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ABSTRACT

The formal expression of propositional attitudes, espe-
cially when nested (iterated), is an important problem for
Al. An interesting first-order extensional logical system for
such expression has been proposed by Creary. In this sys-
tem concepts (and concepts of concepts, etc.) are made
explicit. The system includes "concept functions”, which
are special functions which act on and deliver concepts.
We point out a difficulty with these functions. A alterna-
tive system is proposed, in which there is a concept-
forming function corresponding roughly to complex-
concept formers (especially the phrase "the proposition
that") implicit in English sentences. The resulting system
has a more primitive and natural notional base than
Creary's has. We avoid problems with quantification inside
propositions which are the objects of propositional attitudes
by recasting quantified expressions into variable-free form
by means of certain functions ("combinators").

I INTRODUCTION

In the past few years Al research has included some
attacks on the important problem of representing beliefs,
concepts, intensions, referential opacity, and the like [see
e.g. (Brachman, 1979), (Hofstadter et al, 1980), (Konolige,
1982), (Maida and Shapiro, 1982), (McCarthy, 1979),
(Moore, 1977), (Shapiro, 1979), (Weyrauch, 1977, 1980)].
We propose an alternative to Creary's system as described
in (Creary, 1979) (which we shall call "system C"); that
system is an extension of a system of (McCarthy, 1979)
and is loosely based on the work of Frege (Geach and
Black, 1952). Like system C, our own system keeps to
first-order extensional logic, makes concepts explicit, has
an infinite hierarchy of orders of concepts (concepts of con-
cepts, concepts of concepts of concepts, etc.)*, and takes
propositions to be a sort of concept. With Creary, we
regard concepts as abstractions from mental entities. We
claim, however, that a basic feature in system C - concept
functions - is not well conceived. An example of a
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Although there have been objections to such hierarchies,
e.g. Camap [2].

concept function is a function which takes a concept of a
man and delivers a concept of the man's wife; another con-
cept function might deliver the proposition that the man's
wife is French. Concept functions in (Creary, 1979) are
based on similar functions in McCarthy's  system
(McCarthy, 1979), and are akin to the "characterizing
functions" in (Church, 1951, 1973, 1974). We shall claim
that the use of concept functions does not allow satisfactory
formalisation of nested propositional attitudes (beliefs
about beliefs, beliefs about beliefs about beliefs, etc.). Our
system avoids concept functions by introducing a special
function which takes some concepts and delivers a com-
plex concept similar to a definite description. Such
definite-descriptional concepts include propositions, which
are regarded as concepts whose extensions are truth-values
(cf. the view of propositions in (Church, 1951, 1973,
1974)).

We shall use the term "denotation" exclusively for the
relationship between expressions in English or in a logical
formalism and entities in an interpretation of the system of
expressions. This relationship is to be carefully dis-
tinguished from the relationship which holds between a
concept and its extension (which is often also called deno-
tation). We shall say that a concept extends to its exten-
sion. Thus the phrase "the concept of Mary" denotes a
concept which extends to the person Mary.

We do not attempt to specify how to deduce extra
beliefs that a cognitive agent holds on the basis of beliefs
already ascribed to it. Such deductions are left to arise
from particular axioms that some user of our formalism
may choose to include in a theory. Similarly, we do not
legislate about the connections between knowledge and
belief — such matters are again left to the whim of the
user.

Our work differs from that of (Konolige 1979) in that
we avoid the casting of beliefs as expressions in some
language so that statements about agents' beliefs are for-
malised in a metalanguage which talks about that language.
The work differs from that of (Konolige 1979) and that of
(Maida and Shapiro, 1982) by the inclusion of the above-
mentioned concept-constructing function and concepts of
it. It differs also from (Maida and Shapiro, 1982) in not
insisting that items in the formalism cannot denote "exten-
sions". The work differs from that of (Moore, 1977) in
avoiding a possible-world approach to propositional atti-
tudes.



I INFORMAL CONSIDERATIONS

A. A Problem with Concept Functions

Consider the sentences
((la)) Mary is French
and
((Ib)) Mike believes that Mary is French.

In system C these could be formalised as french(mary)
and believe(mike, French(Mary)). Here mary and french
have as their intended interpretations a particular person
Mary and the predicate of being French, whereas Mary and
French have as their intended interpretations a certain con-
cept of Mary and a "whether-French-conceptrof" function
whose value on a concept of a person is the propositional
concept of that person being French.* We call such a func-
tion a concept function. The term French(Mary) denotes
the proposition (a type of concept) that Mary is French.
Let us paraphrase sentence ((lb)) as

((2)) Mike believes the proposition that Mary is French.

We can view the conceptrfunction technique in system C as
taking the phrase "the proposition that Mary is French" as
denoting the same proposition that "the whether-French-
conceptrof the concept of Mary" denotes. Thus
((Ib))/((2)) is equivalent" to

((3)) Mike believes
the whether-French-concept-of the concept of Mary.

We have no objection to the equivalence of ((2)) and
((3)). The trouble arises when we go to second-order pro-
positional attitudes, such as in the sentence

((4)) Pat believes that

Mike believes that Mary is French.
We take this to be merely an abbreviation for

((5)) Pat believes (the proposition) that
Mike believes the proposition that Mary is French.

The point is that the equivalence of ((2)) and ((3)) does
not sanction an equivalence of ((5)) with

((6)) Pat believes (the proposition) that Mike believes
the whether-French-concept-of the concept of Mary

because the outer "the proposition that" sets up an opaque

* It appears that the symbol Mary is to be interpreted as
some sort of special, "standard" concept of the person Mary, but
the correctness of this appearance is not crucial to the discussion.

" This equivalence results from ordinary substitution of co-
denoting expressions in a transparent context: noting that the
"believe" in both ((2)) and ((3)) is extensional with respect to its
object ~ it is the phrase "the proposition that" which creates an
opaque context.
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context. Deducing ((0)) from ((5)) is precisely the same
mistake as deducing "Pat believes (the proposition) that
Mike is married to the mother of Mary" from "Pat
believes (the proposition) that Mike is married to the eld-
est sister of Jim" on the basis of an equivalence between
"Mike is married to the mother of Mary" and "Mike is
married to the eldest sister of Jim" (this equivalence iteslf
resulting validly from an identification of Mary's mother
and Jim's eldest sister). Now system C provides a formula
which formalises ((6)), namely

((7)) believe(pat, Believe(Mike, French$(Mary$)))

where Mary$ and French$ are respectively an individual
constant and a concept-function symbol bearing much the
same relationship to Mary and French as these do to mary
and french. The machinery of system C does not allow
formulae which are any closer to ((5)) than ((6)) is.
Unfortunately, ((5))/((4)) is precisely the sort of sentence
we would like to be able to formalise, and which system C
was set up to formalise.

B. Making Proposition- Construction Explicit

Our main claim is that the satisfactory formalisation of
(4) )/ ((5)) requires explicit symbols to play the
proposition-constructing role of the phrase "(the proposi-
tion) that". Our first step is to impose a further step of
paraphrase: ((2)) is now regarded as a paraphrase of

((8)) Mike believes the proposition-constructed-from:
the concept of being French, and
the concept of Mary.

Here "the proposition-constructed-from" is like a two-
place function. We then partially paraphrase ((5)) as

((9)) Pat believes the proposition that:
Mike believes the proposition-constructed-from:
the concept of being French, and
the concept of Mary.

The point is that the function "the proposition constructed
from" itself now enters explicitly into Pat's belief, in just
the way that the two-place function "the children of"
enters explicitly into Pat's belief in

((10)) Pat believes that
Mike is a member of the children of
Jack and Jill.
Note that the phrase "the proposition-constructed-from" is

extensional (transparent) in both its arguments.

C. Definite-Descriptional Concepts

Consider now
((H)) Mike believes that the wife of Jim is French.

Using our paraphrases, one subsidiary meaning of this is
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rendered as

((12)) Mike believes the proposition-constructed-from:
the concept of being French, and the concept of X

where X stands for the person who happens to be Jim's
wife. ((12)) is a reading of ((H)) in which the characteri-
zation of that person as Jim's wife does not enter into
Mike's belief; if Jim's wife is Mary then ((12)) is
equivalent to "Mike believes that Mary is French". To
capture the more direct meaning of ((11)), in which the
wife characterization does enter into Mike's belief, we pro-
pose

((13)) Mike believes the proposition-constructed-from:
the concept of being French, and
(the concept-constructed-from:
the concept of the wife function, and
the concept of Jim)

where the parentheses are used to effect correct grouping.
We have no general right to deduce from ((13)) that Mike
believes the proposition constructed from the concept of
being French and the concept of Mary. The concept ¢
referred to by the parenthesized expression in ((13)) is (in
general) a different one from the standard concept of Mary.
We call ¢ a "definite-descriptional concept". The observa-
tion now is that the concept (i.e. the proposition) that Mike
believes in ((13)) is also a definite-descriptional concept.
We may regard "the proposition-constructed-from" as just
a convenient rewriting of "the concept-constructed-from"
in certain contexts.

D. Standard Concepts and Absoluteness

For simplicity, we have been assuming and shall con-
tinue to assume that for every individual, such as Mary,
there is a special concept extending to that individual and
which is deemed to be the "standard" concept of the indi-
vidual. A further simplifying assumption is that concepts
are absolute, i.e. not relative to the cognitive agents which
entertain them. Thus, for a given individual x, each cogni-
tive agent has the same standard concept of x, and the
function "the concept constructed from" is not
parametrized by a particular cognitive agent. It is
emphasized that both absoluteness and the postulation of
standard concepts could be abandoned from our considera-
tions, at the price of making the presentation of the for-
malism in Section IlI more difficult.

A most important point is that it is possible for a stan-
dard concept to be a definite-descriptional concept. For
instance, the (standard) concept of Mary might actually be
the definite-descriptional concept constructed from the con-
cept of the wife function and the concept of Jim. In that
case, ((13)) would be equivalent to ((12)) with X'
replaced by 'Mary'. We do not develop such possibilities in
this paper. They are not a result of our particular approach
— similar things could be done in system C.

Consider now

((14)) Mike holds-in-mind the concept of Mary

(as a paraphrase of "Mike thinks about Mary"). We
wonder how we would approach the formalisation of (the
most direct meaning of)

((15)) Pat believes that
Mike holds-in-mind the concept of Mary.

We propose that this should be paraphrased as

((16)) Pat believes the-concept-constructed-from:
the concept of holds-in-mind,
the concept of Mike, and
(the concept constructed from:
the concept of the-concept-of,
and the concept of Mary)

(where "the concept of" is short for "the standard concept
of"). This is exactly parallel to paraphrasing

((15A)) Pat believes that
Mike is-married-to the mother of Mary

as

((16A)) Pat believes the-concept-constructed-from:
the concept of is-married-to,
the concept of Mike, and
(the concept constructed from:
the concept of the-mother-of,
and the concept of Mary).

Il FORMALISATION

A. Preliminaries

We replace all functions and predicates by individual
constants wife, french, $, etc. which we call "functions"
or "functional individuals" for convenience. We introduce
the genuine function a (read "apply"), so that
a (wife, jim) and a(plus, 1, 2) replace wife(jim) and
plus(l, 2) respectively. The atomic formulae
french(John) and meet(mike, pat) are replaced by the
terms a (french, john)and a (meet, mike, pat). Such terms
denote truth values, and the truth values TRUE and
FALSE are required to be in any interpretation of a theory
in our logic.

For simplicity, we abbreviate an expressiop
e(E,E,..E) o EJE,. . E]. Thus, for instance,
a(wife, jim) is abbreviated to wife[jim)].

B. Construction of Complex Concepts

In any intended interpretation of a theory in our for-
malism we assume there exists the concept-forming func-
tional individuals 'the-(standard-)-concept-of and 'the-
concept-constructed-from'. These are denoted by the indi-

* Technically, we need different functions a of different
arities n. Also, our logic should be sorted, but for brevity we do
not discuss this matter.



vidual constants $ and $ respectively. We shall often
abbreviate $[x] (which is already an abbreviation) to $x
when x is a single symbol. Thus a($, wife)and a($, $) can
be abbreviated to $wife and $$. (The $ is inspired by
Creary's notation. The ability to "apply" "functions" to
themselves is commented on later.)

Let us look at some examples. We take hold-in-
mind[mike, $[mary]] to denote TRUE iff Mike thinks
about Mary (using the standard concept of her). If this
term and the term equal [mary, wife[jim]] denote TRUE
then we can deduce that hold-in-mind[mike, $[wife[jim]]]
denotes TRUE. On the other hand

hold-in-mind[mike, 4§[wife], $]jim]]]

denotes TRUE iff Mike thinks about {the wife of Jim}
Here we use the AS subscript (meaning "as such') to indi-
cate that the woman concerned is conceived of as the wife
of Jim by Mike. This term replaces system C's hold-in-
mind(mike, Wife(Jim)) where Wife denotes a concept
function and Jim denotes a (standard) concept of Jim.
The term

hold-in-mind[mike, Q$wife, Y$father, $jim]]}

denotes TRUE iff Mike thinks about {the wife of the father
of Jim} (Note here that we are using the $x abbrevia-
tion for $[x].) The term

hold-in-mind[mike, ¥$[wile], $[father[iim]]]]

denotes TRUE iff Mike thinks about {the wife of u}as,
where u is the father of Jim. The formula is equivalent to
the one derived by replacing father[jim] by bill, if indeed
we have that equal [bill, father[jim]] denotes TRUE.

We have been using hold-in-mind for illustrative pur-
poses. To get back to the question of belief, the term

believe[pat, ¢[$is-married-to, $mike, $jane]]

denotes TRUE iff Pat believes that Mike is married to Jane
(where the standard concepts of being married to, Mike
and Jane are used in that belief). The term

believe[pat, ¥3ia~-married-to, $mike, fSmother, $jim]j]

denotes TRUE iff Pat believes that Mike is married to the
mother of Jim, where now that lady is characterized in
Pat's belief as the mother of Jim.

The term

believe[mike, $equal, #$tel-num-of, $jim], $1234]]
denotes TRUE iff Mike believes that Jim's telephone
number is 1234. The denotation of this term is indepen-

dent of that of

believe[mike, H$equal, $1234, $1234]}.
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C. |Iterated Propositional Attitudes

Notice the "lifting" transformation applied to
is-married-to[mike, mother[jim]]
to get the outer $term in
believe [pat, H$is-married-to, §mike, YImother, $jim]]].

This transformation proceeds as follows: (i) remove all
square-bracket abbreviation, by replacing every expression
of form f[...] by a(f,...); (ii) replace each individual con-
stant x by $x; and (iii) replace each expression of form
a(...) by #..J It is therefore in accord with previous
examples to lift ((])) to form ((2)) in:

((1)) hold-in-mind[mike, $[mary]l
((2)) believe[pat, H3hold-in-mind, $mike, 33, $mary]]]

((2)) denotes TRUE iff Pat believes the proposition that
Mike thinks about Mary, where Mike is supposed by Pat to
use her standard concept. Similarly, the term

((3)) believe[pat,
Y$hold-in-mind, $mike,
¢3¢, ¥42, Swife], Y$$, $iim]}]]

denotes TRUE iff Pat believes that Mike thinks about the
wife of Jim, where Mike is supposed by Pat to use the

characterization of her as the wife of Jim. ((3)) is derived
from  hold-in-mind[mike, Y$wife, $jim]] by "lifting".
((3)) can be read as "Pat believes that: {Mike holds-m-
in nd the-conceptrconstructed-from the concept of wife-of
and the concept of Jim}as".

The reader is invited to try writing a formula for a
third-order propositional attitude ("George believes that
Pat believes that Mike believes that ...."). We get terms
whose length increases exponentially with number of lifting
steps. However, if we introduce for each constant symbol
x the abbreviations ®$x, ®2:3x, ®3:$x, etc., where: &$x
stands for the lifted version of $[x] (i.e. #3$, $x]); ®2:8x
stands for the lifted  version of ®&fx (ie.
e, 44s, 23], Y48, $x}]); and so on, then we get a
approximately linear increase in the size of terms.

We introduce a special functional individual "ext-of"
which delivers the extension of a concept. So, for instance,
ext-of[§[mary]] denotes Mary, and ext-of[$[wife[jim]]] and
ext-of [H$wife, $jim]] both denote Jim's wife. The term
ext.-oﬂ‘[Sfrench, Smary]] denotes whatever truth-value
french[mary] denotes. We assume that there are axiom
schemata*

equal[ext-of{$[x]], x]

and

To say that these terms are axiom schemata is to say that
for an interpretation of a theory in our logical system to be a
model it must make these terms denote TRUE. Also, we assume
that equal is always interpreted in a special way and that suitable
axioms for it are provided.
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equaljext-of[4E,, ..., E,]],
(ext-of[E) [ext-of[E ], ..., ext-of[E, ]}

D. Connectives

The first part of our treatment of connectives is to
cast them as ‘'functional’’ constants whose ooly distioctive
quality is that in any interpretation they must denote cer-
tain truth-value-returning *‘functions’’. For instance, the
term  and[hit[john, judy], hit[judy, john]] denotes TRUE
if both hit[john, judy}and hit[judy, john] denote TRUE.
We assyme the existence of *‘truth-functional’’ coustants
not, and, or and impliea. We allow and and or t0 bave an
arbitrary num ber of arguments,

The treatment of the inclusion of connectives in pro-
positions which are the objects of propositional attitudes
now falls out immediately from our preceding considera
ticns, For example, we couid have

believe[mike,
$and, Hshit, $john, $judy], Yshit, $judy, Sjohn]]]

by lifting the and[...] term above.

E. Quantifiers

To express quantilication inside propositious which are
themselves the objecis of propositional attitudes, {Creary,
1979) uses special variable-binding operators, eg. Exist.
{These operators replace a somewhat cumbersome tech-
nigque used by (McCarthy, 1979).) In contrast, our treat
ment avoids variables in the frst place, and thercfore
avoids the need for special variable-binding operators. The
avoidance arises from two hypothetical moves: 1) casting
quantification temporarily in terms of functional abstraction
{ A-abstraction), and 2} casting functional abstraction into
variable-free form by means ol special ‘‘funclions’™ called
combinators. The first step is essentially a technique used
in { Church, 1951). We regard

(Yx)(implies[man[x], mortal[x]])
as an abbreviation of
all[Ax. impliea[man|[x], mortal[x]]].

Here the A-expression is a term denoting a ‘‘functional”
individual, The all is a truth-valued ''function’ which,
like a copunective, must be givep a special meaning in any
interpretation. That is, all[f] for any one-place truth-valued
"“function’’ f denotes TRUE iff for each x in the domain of
interpretation the '‘application'’ of T to x yields TRUE.
Similarly,

{(Ek)(or[man[x], woman[x]}) s
some[hx. or[man[x], woman|x]]].

abbreviated to

The second step takes A-expressions to be rewritings
of terms which use combinatwors (certain ‘‘fupctional’ con-
stants) but contain no variables. The combinators we use
are 1 (the identity ‘‘function’’) and denmumerably mapy

symbols x? where superscript # is a non-empty slash-

separated list of { possibly emply) comma-separated lists of
nop-negative integers (e.g. (1,2)/2/(1,4,6); or (0,2}; or ()}.
If 8 has k components then x? denotes, so to sprak, X-
abstraction of a certain mode: each element of the list #
corresponds to a bound variable in a A-abstraction, and
every integer within that clement specifies the positions in
which the bound variable is used in the body of the X-
abstraction.

In detail, if # has one element then (:r’[En. - E_])
[x] equals Fo{F,, ..., F,] where: F, is E[x] il i is in the list
of integers which is the only element of #, and is otherwise
Just E,. As an example, the expression
Ax. implies[humuan{x}, mortal[x]] is considered merely a
re-notation of  "¥]implies, human, mortal].

If # has k > | elements, then
(:r"[En, e EJ) [X,0 000y %]
equals (x"[Fu, S 3 | I COR
where: F. is E[a ] if i is in the first list of integers in #, and
is otherwise just E; and #' is the tail of §. For example,
the expression Ax.Ay. or{p[x], q(x,¥]] is a re-nouwaton of
,,[l.'-‘l/tzl[m.’ Py ,,.(llz‘lzl[q' 1,1]).

The point now is that we can easily "'lift"”" expressions
involving quantification up by one intensional level,

because we have replaced all conventional quantificational

constructs by ordinary applicative expressions. The only
new factor is that we have the new "'functions'’ rr’, some

and all. For tostance, we can obtajn
believefmike, ¢$all, #{$x (%), $implies, $man, $mortal]]],

where the belief deploya the stapdard coneepts of universal
quantification, of implication, of being human, of being
mortal, and of **A-abstraction in mode 8".°

*  The form of "functian’' abatraclion we have introduced
via the x” combinators allows the definition of seif-cantradietory
“tunctions’’, e.g. ® V[, x![equal, x!®1[I, 1], O], 1, O] where
If[true, x, ¥] equals x and If|[falae, x, ¥] equals y. We gel a con-
tradiction from applying this "‘function'' to itself. Something
must be done to avoid this classic problem, and several ap-
ptoaches are being ¢onsidered. One is lo use 2 type hierarchy
similar te that in {Church, 1951, 1973, 1974). However, the one
which is receiving closest attention is based on the relativization
device used in Zermelo-Fracnkel sel theory to avoid the Hussel
paradox (which is skin to the self-application paradox just men-
tioned). That is, any aet definition must be made relative to
some set A, as in {x EA[..} Let ua regard ''functions” as
tuple-sets in the doman of interpretation, so that in particular a
x?[...] term denotes a set of tuples. {We depart from standard
sel theory in allowing cycles in the set-membersbip relation, so
that self-application of *'lunctions’ is possible.] Instead of re-
garding v #[...] terms as re-notations of A-expressions, we now re-
gard them as re-nolations of set-definition expressions of form
{{x,¥::--x) € P{ <some condition on x,¥,..-8>> }. Hete P
denoles some set of tuples, The replacement of A-expressions
by such relativized set-defipition expressions serves the purpose
of avoiding inconsistent function deflpitions. A x?[..] term
must now contain a tuple-set-valued term {poasibly a ‘'function"”
term) P as its zeroth argument. In the following, we will igaore
these modifleationa.



F. Some Examples

We may formalise “"Pat knows Mike's telephone
pumber” by

{=In) know[pat, H3equnl, ¥$tel-num, $mike], $n]|

which is a rewriting of

some(x | [know, pat,
x3[& Sequal, H$tel-num, $mike], $]]].

{We might also have used a formalisation in terms of
correct belief.) We could formalise “*Pat wonders what
Mike's telephone number is'' (adapted from (Maida and
Shapiro, 1982]) by

enrious[pat, §tel-num, $mike]].

(where we assume curious denotes the '‘predicate’’ of
wondering what the extension of some concept is.) Simi-
larly, “"Mary wenders whether Joho is taller than Bill"
{adapted from (Maida and Shapiro 1982)) could be formal-
ised by

curious[mary, ¢[$taller, $john, $bill]].

In (Creary, 1979) Creary gives three Fformulae
corresponding lo different readings of '‘Pat believes Mike
believes  Jim's wife is Freoch'. We have three
corresponding terms, which, however, do not mean ezacdly
the same thing. The diferences arise from the formnlation
in terms of ®rather than concept functions.

The first term is

{(1)) believe[pat, ¥$believe, $mike,
¢[3%, G:3french, ¥$&, &$wife, ®:$jim]]])

where ®8x is an abbreviation for 8$,$x] and where the
outer #...] is the lified form of

believe[mike, H$french, HIwife, $jim]]].

((1)} means that Pat believes that Mike believes that Jim's
wife is French, where Pat's belief involves the characleriza-
tion of (Mike'a) characterization: wife of Jim. {{1})
expresses what is arguably the most patural reading of the
above sentence.

The second term is

=] C*, C){ and|beliave[pat,
(@ cl C)'{ﬂbellieve. S:L‘;ke, §$8, &3french, C1],
concept-of [C7, C], concepi-of[C, wifeljim]]])

{(trapsformed into combinator form) where now the con-
cept ¢ of Jim's wile which is imputed o Mike is merely
some concept of her (c could be the denmotation of
$mother, $sally] for instance), and the concept ¢ used
by Pat is simply some concept of that concept ¢ [e.g. the
one denoted by $[%{$mother, $sally]]).

The third term is
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((3)) believe[pat,

$some,
#3x 1%, $and, ¥[$x(?, Sbelieve, $mike,
lt[s,r('l, 8¢, &3french, 31]],
qsr“], $concept-of, $1, ‘[3“’“‘3- $jim]]]]]

where the outer #...) is the lifted form of

=lcy
{and[believe[mike, ${3french, C]],
concept-of {C, wife[jim]]]}

transformed first into the combirator form:

some{r ("*[and, x ¥ [belicve, mike, » *){8, $french, I]],
w1 concept-of, I, wife[jim}]]].

((3}) means that Pat believes that Mike believes that Jim's
wife is French, where part of Pal's belief is the imputation
to Mike of some concept of the person characterized in
Pat's beliel as Jim's wile.

Consider the Creary formula ({7)) and sentences ({5,
6}) of Scectien I1.A again; formula {{7)) formalises sentence
{(6)), which we contrasted with ({5)). Our lormulations of
((5)) and {(8)) are:
({4)) believe[pat, Y3believe, $mike,
%3¢, 8$3, 3french], H$3, $mary]]}]

((5)) believe[pat, H{$believe, $mike,
¢ %38, $french], 33, $mary]f]]

where the outer #..] is the lifted form of
believe[mike, ($[french]}[$[mary]]]]

30 that we are paraphrasing the phrase ‘‘the whether-
Freoch-concept-of'’ in ((6)) of II.LA as '‘the comcept of
being French''. We are also now postulating that the terms
$french and #$$,8french) denote “‘functions”.

We observe that if we adopt the axiom schema
equal{9E,, ..., E}, EJE, ..., E]]]
then {{5)) reduces to
believe[pat, $believe[$mike, ({83)[$French])[($3)[$mary]]}]
which is analogous to the formula ({7)) of H.A., CQur
reconstruction of terms closely analogous to those of sys-

tem C by means of the above axiom schema serves the
purpoae aof explicating the notional basis of that system.

IV CONCLUDING REMARKS

It is hoped that the discussion of Section I, which
achieves more formal explication later in the paper, shows
that the $ function is at least as natural as concept func-
tions are. In particular, the use of $ results in formulae
closer in form to natural-language sentences than the for-
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mulae of system C do, in that * often corresponds to the
phrase "the proposition that'' and therefore allows that
phrase itself to be an explicit component of a conceptual
characterization at a higher intensional level.

A  number of semantic-network researchers [e.g.
(Brachman, 1979), (Shapiro, 1979), (Maida and Shapiro,
1982)] have realized the importance of basing their
formalisms on intensions (concepts, descriptions, proposi-
tions, ...) rather than on "extensions". Now, semantic
network formalisms are very similar to (and often just re-
expressions of) logical systems. |If our analyses in this
paper are correct, therefore, we must suspect that existing
semantic network formalisms need some modification, in
order to bring in entities corresponding to $ and $.

It is important to note that, although we have called $
a concept constructor, the concepts which are constructed
are not necessarily to be regarded as expressions or some-
thing similar to expressions. (In fact, we make no claim
about the particular psychological nature of constructed
concepts. All we say is that constructed concepts are tran-
sparently determined by the concepts they are constructed
from.) It would be possible in a theory in our formalism to
have two $[...] terms denoting the same concept even
though the arguments in the terms denote different con-
cepts. For instance, it would be possible to have
$$odd, $x] denoting the same concept as
$[$not, $[$even, $x]] for every numerical term x. It is up
to individual users of the formalism to decide whether such
identities are appropriate. Similar points apply to Creary's
formalism, but it is not clear whether he intends to allow
such identities.

There is no claim that the system as sketched here is
the last word on the issues dealt with. For instance, there
is the question of whether it is plausible that beliefs should
be couched in terms of the concepts denoted by the $w*
symbols  (though we feel that our treatment of
quantification is at least as plausible as those of Creary and
McCarthy). Note that a person's entertaining the concept
denoted by a *[$w*, ...] term does not imply that the per-
son actually entertains the concepts denoted by the argu-
ments to the *[...] term, in particular the $B term.

A fuller paper which discusses in more detail the gen-
eral and technical issues raised by our considerations in this
report is in preparation.
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