
Generation in a Natura l Language Interfacef

Paul S. Jacobs

Division of Computer Science
Department of EECS

University of California
Berkeley, CA, USA

ABSTRACT

The PHRED (PHR asal English Diction) generator produces the
natural language output of Berkeley's UNIX Consultant system (UC).
The generator shares its knowledge base with the language analyzer
PHRAN (PHRasal ANalyser). The parser and generator, together a
component of UC's user interface, draw from a database of pattern-
concept pairs where the basic unit of the linguistic patterns is the
phrase. Both are designed to provide multilingual capabilities, to
facilitate linguistic paraphrases, and to be adaptable to the indivi­
dual user's vocabulary and knowledge. The generator affords extensi­
bility, simplicity, and processing speed while performing the task of
producing natural language utterances from conceptual representa­
tions using a large knowledge base. This paper describes the imple­
mentation of the phrasal generator and discusses the role of genera­
tion in a user-friendly natural language interface.

1. Some features of the system
The PHRED (PHRasal English Diction) generator is designed

to produce natural language output from a conceptual knowledge
structure. The generator uses a database of linguistic information
shared with the language analyzer PHRAN (PHRasal ANalyser).
While PHRED was originally conceived as an English generator,
currently operative versions of both PHRAN and PHRED are
designed for use with multiple languages.

Natural language generation is sometimes viewed as the process
of planning utterances to achieve a goal (Appelt, 1982). A division in
this multi-stage process can be made between the task domain and
the linguistic domain, or between the system level and the interface
level. PHRED operates at the interface level. User input to the
UNIX consultant system (UC) is 6rst analyzed by PHRAN, produc­
ing a conceptual knowledge structure which motivates the system's
response. This response, in the form of a conceptual structure, is
then converted into natural language output by PHRED:

User: How do I delete a file?
UC: Typ ing ' rm filename ' deletes the fi le fi lename from the

cur rent d i rectory.
User: Corao se borra un archivo?
UC: Para bor rar el archhro de nombre fi lename del espaclo

de t raba jo , se escribe ' rm filename *•
User: How do I delete all the files from a directory?

UC: T y p i n g ' rm • • w i l l remove al l f i les w i th in the current
d i rectory f rom the current d i rectory .
T y p i n g ' rm -r dlrectoryname ' w i l l cause a l l f i les and
directories recursively Inside of d l rectoryname to be
deleted from dlrectoryname and removes the d i rectory
d l rectoryname f rom the work ing d i rectory .

The analyzer and generator form an interface module which
maintains the linguistic database of the system. This module has a
number of attractive features:

1.1. Dynamic capabilities
Because PHRED and PHRAN share a common database, any

linguistic information added to the system may be used in both pars­
ing and generation. New linguistic structures may be added, existing
structures may be removed or amended to suit the "dialect" of the
individual user, and one utterance may be explained in terms of
another. This last feature is facilitated by the fact that PHRAN,
while parsing, will "touch" certain patterns in the database, and
PHRED can be instructed either to use or to avoid the identical pat­
terns. The interface module has a paraphrase mode in which PHRED
takes its input directly from the analyzer and rephrases:

#> John had to toll Mary that a friend kicked the bucket.

John had to inform Mary that a friend died.

#> John had to tell Mary that the bucket was kicked by a friend.

John had to inform Mary that a friend kicked a bucket.

These examples come from parts of the database not used by
the UC system. UC does not yet take full advantage of PHRED's
paraphrase capability; however, it can have the generator rephrase an
utterance if asked for clarification by the user.

1.1. Language compat ib i l i ty
The interface may draw from databases for a number of

languages. The analyzer has been used with English, Spanish, and
Chinese databases (Wilensky & Morgan, 1081), and both analyzer
and generator currently work from English and Spanish databases.
UC input and output may be in either English or Spanish, and
knowledge added dynamically to the system by a user may be added
in any language known by the interface.

1.3. Phrasal analysis and generation
Because linguistic knowledge in the system consists of phrasal

patterns, proper handling of idioms and identification of structures
similar in meaning is built into the knowledge structure. In the
examples above "kicked the bucket" matches a verb pattern whose
associated meaning is equivalent to that of "died"; "working
directory" and "espacio de trabajo" are equivalent noun patterns.

t This research was sponsered ia part by tk« O f k t of Naval Research aider contract
NOOO14-SO-C-0732 aid tke National Science Foundation under grant IST-8007046.

P.Jacobs 611

f t . The common database
The database shared by the phrasal analyzer (PHRAN) and

phrasal generator (PHRED) consists of pattern-concept pairs, where
the pattern contains the linguistic structure of a phrase and the con­
cept its internal representation. The use of the PC pair as a unit of
linguistic knowledge distinguishes PHRED from some other language
production mechanisms (see McDonald, 1980) in which grammatical
information and conceptual information are separated. Associated
with each PC pair is a list of properties used for indexing the pair in
the database and for adding knowledge to the system, as well as
information about forms of agreement among constituents.

Patterns are lists of constituents, where each constituent in a
pattern is generally described either as a pattern of speech (p-o-s) or
as a member of a descriptive class (e.g. person, physical object). Pat­
terns may also be formed by conjunction and disjunction of other
patterns and may contain specifications of constraints; for example
"(and (root delete) (tense present) (voice active) (form infinitive))" is
a pattern which would generate the infinitive verb " to delete". For a
detailed description of PHRAN-PHRED patterns see (Wilensky &
Arens, 1980).

The concepts currently used in the database are adaptations of
conceptual dependency representations (see Schank, 1975) with
numerous predicates, primitives, and other variations added. The
concepts are not intended to represent an irreducible set of primitives
or a restrictive syntax, but merely to provide a functional representa­
tion compatible with the UC knowledge base.

A simple example of a pattern-concept pair is given below:

((and (person) (with case subjective))
(and (root remove)

(with person (matches 1))
(with number (matches 1)))

(and (p-o-s noun-phrase) (with case objective))
([(from (container)) (object (opt-val 2))]))

(concept '(state-change (actor factor)
(state-name location)
(from (inside-of (object ?object)))
(to (not (inside-of (object ?object))))

)
p-o-s 'sentence
tense (value 2 tense)
actor (value 3)

I
This PC pair contains knowledge about one form of the action
"remove" which can be used by the interface with the UNIX Consul­
tant. The same pattern corresponds to both "John removed the eggs
from the refrigerator" and "I removed the file foo from my direc­
tory." The pattern has four constituents. In the first, "(and (person)
(with case subjective))", the constraint "(with case subjective)" indi­
cates that if the case of the subject can be determined, it must be
nominative. This is a looser constraint than "(case subjective)",
which would specify that the subject mutt have the nominative-case
property. The constraints "(with person (matches 1))" and "(with
number (matches 1))" in the next constituent specify that the verb,
which must have the root "remove", agrees in person and number
with the subject.

f t . Implementat ion of the generator
The process of generation in PHRED can be divided into three

phases: (1) fetching, (2) instantiation, and (3) interpretation. These
three processes wil l be discussed in this section, with references to the
"remove" pattern and to part* of the UC output from section 1. As
the generation of the sample output requires complete processing of
many patterns, only certain aspects of the examples can be discussed.

3.1. Fetching
While PHRAN and PHRED use the same knowledge struc­

tures, the indexing mechanisms of the analyzer and generator are
naturally different. In PHRAN a pattern of speech is recognized and
suggests a possible PC pair; in PHRED the same pair must be sug­
gested by attributes of a concept or by properties of the conceptual
structure.

PHRED's basic indexing mechanism uses multiple-key hashing,
where primary and secondary keys are specified within the database.
Keys may be arbitrary collections of properties and attributes; thus
the same indexing scheme used for the most complex patterns is used
for simple words. In the case of the "remove" entry above, the PC
pair is indexed according to a combination of the "state-change" and
the attributes "location", "inside-of, and "not inside-of". The
indexing mechanism ignores variables (e.g. "Tactor"). A simpler pat­
tern, such as the word " the", may be indexed by the properties "(p-
o-s article)" and "(ref def)", indicating a definite article.

For certain groups of patterns the choice of keys is essential to
the speed of fetching. In Spanish, there are numerous forms of each
verb and one must be selected which agrees with its subject, some­
times with its object and indirect object as well. In other cases the
choice of keys is non-essential. A default mechanism is provided
where keys are not specified.

Fetching can take up most of the time used by the generator:
in PHRED, running in compiled Franz Lisp on a VAX 11/780, most
fetches take about 0.1 seconds of CPU time. As a typical sentence
may require 20-30 fetches, most of the time used by the generator is
in the fetching process.

3.2. Instant iat ion
The fetching mechanism returns a PC pair from a stream each

time one is requested. Thus indexing on a secondary key may be
delayed until an attempt is made to instantiate the PC pair(s)
fetched on a primary key.

Instantiation consists of adding appropriate constraints to a
selected pattern and simultaneously verifying that the pattern is
appropriate for the given concept. PHRED differs from generators
which use a discrimination net as an indexing tool (see Goldman,
1975) in that it combines semantic tests with the addition of con­
straints. This method is efficient, given that the fetching mechanism
generally yields few patterns for instantiation.

The "remove" pattern in its instantiated form might be:

[(and (person concept 'userl) (with case subjective))
(and (root remove)

(tense past)
(with person (matches 1))
(with number (matches 1)))

(and (p-o-s noun-phrase concept 'fllel) (with case objective))
([(from (container concept 'directory1))

(object (opt-val 2)))))

The specification of the tokens to be represented by the indivi­
dual constituents and the tense of the verb have been added to the
PC pair. If these additions lead immediately to a contradiction - for
example, if the token "user l " does not represent a person — the
instantiation will fail.

612 P. Jacobs

The tense property in the second constituent has been inherited
from the tense property of the entire pattern. A sentence in the past
tense implies a sentence with verbs in the past tense. The process of
inheritance of attributes from the overall pattern to the individual
constituents may be complex: A property may be inherited by more
than one constituent, as in the case of compound verb phrases, and
there may be more complicated interactions between the attributes,
as where a list of adjectives must be generated to describe an object.

Each fetch may return patterns which produce the desired p-o-s
directly, or rewrite rules, which correspond to transformations of
other patterns. The remove pattern will produce a sentence
directly, but must be rewritten to produce an infinitive phrase. Gen­
erally, rewrites are tried during instantiation only after failure of the
direct patterns; however, certain rewrites may be fetched immedi­
ately: If the concept indicates negation, a negating transformation
will be applied to the pattern corresponding to the negated concept.

3.3. In terpreta t ion
After a given pattern has been instantiated, the pattern can be

converted into verbal output. The process of interpreting a given
constituent may (1) succeed in producing a phrase as output, (2)
result in a recursive application of the fetch-instantiate-interpret
sequence on the given constituent , or (3) fail because of the inability
of the generator to produce a specified pattern of speech. The first
case occurs when the constituent represents a word or list of words
for output, such as "the big apple". The second occurs if the consti­
tuent contains a more complex pattern, for example, "(and (root
remove) (tense past))". The third case, where no output produces the
desired pattern of speech subject to the constraints given by the
uninterpreted pattern, is difficult, because the system must back up
to attempt an alternate pattern without destroying too much of the
work it has done. Usually this results in backing up to the level
where the failed pattern was fetched, getting another pattern from
the stream, and attempting instantiation of the new pattern. Most
often this new pattern will be a rewrite rule, and most of the failed
pattern will be used in the instantiation of the rewritten pattern. A
simple case of this is where the generator fails to produce a pattern
of speech for the subject of a sentence and instead generates a pas­
sive sentence.

The agreement of constituents within a pattern is assured dur­
ing the interpretation phase. Constraints such as "(with person
(matches 1))" are converted into properties-e.g. "(person third)". In
English there are few structures where agreement passes from right
to left-such as the number of a determiner which matches a succeed­
ing noun— but in other languages there are many examples where
agreement within a pattern is much more complex. In all cases
PHRED can ensure proper agreement if some order of interpreting
the constituents allows the correct application of constraints. In
English this means that nouns within noun phrases are interpreted
before their attached determiners; in more inflected languages this
means that verbs must generally be produced last.

Anaphora are specially handled during interpretation . In the
case of anaphoric constituents the generator applies a set of heuristics
which may (1) remove the constituent entirely if it is not necessary
to the utterance, (2) pronominaliie , or (3) regenerate the entire con­
stituent. When used by VC, PHRED does not pronominaliie unless
specifically instructed.

4. Requirements of a generator In a fr iendly Interface
PHRED has been designed to meet the following requirements

of a generator in a natural language interface:

(1) Speak the user's language— This refers not only to the dis­
tinction between English and Spanish users, for example, but
also to adaptability to the specific vocabulary of the user. A
novice user will find expressions like "disk quota" and "read
protection" difficult to fathom. Such phrases in the database
are marked as being more technical.

(2) Clar i fy and /o r paraphrase on demand— Where the user
does not understand a particular phrase or construct, the sys­
tem must be capable of providing an explanation. If the expla­
nation can be supplied by a linguistic paraphrase, the generator
provides it.

(3) Be compatible w i t h the ana lyser - PHRED was designed to
draw from a database of patterns used by PHRAN. The
importance of this compatibility extends beyond the simple
efficiency of having the same database shared by both analyxer
and generator: PHRED can make use of information added
dynamically by PHRAN to the database, and any new patterns
constructed by the analyzer can be indexed and used by the
generator.

(4) Be adaptable to the user's knowledge- The UNIX
consultant's model of the user can provide PHRED with
instructions which will guide word choice, proncminalization,
and the degree of explicitness of the output. This is necessary
to provide information comprehensible to the user and to avoid
telling the user what he already knows.

5. Conclusion
PHRED represents a natural language generator rooted in a

knowledge base of linguistic information shared with the PHRAN
analyzer. The database, consisting of pattern-concept pairs, is main­
tained dynamically by the analyzer and generator. PHRED is an
effective, extensible, language-independent program, and combines
with PHRAN to provide a natural language interface adaptable to
the individual user.

References

Appelt, D. 1982. Planning Natural Language Utterances to
Satisfy Multiple Goals. SRI International: AI Center Techni­
cal Note 250.

Goldman, N. 1975. Conceptual Generation. In R. C. Schank,
Conceptual Information Pro casing. American Elsevier Publish-
ing Company, Inc., New York.

Hendrix, Gary G. 1977. The Lifer Manual: A Guide to Build-
ing Practical Natural Language Interfaces. SRI International:
AI Center Technical Note 138.

McDonald, D. D. 1980. Language Production as a Process of
Decision-making Under Constraints. Ph. D. dissertation, MIT.

Schank, R. C. 1975. Conceptual Information Processing.
American Elsevier Publishing Company, Inc., New York.

Wilensky, R., and Arens, Y. 1980. PHRAN-A Knowledge-
based Approach to Natural Language Analysis. University of
California at Berkeley Electronics Research Laboratory
Memorandum UCB/ERL MSO/34.

Wilensky, R. and Morgan, M. 1981. One Analyzer for Three
Languages. Berkeley Electronic Research Laboratory
Memorandum UCB/ERL/M81/67.

