A HERARCHICAL REPRESENTATION FCR 3D OBKECTS

O.D. FAUGERAS and J. FONCE

INRIA Domaine de Voluceau, Rocquencourt
BP 105-78133 Je O sna> Cedex PRANCE

ABSTRACT

fn this paper we propose a new
hierarchical structure for describing 5-0

objects, called the Prism Tree. This
ternar> tree structure, inspired from the
planar Strip Tree, is built from an

initial trianguiation of the
using a polyhedral approximation
algorithm. Different properties of this
representation are shown, as well as
algorithms for intersecting objects and
neighbor finding techniques.

object by

INTRODUCTION
Multilevel representations have
been found useful in Computer Vision for
several years now [I1,3,4,5] . By allowing
the access and manipulation of regions and
objects at various levels of details, they
provide a natural data structure for
thinking about objects in the context of a
given task. They also are excellent tools
for speeding up various algorithms by the
fact that "divide and conquer" techniques
are easily implemented on such data
structures. In this paper we propose a
representation for 3-D objects which is a
generalization of Ballard's Strip Trees
[11+ In this method space curves or
surfaces are hierarchically approximated
by wusing a prism as enclosing box,
yielding a ternary tree structure called
the Prism Tree. One advantage of this
structure is that it is intrinsic to the

object shape, and therefore invariant
through rigid transformations. Moreover,
this tree structure allows to implement
efficiently neighbor finding operations
and surfaces intersections as tree

traversal algorithms. We first explain the
general principle of our approach and show
how to build a Prism Tree from a

polyhedral representation of an object,
then prove a theorem that allows to
efficiently test intersections of

surfaces, and describe algorithms for

performing various operations on objects.

[THE ENCLOSTING BOX SCHEME

There are twe basic approaches
to the hierarchical description of shapes
in Camputer Vision: The representation may
be either attached to a Fixed grid, or to

tha phject itself. The Fformer =asoroach
gave brrrh t+ Hualtiees wnd their 3-D
generalizatijon, the Oct-Trees D.n,5].
8allard [1] investigated the second

approach. The jdea is to use a3 recursive
polygonal approximatiun algerithm [6] for
curves and, at each level of the
recursion, to assuciate to each 1ine
segvent SEG the swallest rectangular box
with sides parallel to SEG which encloses
the part of the curve delimited 9y the
extremities of SEG (fig. 1). Such a3 box
{valled a Strip by Ballard) 1epresents a
part of the wvbject 4s a pixel would but it
has the advantage of being attached to the
curve ituelf. As the recursion proceeds,
each line segmeni is gplit into two parts,
and one can asspciate to the initial box
the corresponding "children™ boxes, 5o a
binaty tree structure 1is built quite
naturally, that e invariant through
rotations and tramnslations, and on which 3
variety aof algorithms ({intersections,.)
cIn be efficiently implemented., A simple
exarple of appljicatiorn in wersfying bthat
two upjetts o not irt=iszet 3y troaversong
thzir Strip Trees and checking at each
node Yhat the Strips do not intersect.
Other applications are in Graphics, with
multilevel displays.

The idea of encloeing the object
in a succession of boxes is readily
extendable to the 3-D space. Using a
polyhedron for describing 3-D objects ias a

way of structuring the space quite analog
te reptesenting a planar shspe by a
circular ordered list of pointe. |[In_ this
context, we presented elsewhere 2] a

generalization of the previously mentioned
polygonal approximation, the object being
split in triangles instead of segments, In
the next Section, we briefly describe this
algorithm and show how pnhe can associate
to each triangle a part of the surface and
a prismatic box enclosinag it.

Il POLYHEDRAL APPROXIMATION
AND PRISM TREE CONSTRUCTION

We assume that at the lowest
level, the objects are represented b>
polyhedra: Our data is the graph GO
defined by the points in 3-D space, and
the polyhedral edges joining them. There
are several ways of obtaining such

polyhedra from range data [7 ,8]-

i. 1 .Polyhedral approximation

We use a top-down approach. We
consider a triangulation of the object
which is refined at each step wuntil some
error threshold TR is reached. During the
execution of the algorithm, the
triangulation is considered as a
"face"-graph GP. We associate to each
triangle T a node with diverse attributes:
the vertices, denoted P, 0, R, the "part
ST of the surface associated to T" (we
will see later what we mean by these
words), and the corresponding error ERR
(e.g. The maximal distance from the
triangle to the surface). The edges of GP
are defined by the neighboring relations
of the triangles (two triangles sharing an
edge are neighbors). The algorithm loops
over the following steps

.SPLIT STEP (fig. 2)
Po1 each triangle T verifying ERR greater
than THR do

Find M, point of ST lying at
distance of T

Let TI, T2, T3 be the nodes defined b>:
the vertices of Tl are P, Q, M

the vertices of T2 are Q, R, M

the vertices of T3 are R, P, M

ST "has been split" into three parts
corresponding to TI, T2, T3, ERR1, ERR2,
ERR3 are the corresponding errors, then
replace the node T by TI, T2, T3 in the
graph (in particular update the neighbors
of T).

ADJUSTMENT STEP (fig. 3)
if we only used the SPLIT STEP , old edges
would ever remain, even if they are very
far from the surface.This is the reason
why we add this step which removes the
edge between two faces having just been
split
Por each pair TI, T2 of such triangles do
find M, point of STl union ST2 which s
the closest, from the bissector plane of TI
and T2 , and the furthest from their
common edge

split Tl in two triangles of vertices
P1,QM and P1,R,M, split T2 in two
triangles of vertices P2,Q,M and P2,RM
update the graph the same way as in the
SPLIT STEP.

maximum

Let us add some details. Pirst
the algorithm has to be initialized with a
starting graph: it is wusually obtained by
taking three points which define a first

0. Faugeras and J. Ponce 983

triangle. This triangle is then split in a
way quite analog to the SPLIT STEP, so the
starting GP describes a 6 faces polyhedron
made of two tetrahedra sharing a face that
is the initial triangle (fig. 4). But

notice that any other triangulation could
be used as well. It is now time to define
clearly the meaning of ST and the way to
cut it in three (or two for the
adjustments) parts. In fact there are two
possible algorithms, denoted ALGRA and
ALGLI)

The first one, described in [2],
works for objects defined by polyhedra
without holes (genus zero). It wuses the

property that in this case GO is planar,
so each cycle drawn on this graph cuts it

into two connected components. Let us
consider a pair of neighboring triangles
Tl and T2 of GP, let Q and R be their

common vertices, if we associate with each
of these pairs a path (Q,R) in GO, we
define for each node T of GP a cycle
(P,Q),(Q,R),(R,P) of GO and, as it is a
planar graph, a connected subset ST of GO.
Thus we only have to give an algorithm for
finding non intersecting paths to define a
partition of the surface in ST's. We
define them recursively by using the SPLIT
STEP (the case of the ADJUSTMENT STEP is
quite analog and will be omitted). Let T
be a node to split (fig. 5), and M the
splitting point. We suppose the paths
(P,Q), (Q,R), and (R,P) defined. Let TI,
T2, and T3 be the triangles PQM, QRM, and
RAM , and PI, P2, and P3 the bissector
planes of the pairs T2,T3 , T1,T3 , and
T1,T2. We define (P,M) as the path in ST
which is the closest to the plane P2. The
path (Q,M) is defined similarly using the
plane P3 and only considering points which
do not belong to (P,M). These two paths
and the path (P,Q) define a cycle which
cuts ST in two components Cl and C2. Let
Ci be the component which contains R, we
now find a path (R,M) in Ci by using the

plane PIl. The three paths do not
intersect, and they split ST into three
components STI, ST2, and ST3 which

correspond to the cycles (P,M,Q), (Q,M,R),
and (R,M,P).

The second possible way of
defining the ST's does not make explicit
use of the graph GO. ST is no more a
subgraph but. simply a list of points. We
will also define it recursively by using
the SPLIT STEP. Suppose ST is defined for
a triangle T that we are going to split.
We keep the same notations and still call
Pl, P2, P3 the three bissector planes
defined by the splitting. STI will simply
be the subset of ST composed of the points
of ST which lie between the planes P2 and
P3, ST2 and ST3 will be defined similarly,
and it is <clear that we so obtain a
partition of ST. We must though remark
that there is in general no guaranty that

984 O. Faugeras and J. Ponce

ST is connected (fig. 6), so ws have to be
cautious when using this method (in the
case of a convex shape, one can
nevertheless easily prove that the ST's
stay connec ted).

2) Prism Tree .construction

We now consider GF at some level
of the recursion. Let T be one of its
nodes, and ST the associated part of the
surface (which can be either a list or a

subgraph). We wish to define an enclosing
box of ST. With its three neighboring
triangles, T defines three bissector

planes PI, P2, and P3 (fig. 7). The
"Prism" associated to T will be the
smallest 5-faces polyhedron of which three
faces are parallel to PI, P2, and P3, and
the two remaining ones are parallel to the
PCR plane, that contains all the points of
ST (fig. 8). These five planes will be
denoted PP1, PP2, PP3, P31, and PB2 and
the two triangles of the prism parallel to
T will be denoted TBI and TB2. We can now
build a ternary tree as the recursion
proceeds. Although it is surely not the
most concise description of a prism, we
suppose for the sake of «clarity and
efficiency that one finds 3t each node of
the tree the following informations: P, Q,
R, PP1, PP2, PP3, TBI, TB2, three flag
bits REG , MARK (we will explain their use
in the sequel) and ADJ (=1 if the node has
been obtained through an adjustment), and
four pointers SONf1, SON2, SONS3, and
FATHER. The root points on two nodes
(first pointer at NIL) associated to the
two half surfaces defined by the initial
triangle. We define, the children nf

. A triangle T split into three
sub-triangles Ti,T2,T3 corresponds to a
node the three <children of which are
defined by T1,T2,T3. An adjusted triangle
has only two children, the third pointer
being set at NIL. In turn, each child
points towards its father. In the sequel,
a pointer to a node will be denoted PT,
and the corresponding node PT*. Fig. 9
show3 an example of Pri3m Tree for a
simple object .

Il SOME PROPERTIES OF THE PRISM TREES

In order to prove some important
properties of Prism Trees, we need to
define a regular prism: a prism will be
said to be regular if the associated ST s
connected, and if its three planes PP1,
PP2, and PP3 are PI, P2, and P3 themselves
(fig. 10). This notion is quite similar to
the regular strips of Ballard [I] and
prevents pathological configurations (fig.
8). This is the reason why at each node of
the Prism Tree we keep the regularity bit
REG which will be set if the corresponding
prism is regular.

It. is clear that a node of a

tvee suclt oy ucing ALGRA is regular IFf
pry, PP2, 3znd PP3 are P!, P2, and P3
themselvesn. Conversely, if the tree in

built by using ALGLI the condition is the
cuonnexity of ST (which can easily be
checked after each splitting by using G0).
We now give twa lemmas (only indications
of their prouofs are given for space
savings) and prove 2 theorem,

3) Lewra l: Surface=Prism lntersection

Let T be a regular node of a
Prism Tree. Them the Intersection af ST
with PP1,PPZ2,PP3 is a clused curve (fig.

10). {easy to verify with ALGRA and ALGLI)

4) Lemsa 2: Curve-Surface Intersection

Let T be a reguiar node of a
Prism Tree. Then any conlinuous curve C
starting from a point U inside TB1, ending
at a poipt ¥ inside TB2, and staying
within the prism Inptersects the surface of
the object an ndd number of times {f:q.
11}. {(use the previous lemma and the
Jordan closed surface thearem)

5} Prisn-Prism Intersection Theorem

Let T and T' be twa pegular
nudes of Prise Trees, and TBl, 7TBZ and
T81*', T82' the associated basis triangles,
Then if For amy & and j {(i,js1,2), the
interserction of the interiors of of the
triangles T3 and TBj' is nor empty {(CLEAR
intersection) then the underlying surfaces
5T and ST' intersect {Fig. 12).
{analog of the Clear Interaection
for Strip Trees}

temma

PROOP: From the hypothesis we deduce that
the intersections of at least! one PPk’
with both TB1 and TB2 are non empty , and
so consist of two segments A,B and C,D.
From Lemma 1, the intersection of PPk’
with 57' is a continuouws curve, and so is
the intersection of 57" with the polygon
A,B,C,D., The extremities of this curve lie
inside TB1 and 7B2, so from Lemma 2 we
deduce that it intersects 57. Q.E.D

By using this theorem and the
obvious fact that if two prisms do not
intersect (NULL intersection) then the

underlying surfaces do not intersect
either, the next two Sections will show
how one can check whether two surfaces

intersect, and find their intersection
curve considered as a Prism Tree. Prom now
on, we suppose that we dispose of two
functions VOL(PT) and PRISMINT(PT,PT").
VOL(PT) returns the volume of the prism
associated to PT*. PRISMINT(PT,PTe)
returns CLEAR, POSSIBLE, or NULL according
to the type of intersection of the prisms
associated to PT* and PT'*. Moreover, if a
node is not regular (REG=0) PRISMINT will
never return CLEAR unless both nodes are

leaves (in this case we assume that the
intersection is either CLEAR or NULL). If
one of the ©pointers is NIL, PRISMINT
returns NULL. As they are highly
recursive, we will express our
intersection algorithms in a pseudo PASCAL
form and, following Ballard, we take the
heuristic to divide first the Ilargest
prism during the recursion (so the prisms
compared are always approximatively equal
sized) .

I¥ TESTING SURFACE-SURFACE INTERSECTION

Nur algorithm is a direct
extension of the Ballard's ope. The two
trees pointed by PT and PT' are wvisited

until a CLEAR inmtersection has been found
ol all the nodes have been checked,

Function CHECKI(PT,PT'j):haolean;

begin

case PRISMINT(PT PT'} of
NULL : CHECK]l:=false;
CLEAR CHECKI:=true;

POSSIBLE: if VOL({PT) > VOL(PT'")

then CHECKI:={CHECKI(PTT?.S50NL,PT']) or
CHECKI{PTT.SON2,PT') o1
CHECKI{(PTT.SON3,PT")

else CHECKI:={CHECKI(PT,P7'?.50N1} or
CHECKI{PT,PT'{.59N2) ur
CHECKI(PT,PT'T.S0ON3}

end
end;
V_INTERSECTION OP TWO SURFACES
We now wish to find the
intersection curve of two surfaces. This
will be done by finding and marking (using

the MARK flag) in the two trees all the
nodes whose prism intersects the other
surface. We use the obvious property that
if a node intersects a surface, then all
its ancestors intersect this surface.
Conversely, all the descendants of a node
that does not intersect a surface do not
intersect it either. This gives the
following algorithm, where all the flags
MARK have previously been initialized 0.

O. Faugeras and J. Ponce 985

Procedure SURF_INTER(PT,PT');

begin
{*PRISMINT = NULY is the stopping
conditivon. It corresponds to the case

where 3 node is at nil or hias an empty
intersection with the surFacet*)
if PRISMINT(PT,PT") <> NULL then
hegin
iF PRISMINT{PT,PT') = CLEAR
{*nodes intersect the other surface*)
then begin PTT . MARK:=1;PT'T . MARK:=1 end;
{*the recursion proceeds*)
if vOL{PT} > voL(PT")
then begin
SURP_[NTER(PT1.SDNI.PT');
SURF _INTER{PTT .50N2,PT"};
SURF _INTER(PTT.SAONS,PT"};
(*if the mark of the childien is 1%)
{(*then PT" intersecta the surface*)
iF(PTT . SONLCONIL) and(PTT.50%11.HARK=1)
or(PTT.50N2<>NIL)and(PT] . 5ON2] . MARK=1)
er{PTl.SON3IONIL)and{PTT .SON3IT _MARK=1}
thenPTt MARK:= 1
end
else begin
SURF _INTER{PT,PT'7.50N1);
SURF _INTER(PT,PT'7.50N2};
SURF_INTER{PT.PT'T.SONﬂ);
(*:f the mark of the children is 1%)
{*then PT'" :ntersects the surface")
IF{PTHt,SONLONIL }and(PT* 1. SONLT . MARK=1)
or{PT'7.SIN2<>NILYand(PT ' " SON27.MARK=1)
ot{PT'T.SON3IONIL}and{(PT"7.SIN3T .MARK=z1)
then PT'7.MARK: =1
end
end;

When the execution of the
algorithm is complete, all nodes having a
"CLEAR" descendant have been marked, and
no descendant of a "NULL" node has been
marked. To obtain the intersection curve,
one has only to visit one of the trees and
to prune it from all the nodes marked O
(in that case, the regularity flag of ail
the ancestors of these nodes must be set
to 0). Notice that we have two
representations of the curve, one for each
tree.

VI A NEIGHBOR FINDING ALGORITHM

Algorithms which operate on
hierarchical structures often need to
explore the "neighbors" of the visited
nodes [5], In our case, the neighbors of a
node are clearly defined During the
construction of the tree, a graph
structure has been maintained. So at each
level of the tree, the neighbors of a node
T can be defined as the nodes
corresponding to the neighbors in GP of
the triangle associated to T. By storing
GP at each level of the tree, one would
have an easy, but very memory consuming,
way of finding the neighbors. We will show
in this Section how one can find the
neighbors of each node without, storing the

986 O. Faugeras and J. Ponce

GF's. Notice first that the only tree
transformation we have defined is the
SURP_INTER procedure, which prunes the
tree without modifying it3 structure, so
that each node of a tree has always three
neighbors, some of them being eventuall!)
empty (NIL pointer).

We first define the "eldest" son
of a node. When splitting a node by using
the approximation algorithm, three new
triangles, and three new edges are
created, so that each triangle has always
two "new" and one "old" edge. The child of
a node which corresponds to this "old"

edge will be called the eldest son of the
node (e.g. in fig. 9, the triangle 353 s
an eldest son). In the case of an
adjustment, it is clear that the eldest
son will be the missing one. During the

construction the pointer SQN1 will
represent the eldest son.

always

We first consider the case where
no adjustment has occured. Then we find
the three neighbors of a node using the
following algorithm:

Let T be the node visited
.two of its neighbors are its two
brothers
let E be the remaining edge (it can be
found by examining the vertices of T)
if T is an eldest son
then ascend the tree until the current
node is no more an eldest son. let TI
be this son
else T1:=T
.let T2 be the father of TI
.descend the tree by visiting at each
level the only son that shares E with T
until the node is a leaf or it is at the
same level as T

.this node is the third (exterior)
neighbor of T
It is easy to see that the algorithm

"works": if a node is an eldest son, its
father shares E with a neighbor which s
not its brother (obvious), so we have to
ascend the tree. Moreover the edge E of a
node is always the "old" one, suppose that
the node is not an eldest son, then E s
an edge of its father, but cannot be its
"oldest" one, so the father shares it with
one of its brothers.

We can now extend this method to
the case of the adjusted nodes (ADJ=I).
The difference is that an adjusted node T
ha3 not two neighboring brothers, but only
one, the third one is its adjustment
neighbor(e.g. triangles 753 and 736 in
Pig. 9). Let E be the corresponding edge.
We find the two usual neighbors by the
previous algorithm. For the adjustment
neighbor, we look at the father TI. TI has
been adjusted with one of its neighbors
T2, which is its exterior neighbor. We

simply have to find T2 by the previous
algorithm, and the neighbor of T is the
son of T2 which shares E with T.

VII _INTERSECTION OP TWO VOLUMES

In [1]» Ballard gives an
algorithm for computing the intersection
of two areas defined by the Strip Trees of
their boundaries. The method consists in
finding in each of the trees all the nodes
which intersect or are inside the other

area. The intersection area is then
obtained b> considering all these nodes.
Let us denote A and A' the areas, and S
and S' the corresponding trees. Ballard

uses a function STRIP INSIDE to check
wether a node of S which has a NULL
intersection with S' lies or not inside
A'. This is verified by traversing the
whole tree S', and counting the number of
CLEAR intersections of a semi-infinite
Strip issued from the node with S'. If
this number is odd the node lies inside A’
(analog to the usual method for testing
wether a point lies within a polygon). The
disadvantage of this algorithm is that it
computes the function STRIP_INS1DE for
each NULL intersection node, implying at
each time a full traversal of S'.

Such a method could be used for
Prism Trees. A 5-D solid is defined oy its
closed surface, and the associated Prism
Tree PT. Any prism can be classified in
one (and one only) of the three following
types:
1: the intersection of the prism with the
surface is non empty
2: prism fully inside the surface
3: prismfully outside the surface
Let us consider two objects represented by
two Prism Trees PT and PT', it is possible
to mark all their nodes of type 1 by using
the algorithm of section V. Testing the
type of a NULL intersection node can be
made by the following 3-D equivalent
(P_INSIDE) of the function STRIP_INSIDE:
Let us consider a node T of PT. We can
associate to it a semi-infinite straight
line L normal to T, issued from the
barycenter of this triangle on the TBI
side (Pig. 13). The notion of CLEAR
intersection can be extended by saying
that L has a CLEAR intersection witha
regular prism T' if it intersects the
corresponding TBI' and TB2'. Prom Lemma 2
we deduce that in this case L intersects
ST' an odd number of times. The function
P_INSIDE is then computed by traversing
PT' and counting the number of these CLEAR
intersections, it returns the type (2 or
3) of the node. The intersection of the
two objects is described by the two trees
pruned of their nodes of type 3. Remark
that a node of type 2 or 3 has all its
descendants of same type, so they do not
need to be examined.

However, one his still to
traverse PTe at each NULL node. The
situation is even worse than in the 2-0
case as we deal with a ternary tree and a
more complex INSIDE function. He propose a

Rightly different algorithm for avoiding
too many computations of P INSIDE It is
Dosed on the fact that if Fwo neighboring

Prisms of PT have a NULL intersection with
PT , then they lie both inside or outside
the surface associated to PT" (proof-
suppose that one lies inside and the other
outside, then their common edge lies it
the same time inside and outside the
surface, which is impossible). So one has
only to compute P IN3IDE for a few nodes'
and to explore and mark for each of these
modes its connected component of NULL
intersection nodes by using the neighbor
endmg algorithm of the previous section
this gives the following alagorithm.

Procedure VﬂL_INTEﬁ{PT,FT');
E'marks the nodes of PT. *)
*SURE _INTER has slready be ol
benin - #ady been applied*)
IF PT <> NIL then
DEGin
{*look 3t the mark of the node*)
tase PTT.MARK of
0: begin (*NULL intersaction Inside?#
M:=P_[NSIDE(PT,Pl'), pider™)
(*we mark the node,and its neighbaors
using the algatithm of secti ye
MARK{PTT M); setion)
EXPLORE_AND_MARK(PT, M) ;
end;
1: begin {*inters. Laok at child -

; s, L ildren
VUL_iNTEH(PTT.SSY].PT'):)
VDL_INTER(PTT.SQNZ,PT'J;
YOLZINTER{PTT,SON3.PT'),
endy

otherwise:STOP{*already marked 2 or %)
end;
end;

No!ica thit in the descendant phase of the
neighbor finding algerithm, one can mar;
all the ancestors of the desired node that
have a NULL intersection with PT! (if g
node is inside a surface, all its
ancestors having an empty interaert;uﬁ
with the surfsce are inside it)., When the
execution of this algeorithm is complete
for the two trees, one has only to prune
them from their nodes marked 3. In spite
of the complexity of the neighbor finding
procedure, it is glear that this algorithm
in more efficient than the previous one

ag finding & neighbor only needs to simpl;
follow two branches of 3 tree, which is
fanter than traversing a full tree,)

CONCLYSINN

We have presented & new nmet
for representing 3-D ob jects, "e ?:S

O. Faugeras and J. Ponce 987

representation is object-centered and is
therefore invariant to rigid motions. It
is hierarchical and allows wus to think
about and describe objects at various
levels of resolution. Last but not least
it is an efficient tool for performing
various boolean operations on objects. W-
are pursuing the analysis of the
corresponding algorithms. It is clear that
they will be more efficient for trees
composed essentiall) of regular nodes'.
This implies that the polyhedral
approximation, described in Section Il be
adapted to the object shape. It. turns out
that this is true for convex (or almost
convex) objects and therefore we plan to
use the prism tree representation on such
subparts when necessarv. We are also
exploring applications in CAD (combining
primitive solids by boolean operations)
and Robotics (obstacle collision avoidance
b) interference checking).

REFERENCES

{;] N.H. Ballard, "Strip Trees: &
Higrarchical Representation For Curves®
Comm. of the ACM, Yal 24, No 5, 1981 ’
2] 0.0. Faugeras, M. Hebert, P. Myss: ang
J.D, Boissonnat, "Polyhedral Approximation
af }-? Objects Without Heles", Computer
Graphics and Image Processing, in press
[}3 5. Tanimpto oand T, Pavlidis "A
H;erarchical Data Structure for P{cture
Processing®, Compulter Graphircs and Image
Processing, Vol. 4 Ve 2, 1975

[ﬁ] C.L. Jackins and 5.L. Tanimoto
"Oct-Trees and their Use in Rspresentiné
3-D Dbjects™, Techn. Repart Nn 79-97-9s
Dept. of Comptr. Science, Univ, o;'

Washington, 1937

5] H. Samet, “"Neighbor Finding Techn:ques
Eor Imajes Represented by Quzdtrees"”,
omputer Grashics and Im P i
yar tilg" Grann age rocesaing,
(6] R.0. Duda and P.E, Hart, “Pattern
C}asslflcatzon and Scene Analysia"
Wiley-Interscience, New York, 1973 '
L;] 1.0, Faugeras and E. Pauchon,

easuring the Shape of 3.0 14 "
CYPR-A3 seetes
[BJ J.D. Boissonnat, "Representation of
?bJects by Triangulating Points ip 3.0
3pace," Preoc. 8f the gth Int. Conf. Dn
T;;;ern Recognition, pp.0830-8372 » Munich,

Flg.1. A curve and 1ts Strip repretentation,

988 O. Faugeras and J. Ponce

Fig,4. The initial GF.

Fig.2. SPLIT STEP.

Fig.3. ADJUSTEMENT STEP.

Fig.6. Disconnected 57's ohtained by ALGLI.

Fig.8. The prism associated to a complex 5T,

Bl g% &

7% 764

Fig.10. A regular node, the intersection of 57
ang PI,P2,P3 is a closed curve.

™, T [N L Fig.13. Tha infinite half Vine
Fig.11. Curve-Surface interssction. Fig.lz.,-Thl CLEAR 1nmrnc1:.*.on of twe prisms. agsociated to g prism,

