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ABS'THACT

In this paper we preseni a2 new heuristic search-
ing alporithm by introducing statistical inference
method on the basis of algorithm A+, It's called
alrorilhm SA%, The following resulls have tCeen
praved,

(1) Algorithm SA* is superior tc algorithm A%,

(2) The mean complexity of GSA* ls CNz. but in
mome case A* exhlbltis exponential complexity (e™).

{3) In a (N,d,F)-game Lree, the mean complexity
of SA¥ is CNZ, but tre complexity of other  known
game-searching alporithm {« =5, UO5* ete.) 1s at
least d¥,

(4)The maximal storape-space required by SA* is
C]N.
This rhows that under a wiven significance level
SA¥ in superior to other known alpgoriihm (e.p. A%,
B4, =g , S35% ete.),

1. INTROBUECTICN

The heuristic search theory has beer investifat-
ed by many researchers (1)-(%), Al] results obtain-
ed can't completely avoid the exponential explosion
of searchlny complexity. We improve it by applying

statistic inference method {s. 1. m.) to heuristic
search, The results we obtain are that the mean
complexity of 54* is ON? and the maximal storage-

space ls CN,

2, ALGORITHM S5A* IN THEE C

2.1, Statistic a(n)

For simplicity, we assume the followlng search
space: A uniform m-ary tree G has an Iinltial node
S,(root) and a unlque goal node 5 at depth N, Let
1=(Ss 45,y »»s54) be the shortest-path from S, to S,.
The subtrees having root 5, are called T, -type
subtrees., They are TE.T:,...,T?, 1=0,1,¢ss  Assume
that T 1s an T;-subtree, If n is a2 node ¢f T, the
generation{depth) of the node is n, and T doesn't

contaln 1, We have
Fosn, Alony=(n-ir+in-is,
}’cn) =NAN-C+n-( =N+2({n-L ).

{¥e use the same symbols as thoes used in most
books,e.gs (4]).

Let %ny - -

I &

h(n) is 2 heuristic estimate of h*(n), so a(n)
is an estimate of a*(n), Whlle nel, f*(n)=N,
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a%(n)= fen-n

A = While ngt,

{4122 .
a*(n)= (:n =1-'§%. Given 1, We have a*{ﬁlf%'
In a word, Tor any node the statistie a(n) can  be

computed from hin), {(I1f N 1s urknown, we may
replace a{n) with some other statistic. i'eor
example, let the number of all nodes being
expanded be kin), the number of all nodes being

expanded in T/-subiree be ki (n), We rerlace a(n)
with b(n)= {%ﬁ% as Lhe statistic of T)-subtree,and
50 0N, }

Hypothesis I: Assumefa{n)}is an independent
and identically distribution random variable. The

mean of a{n) ir the selution path 1 is &, . The
mean of a{n) off 1 1s .4, ., _i, > i, . Under this
hypothesis, when hin) of each node is computed
using At, an a(n} is ottaired. This {a{n)} forms

a random sample, using testing statistical hypo-
theses{t,s,h, J[10)111) , we exerclse the statisti-
cal inference method(s.i.m.) over 1t, Under a

given significance level of the test, whether 3
subtree contaln 1 is decided, IFf not, the subtree
is pruned off, therwise, algorithm A* and t,.s.h.
will be continued until the goal node is found.

The sampling of statistics In subtree T

let T be a subtree , a,be the statistic of the
root in T, Assume T is expanded by A¥, and in some
stape the corresponding statisties {a,, a;,...,n
have heen obtained, We say “"observing T is conti-
nued.” It means expanding node p at which f{n) is
minimal among all nodes not being expanded Iin T.
{If there exist several such nodes, choose one
which has maximal generation, If there still
exist several nodes, choose any one at your op-
tion,) Thus we obtain m Successors of p and
corresponding a(n}'s. Let ay,;be the minimal value
among these a{n)'s, then ay, 1s referred to a new
observed value during the observation of T, we say
"exercising some t.s.he. over T," It means exercis-
inpg some t.s.h., over the statisties {agi corres-
ponding to T.

2e2. Algorithm SA®

Given a testing hypotheses methed 3. Applylng
this method to A%, We obtain algorlthm Sa*)

Step 1t From initial state 5,, m T,-type sub-
trees are expanded. A set U; is composed by these
subtrees, Let t«1. go to Step 2.

Step 21 kExercise the statietical
over Ug.

(1; If U¢ is an empty set, stop.
{(2) If there is anly one T;-type subtree

inference

T in
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Ugs expand the (1+1}-th generation nodes in T and
obtaln m Ti,=type subtrees. Merglng the T .. .-type
subtrees inte Uy, obtain U,,,, Let t«+t+l, po to
Step 2.

(3} 7f there is more than one subtree,expand
node p at which f(n) ts the minimum amonp all
nodez not being expanded in all subtrees{ If there
stil) exist several nodes, choose any one.)

{3.1) If there exists a roal node amonr the
successoma of p, stop,

{3.2) Assume p iz in subtree T, ohgserving T*
and exerclsirs the t,s.h. & over it are continued,
If the hypothesis is rejected, let UgqeU=T', te—
t+l, Fo to Gtep 7, Otherwise, Jet Up el -T'+T"
{ T" is a subtree formed bty adding the successors
of p to T'), te-t+, ro to Utep 2.

Propesition 1: 54* 1= superior to A*, ABSUDR
A" and 3A* both are directed by the same h{n).
#indine an eptimal solution path by J&*, every
node expanded by LA* 1s also expanded by A*,

Proofi aA" Is an alroriihm formed by only
adding an additienal prurins suttirees stare to A%
50 the nodes expandnd by sA* are not more than the
nodes expanded by A*.

It must be pointed out that the results obtain-
cd by UA®* have some error prohabilities, because of
the application of s5.i.m. . We'll dlscuss later on,

SPAT testing hypotheses method in alrorithm

sA* (dentted by sEA*)

SPRT [ Gequentlal Probability Hatio Test) was
decribed in many books (e,z, 1(10}). HWe uce SPET
as testing hypothese here, Let fain]f be {x,] , ha-
ine an N, #2) distribution, fiiven a simnificance
tevel (o ,4) and two simple hypothesss H,: A =4,
Hys A=l y AG# A,

; Ad; = - Ui
Let £ 2oy “ii_“_“ =—‘F£'-11-2L‘&ﬂ7_trx.
Se@ 2 - Mth Fx 4 L Ll
AgiA | pa A aéﬂoJA,bi—*f@B.

Where fix:M)= == exp{-%cx-uy}.

The stopping rules of SPRT are as follows:
If n a

Hypothesis H, is rejected,
If n gb th + A

;Q‘é(\ ful-ﬂn+ﬂ F

Hypothesis H, is accepted.

Otherwise, observing x,,, is contirved,

Because parametars 4 , u,, 4, AT® unknown, we
usually use S, =gly T (x, - %) to estimate & , where
X=H I x;. Let a* be the minimum value of a(n}'s am-
ong all k-th seneration nodes which afn)'s have
been computed in G. let the mean of {a*j be the
estimate of A,, and the mean of all a(n)'s, which
have been computed in G, be K.

If in 35A* as testing hypotheses S, SPRT is
exerclsed over m T¢-type subtrees, usins a level
(wf+l, &1 ) 4=0,1,..., we define this SA* as
SPA* under level (x, £}, denoted by GkA* for
short,

2.3+ The Mean Complexity of SPa*
From the approximation of the mean of stop-
ping variable {sample size) N in SPRT (10), Af N

has an N & , ¢*} distribution, levelz(ot , A )
A= Iz | p= Ao, /3=-"—,,,_| , we have

A 4 el Lo 2 1

Eu, o Lolop L o 1wy log TRg-y 62 24
Ao — 4, - Mo Y vz |

IR SY 2 Y I v w L Vs
E/""'I(’N‘I| -~ f {Juj ’/"“e )‘ NI'L‘I-A).JEOJHI
lLemma : The mear compluxity {asymptotic) for

decidine m T¢-type subirees in 5FAY 1s

L
Amb|los o |11}, whereb=ﬁijﬁ&

Froof':  From OPHT we know ihat decidinge m Ti=
type subtrecs under level {gér! &7 ), Lhe
mean complexity {asymptotic) 1z A~mbllogaf*!) =
mbllor el {141},

Theorem 1: Lel Bemint —,%—Er; . -T%,). Using
SkPA% . umder level (o ,‘,f,“.'r) {the mean complexity
of finding an optimal solutlon path in G is ACN?,

wWhire U= « The error probabilities ut’
Type 1 F g oty lte error probabililles of Type I
p}_ 6/50 .

Proot: Jeciding m Tg-type sulirees there are

m=1 subtrees nol containine 1 but one, Hue to  the
probabllity ‘r,.:-ﬁ-'_—:r‘ . (m-I}% = a**! subtrees
not containine 1 are left, because of & a¢®!
{1-a**") subtrees containine | are lefti. Totally
o +(1- wttN=1  subtree is left,  lhe mean
compiexity [{or deciding one Te-type subtree is
~Ablloga |[{i+1; {lemma), hus usins LPA*, the mean
complelxity o' Tinding an optimal path iw

~’;‘:’: mbliojai<6+|)=m“£n‘9“|'du;ﬁl

o Zhilogel | 2 NP

The probability b (¥, is ac follows:
Decldinm m To-type subtrees Fr= & . In general
deciding m T;-type sublrees |, £a'*' | Tfotally

N ‘ H-] i _ o
P'st%d' =xZa‘za

o
& - S 7oa S,

Anaiopously, Y; £ /8 .
Gorollary: Usine SPA¥, under level { & '7‘%7}')
the maxlimnl storape-space < mbjlog a | N=G\ N,
Prooft fleciding m Ti-type subtrees, all in-
formatlon about these subtrees is storared at most,
That is, ~mbllog a | N.
Note: [lue to Lhe process of pruning subtrees,
the storapge-space required by OSPFAY is not more
than A%,

2.i+, Comparson to recent results

Fearl{2) defined an estlmate h{n} of &(n)-type
error and proved that when &(n)=n the complexity
of A% is O(e™), We'll prove that In the same case
the complexity of SPA¥ s cN?,

Theorem 2: Assume h{n) is an admisaible esti~
mate, having $(n)=n type error., P(|h*-h}<h*) >0,
Thern the mean complexity of 3PA* is CN%,

Proof If Ady» A4, is proved {the proof is
omitted ). according to Theorem 1, we obtatn
Theorem 2.

Corollary: Assume h{n) is an admissible eatl-
mate having @(n)-type error, TIn B2 _ _ . <1
P{h*-h| &€ &(h*))>0, then the mean complexity



of SPA* directed by h(n) is ON%,

Roter In SPA*, o , 4 and 4, are unknown, They
are replaced with their estimators, This will
cause Some error, For elimlilating this disadvan-
tage, we may use t-test as testine hvpotheses 3 in
sA*, The searching complexity is a little more than
SPA*, PBut we may prove that Theorem 1 also holds
and the mean complexlty is ~CNZ.

Theorem 2 also holds for {x,} having snme
sorts of distribution except N{ ut , 7).

3. AIGORITHM 5SA* TN GENERAL GRAPH

Assume h(n) 1s an admissible estimate , then
using Bin)= _%%gg-(see 2.1) as the stalistle of

Te-subtree (subpraph), and so on, we may obtain
alrorithm 5A* for a peneral esraph.

U ALGOMITHM UA* IN GAME TRER

We'll apply SA* to rame-searching., A stand-
ard 2Zn-level game tree of derree m o is indicoted
by {n,m,F)-tree where F(v) 1z a distribution
function of terminal value {the symbols used are
the same asz in {37 ). In(1],(5),(6),(7}, it nas
been proved that any known alporithm which evalu-
ates a (n,m,F)-tree must evaluate at least m
terminal positlens, We'll apply SA* to a (N,m.F)-
tree, and conclude that the mean complexity of
SA* In eame-searching is O,N°,

The Sa r of Statistles in Came-Tree
In a mame-tree, the value f*{n) of rach node
i1s obtained by searching backward from terminal
values (for example, from the standpoint of Max ).
Assume that for each node an estimate f{n) of f<(n)
can be computed, Let statlstic a{n) be
ax (f{ng}, 1=1,2,...,m)
ﬂ(ﬂﬁf“ n{ is the successor of n, n is an even node
min (£{ng), 1=1,2,.,4,m)
n: 1s the successor of n, n is an add node,

let T be an T¢-type sublree, The sampllng of
its statlstics is as follows:

Let a.5f{5,)y Se 1s the Toot of T.

Expanding S, ,Assume a,=f(S,)=max(f(n;}}. n;, S,
are the successors of S,.

kxpanding &, , Assume a,=f(8,)=min{f(n;}}, n;. 3,
are the successors of S,.

In general, we obtaln [a,, 8,,00e, 84}, If
k=23, let
g+t =F(S aey Jomax o (£(n; ) N Sges are

successors of Si.

If k=23+1, let

ﬂt+|=f(5141)-mln (f(ntJ) n;, Sg+y  are
sueccesaors of S5y

Assume the statlstic {a(n)! satisfles the
Hypothesis I, Simllar té tree search Wa apply
SA* to rame-searching, and the following  theorem
helda,

Theorem 1*1 In an (n,m,F)-game tree, the mean
complexity of SPA% under the level (&, ) 1is
~ CN*, CF mﬂM-u 2mbllog & | .

Tha P ({Py) iso( ﬁ.) where a.—min -%) -
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Corollary: The maximal storage-space of SPA®
in game-tree searching is C;N, Qfmbllmzu\

Note: The storage-space required by H355% is
at least m® (7],

{The proof of Theorem 1° is omitted).
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