t y p e , so they do not 
need to be examined. 
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However, one h is s t i l l to 
t raverse PT• at each NULL node. The 
s i t u a t i o n is even worse than in the 2-0 
case as we deal w i th a te rnary t ree and a 
more complex INSIDE f u n c t i o n . He propose a 
R i g h t l y d i f f e r e n t a lgor i thm for avo id inq 
too many computat ions of P INSIDE It is 
Dosed on the fact that if Fwo neighbor ing 
Prisms of PT have a NULL i n t e r s e c t i o n w i th 
PT , then they l i e both i ns ide or outs ide 
the surface associated to PT' (p roo f -
suppose that one l i e s ins ide and the other 
o u t s i d e , then t h e i r common edge l i e s i t 
the same time ins ide and outs ide the 
su r face , which is imposs ib l e ) . So one has 
only to compute P IN3IDE for a few nodes' 
and to explore and mark fo r each of these 
modes i t s connected component of NULL 
i n t e r s e c t i o n nodes by using the neighbor 
endmg a lgor i thm of the previous sec t i on 

th is g ives the f o l l o w i n g alagorithm. 

rep resen ta t i on is ob jec t - cen te red and is 
t he re fo re i n v a r i a n t t o r i g i d mot ions. I t 
is h i e r a r c h i c a l and al lows us to th ink 
about and descr ibe ob jec ts at var ious 
l eve l s of r e s o l u t i o n . Last but not least 
i t is an e f f i c i e n t too l for per forming 
var ious boolean opera t ions on o b j e c t s . W-
are pursuing the ana lys is of the 
corresponding a l go r i t hms . I t i s c lear that 
they w i l l be more e f f i c i e n t for t rees 
composed e s s e n t i a l l ) of regu lar nodes'. 
This imp l ies that the po lyhedra l 
approximation, descr ibed in Sect ion I I be 
adapted to the object shape. It. turns out 
that t h i s is t rue for convex (or almost 
convex) ob jec ts and there fo re we plan to 
use the prism tree rep resen ta t i on on such 
subparts when necessarv. We are also 
exp lo r i ng a p p l i c a t i o n s in CAD (combining 
p r i m i t i v e s o l i d s by boolean opera t ions) 
and Robotics (obs tac le c o l l i s i o n avoidance 
b) i n t e r f e r e n c e check ing ) . 
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