THE AUTOMATIC SYNTHESIS OP SYSTEMS
OF RECURSIVE PROGRAMS

ZOHAR MANNA
Artificial Intelligence Lab
Stanford University
Stanford, Ca.

Abstract

A technique is presented for constructing- a program from given
specifications. The basic approach is to transform the
specifications repeatedly, according to certain rules, until the
desired program is produced. Two important transformation
rules are those responsible for introducing conditional
expressions and recursion into the target program. These
transformations have been introduced in previous publications,
and are discussed here briefly.

Often, to construct a recursive program it is necessary to define
other auxilliary programs to achieve certain subtasks of the main
task. The formation of such systems of auxilliary programs is
specially emphasized in this paper.

The program synthesis techniques we discuss have been
incorporated into a running system called SYNSYS. This system
accepts high-level specifications expressed in mathematical
notation, and produces recursive programs in pure LISP. The
transformations are represented in the system as programs in the
QLISP language, and are summoned by pattern-directed
function invocations. The synthesis of two programs produced
by the system are presented.

This research was supported in part by the Advanced Research
Projects Agency of the Department of Defense under Contract
MDA901- 76-C-0206, by the National Science Foundation under
Grant DCK72-03737 A0\, by the Office of Naval Research
under Contracts A/00014-76-C-06S7 and A/000 M-75-C-0816;
and by a grant from the United States-Israel Binational Science
Foundation (BSF), Jerusalem, Israel.

The views and conclusions contained in this document are those of
the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied, of
Stanford University, Stanford Research Institute, or the U.S.
Government.

l. Introduction

Jn this paper we describe a system that attempts to construct a
program to meet given specifications. The system, called
SYNSYS, accepts specifications expressed in a high-level
mathematical notation and produces recursive, side-effect-free
LISP programs. The basic approach is to find a sequence of
transformations which, when applied successively to the output
specification, yield a sequence of equivalent descriptions leading
to the desired program.

Auto.

Pror.-3:

RICHARD WALDINCER
Artificial Intelligence Center
Stanford Research Institute
Menlo Park, Ca.

The SYNSYS system has been partially described in an earlier
paper (Manna and Waldinger [1977]). In that discussion we
emphasized the mechanisms for introducing conditional
expressions and recursion into the program being produced.
The exposition in this paper is self-contained, but our principal
concern here will be the formation of systems of recursive
programs

The earlier paper also contained a more complete description of
the SYNSYS implementation. The transformation rules of the
system are written in QLISP (Wilber [1976]), an extension of
INTERLISP with pattern-directed function invocation and
backtracking. The two examples we present have been
performed automatically by SYNSYS.

In Section Il we describe our basic approach. We then (Section
111) present the first example, the synthesis of the Euclidean
algorithm. Section IV provides a discussion of the method for
introducing auxilliary functions, which is then illustrated by the
construction of a two-function system for computing Cartesian
products (Section V). A final section outlines some of the
system's limitations, and our future research plans.

1. Basio Approach

There are many constructs that are valuable in expressing the
specifications of a program, but that are not likely to appear as
features in a programming language. For example, in specifying
a program to compute the greatest common divisor of two
integers x and y, we provide the input specification

xz0andyz Oand {x *0ory *0),
and the output specification

ged(x y) <- max{z : z\x and zly) .
The output specification requires that we find the greatest
integer that divides both x and y. The input specification states
that we can expect both arguments to be nonnegative and at
least one to be nonzero; if both x and y are zero, the output
specification is not defined. The set constructor {z : .J is a
valuable aid in expressing the output specification, but it is not a
primitive construct in most programming languages because it is

not always computable.

Similarly, to specify the program to find the maximum element
of a list of numbers, we may supply the input specification

-i empty(x)

(the input list is not empty) and the output specification

Manna

maxl(x) <+ find z € x and z : z z all(x)

(find an element of the given list greater than or equal to all the
elements of the list). Here, the constructs "find z; .." and "all{x)"
are not primitives of any programming language, but are useful
components of a specification language.

The goal of a synthesis system is to transform the output
specifications into an equivalent description that employs only
primitive constructs. The resulting primitive program will then
be executable.

Our basic approach is to supply our system with a large set of
transformation rules, which transform one description into
another, equivalent one. We attempt to find a sequence of these
rules which, applied to the output specification, will yield a
sequence of equivalent descriptions leading to the desired
primitive program. Some of these rules express the semantics of
the subject domain (such as facts about lists, sets, numbers and
the underlying logic). For example, the rule
ulv <> true if v«O

represents the fact that every integer divides zero. Other rules
express knowledge about the programming language and
programming techniques (e.g. the uses of conditional expressions
and recursive calls).

A given transformation can only be applied to a description that
matches a characteristic pattern. For instance, the above rule can
only be applied to descriptions of the form ulv. However, even
if the pattern matches the description, a rule may have
conditions that prevent it from being applied; the sample rule
above can be applied only if the value of the expression that
matches v is known to be zero. This logical condition is imposed
because the rule could not be applied legitimately it it were
violated. Other conditions may be imposed because of strategic
considerations; we know that it is unwise to apply the rule when
the condition is violated, even though the application would be
logically legitimate. For example, the rule

ulv and ulw »> ulv and ulrem(ui v)

(the common divisors of v and w are the same as the common
divisors of v and rem(iu v)) has the logical condition

v*0
and the strategic condition that we not be able to prove
Wy,

Although the rule could be applied correctly when w < v; in that
case rem{w v) reduces to w, and the original expression "ulv and
u1n™ would reappear.

During the process of transforming the output specification into
a primitive program, we generate a sequence of intermediate
descriptions of the desired program. In searching for the next
rule to apply, we may find several rules whose patterns match
the current description. Most of these rules will be discarded
because their conditions will not be satisfied. Of the rules that
remain, the system will apply one. If that application fails to
lead to a primitive program, backtracking may occur so that the
other rules may be attempted instead. The synthesis is complete
when a primitive program is generated.

In order to examine the synthesis process in more detail, we
present the complete construction of a familiar algorithm.

Auto.

Prop;.-3:

uo6

I1l. Example 1: The Euclidean Algorithm
In this example we illustrate the construction of the classical
Euclidean algorithm for computing the greatest common divisor

gcd(x y) of two nonnegative integers x and y.
Recall that the specifications for the program are:

input specification: x > 0 and)*0 and (x * 0 ory * 0)
(the arguments are both nonneg”ative and at least one of them is
nonzero), and

output specification: gcd(x y) <« max{z : z\x and z\y]

(the output is the greatest integer that divides both x and y).

The set constructor {u : .} is admitted to our specification
language but is not a primitive of our programming language.
We must find a sequence of transformations to produce an
equivalent description of the output that does not use the set
constructor or any other nonprimitive construct. This
description will be the desired primitive program. In what
follows we will exhibit a successful sequence of transformations,
but we will not always indicate how the next transformation at a
given stage was found, or which sequences were attempted and
discarded before the successful sequence was found.

Among the transformations we may apply, let us assume we have
the following rules which express properties of division useful in
developing the desired program:

For any integers u, v, and w

ulv »> true ifv» 0
(any integer divides zero)

(1

(2) ulvand u|lw *> u|vand u\lremwv) ifv*0
(the common divisors of v and w are the same as
those of v and remftu v))> and

3) max{u:uwv} >v ifv>0

(any positive integer is its own greatest divisor).

In applying these transformations, we will produce a sequence of
goals; the first will be derived directly from the output
specification, and the last will be the desired program itself.

Goal 1: Compute max{z : z\x and z\y],

for any x and y satisfying the The

transformation (2) above,

input specification.

ulv and u\w -> ulv and ulrem(xu v) ifv * 0,

applies directly to Coal 1, yielding
Coal 2:

Compute max\z : z\x and z\rem(y x)}
and prove X K O .

Note that the condition v * 0 attached to the transformation rule
produced a condition x * 0 to be proved in the resulting goal.
We cannot prove or disprove this condition — it may be true for
some inputs and false for others so we will consider
separately the case in which it is false. This case analysis will
yield a test on the condition x « 0 in the final program.

Case: x-0

Manna

We cannot achieve Goal 2 here, so we examine alternate
transformations to apply to Coal 1. The rule (1),

wiv m> frue ifv=0

and the basic logical transformation
P and true m> P
yield

Coal 3: Compute maxfu : u|5}.

Here, the transformation rule (3) applies, producing

Coal 4: compute y

and provey >0 .

It is straightforward to prove y > 0, because y > 0 and (x * 0 or
y *0), by the input specification, but x = 0 by our case
assumption. Consequently, we have reduced the problem in this
case to the task of computing y, which involves no nonprimitive
constructs. The desired program may simply output

y-

We have thus completed one branch of our case analysis; the
corresponding branch of the program is

if x=10
then y
else ...

gedix y) <=

We now turn to the alternate possibility.

Case x=0

The case analysis was introduced in attempting to satisfy the
condition x * 0 of Goal 2. This condition is satisfied in this
case, and Goal 2 is reduced to
Coal 5: Compute max{z : xjx and 1| remiy x)} E

Goal 5 is an instance of our output specification (i.e. Coal 1),
wjth x and y replaced by x and rcem{y x). This suggests
achieving Goal 5 by a recursive call ro ged(x remiy x)), because
the gcd program is intended to satisfy all instances of its output
specification. However, the program is only guaranteed to work
if its input specification is satisfied. To insure that the recursive
call ged(x rem{y x)) will compute the desired result, we must
prove that the input specification is satisfied by the arguments of
the recursive call, i.e.

Prove x 2 0 and vemiy x) 2 O
and {x » 0 or remi{y 2 » ().

Goal &

We will call Goal 6 the input condition for the recursive call
ged{x rem{y x)).

Furthermore, in introducing a recursive call we must be
concerned with the termination of the final prognm. In other
words, we must ensure that an infinite sequence of recursive calls
cannot occur in any computation of the program. To prove
termination we employ the concept of the well-founded set, one
whose elements are ordered in such a way that no infinite
decreasing sequence can exist. (The nonnegative integers, for

Auto.

Pro.".

uo7

example, constitute a well-founded set under the usual greater-
than ordering. The integers, on the other hand, do not.)

To prove the termination of a program f(x) with one recursive
call f{t)) we must find a well-founded set W; with ordering >¢
such that

x and ¢ belong to W,,

and x >_, 4
If a infinite sequence of recursive calls were to occur, the
corresponding arguments would constitute an infinitely

decreasing sequence of elements of W;, contradicting the well-
foundedness of W..

Thus, to show the termination of the recursive call
gcd(x remiy x)) in the program gcd(x y), we must achieve the
following termination condition:

Coal 7: Find a well-founded set K’ ¢ with ordering >
such that
(xy e W, and (x remiy) € Wy
and (x ¥} > ea (X remiy X))

We cannot satisfy Goal 7; in fact, in the case that y < x,
rem{y x) « y, and there is no well-founded ordering > such that
(xy) > (xy). Because we cannot show the termination of the
recursive call ged(x rem(y x)) that was introduced in an attempt
to achieve Goal 5, we look for an alternate approach to achieve
this goal.

The logical transformation
P and <£-> Q*and P
applied to Goal 5 yields

Coal 8: z\rem{y x) and z\x] .

Compute max{i :
Goal 8 is again an instance of our output specification, Goal 1,
and we therefore attempt to achieve it by the recursive call
ged(rem(y x) x). Actually, the SYNSYS system reaches this goal
in a slightly different manner to be discussed below. The input
condition for this recursive call is

Coal 9 remiyx)z Uand x 2 0and
Gremiy x) m Dor x = 0},

and the termination condition is

Coal 10: Find a well-founded set W oew
and ordering >.m' such that
{xy) e w,,, and {remly x} x} € Wld

and {x 3) >, (rem{y &) x} .

Goal 9 is satisfied immediately: in this case x is positive and
rem(y x) is always nonnegative. To achieve Goal 10, we take
W , to be the set of all pairs of nonnegative integers ordered by
the usual > ordering applied to the first component; this suffices
because x > rem(y x). The proposed recursive call is therefore
successful in achieving Goal $ and the program can output

ged(rem{y x) x)

-3: Manna

We have succeeded in transforming' all the goals into primitive
program segments. The final program, formed directly from the
outlined program segments is

if x=0
then ¥
else gediremiy x) x)

gedix ¥y <w

This is a recursive version of the algorithm Euclid provided for
computing the greatest common divisor.

Recall that when we fail to achieve Goal 5,

Compute max{z: z|x and z|rem{y x}}
by a recursive call, we applied a logical transformation

Pand Q= Qand P
and then successfully introduced a recursion.
Actually, the SYNSYS system does not represent the
commutativity of "and” by a transformation; that property is

built into the underlying QLISP system. Normally, in QLISP, a
function / applied to several arguments wuy ux ... U, is

to the goal

represented internally as f<if| g .. tip>, where <i; iz .. uy> i

an ordered tuple. An expression such as
u; and up and .. and u,,

however, is represented internally as

and{u; uz .. uyl,

where {u; up .. uy] is an unordered set, because the order and

multiplicity of the arguments does not influence the value of the
expression. In attempting to introduce a recursive call, the
system tried to match the subexpression and{x rem(y x)} of Coal
5 against the subexpression and\x y) of Goal 1. The QLISP
pattern matcher discovered two distinct matches, pairing x and y
with x and remiy x) or pairing x and y with rem{y x) and x.
When the first match failed to lead to a satisfactory recursion,
the second match was attempted automatically.

The mechanisms employed to construct the gcd program are
examined more closely in our earlier paper (Manna and
Waldinger [1977]). A similar mechanism to ours for introducing
conditional tests into synthesized programs has been
implemented by Warren [1976]. A facility for initiating a case
analysis in a mathematical proof is included in the theorem
proving system of Bledsoe and Tyson [1977]. Our recursion-
introduction device is the same as the "folding" rule of Burstall
and Darlington [1975]; their system is interactive, however, and
they| Vequird rthato the cuisarg beA (expidnrisile yforFestedtibbing the
input and termination conditions.

In the preceding example we introduced a recursive call when
we discovered that a subgoal was an instance of our output
specification, the top-level goal. In other words, we found that
the subgoal is of form

Compute a(r(x)),

where the top-level goal is of form

Auto,

Prop.-3:

uos

f{x) <- Compute a(x).

If the input specification is P(x), then a recursive call f(t(x))
could be introduced to achieve the subgoal "Compute a(t(x))"
provided we could prove the input condition

?(t(x))
and the termination condition

Find a weil-founded set W, with ordering >, such that
x € W, and fx) € W, and
x rptx}.

Actually, in attempting to introduce recursion we compare the
subgoal not only with the top-level goal, but also with each of
the intermediate subgoals. If we discover that our subgoal is of
form

Compute B(t(x))
where
Compute 0(x)

is an intermediate subgoal, then we introduce a new auxilliary
function g whose output specification is

glx) <= Compute 8(x) .

The subgoal "Compute B(r(x))" might then be achieved by a
recursive call g(t(x)).

Of course to introduce a recursive call to an auxilliary function,
we must establish the appropriate input and termination
conditions. The input specification for the auxilliary program is
not the same as the input specification ?{x) for the entire
program /. For, suppose that in developing the subgoal
"Compute B(x)," we have made several case assumptions "Case
R,(x)," ... "Case R_{x)". Then the conditions Ri(x), ... Ra(x) will
be the tests of conditional expressions in the final program /,
and must be true if control is to reach the call to g(x). Thus, we
may expect that the conjunction QjL.v) of all these tests with the
original input specification, ie.

P{x) and R {x} and .. and R, (),

will be true of the input to g. Moreover, the correctness of g
may depend on the truth of the above conjunction Q(x), which
we therefore take as the input specification for g. The input
condition for a recursive call gft(x))) is then Q(f(x)), i.e.

P{{x}) and R, {t(x)} and .. and R {r{x)) .

In the simple case that the auxilliary function g does not call the
main function /, the termination condition for a recursive call
g(t(x)) is analogous to the termination condition for a recursive
call to/, i.e. we must

Find a well-founded set W _ with ordering >, such that
xeW, andx) e W,
and x >, #x) .

The general case, in which g may also call/, is more complicated
and will not be considered here.

Manna

In the next section we illustrate the formation of auxiliary
functions in a concrete example.

V. Example 2: The Cartesian Produot
A problem that requires the formaiion of a simple system of
recursive programs is the computation of the Cartesian product
cart{X ¥} of two (finite) sets X and Y. This 15 set of all pairs (x
¥ such that x € X andy € Y. The putput specification is
therefore

Goal It Compute f(x9):x e X and y € ¥)

There is no input specification, because the program is intended

to apply to any two sets. Again, the set constructor {z : .} is
regarded as a nonprimitive component of our specificaton
language. We include in our programming language the

following primitive operations;

u set union

£y tae o 1} the finite set of elements r1, ro,.., t

{1 the empty set

nﬂpt‘j(U) the test for emptiness

head(U) a specific element of a nonempty set U

taifiu) the set of elements of U other than
head(V)

{u v) the pair with elements v and v

and if-then-else and recursion. Let us assume that the

transformations we can use in transforming the goal include
(1) Membership expansion
u € U => of empty{U}
then fa{se
else 1 = Aead{U} or w € raiflU);

(2) Empiy-set introduction

{u: false} => |],
(3) Union introduction

{2 Pla) or Qi) => ju: Plad} v fu: Qfud}; and
(4) Equalty elimination

fu:met}ast,
where & and ¢ are expressions with no variables in
common.

Applying membership expansion rule (1) to the subexpression x
€ X of Goal 1 yields

Loal 2. Compute {{x 3} : Lf emprylx) then faise tise X =
head(X) or x € rail{X)] and y € Y} .

Applying the logical if-then-else distribution rule
/(if P then f, else t;) «> i(P thenar,) elsef{ty):

yields

Goal 8. Compuie if empr(X)

then {{x ¥ : false and y € Y}
else {{x 900 (x = head(X)
or x € taif{X}} and y € Y} .

We next apply the logical transformation
false and P »> false

to the then-clause, and the and-or distribution rule

Auto.

Prog.-3:

409

(Por Q)and R =» (P and R} or {C and R)
to the else-clause, to obtain

Coal 4: <Compute if empry(X}
then {(x ¥} : false}
else {(x) : (x = Aeed(X)and y € ¥)
or (x € raif{X) and y € Y)} .

The empty-set introduction rule (2) applies to the then-clause of
Goal 4 and the union-introduction rule (3) applies to, the else-
clause, to produce

Goal 5: Compute If empry(X}
then [}
else {(x ¥} : x = Aead(X)
and ¥ € Yy u {x 3 % € taiflX)
and 3 € Y} .
The subexpression {x* y) : x e tail(X) and y e Y) is an instance
of our output specification,

{flxgp:xeXand yeY}:
this suggests replacing this subexpression by a recursive call
cart(tail{\) Y) .

recursive call
The

There is no input condition for the proposed
because the desired program has no input specification.
termination condition,

Goal 6: Find a wpll-frmorprd set W __ .

and ordering ” ar, SUCH that
(xwyeW and fallGYieW
and (X Y} », (eif{X)Y).
is solved by taking W;,, to be the set of all pairs of finite sets,
ordered by the usual proper containment relation on the first
component. This ordering is sufficient because X properly
contains tail(X).
Goal 5 is therfore reduced to
Goal 7 il empey(X)

then } }
else {{x 3): x = Acad(X) and

y € Y} cart{rail(X} Y) .

Compute

We still have to remove the remaining set-constructor from the
else-clause. To simplify the exposition we will reduce this
subexpression in a separate series of starred subgoals

Goal 7. Compute {{x y): x = Aegd{X) and y € Y} .

Applying the member expansion rule (1) to the subexpression y
€ Y yields

Goal 8% Compute [{x 3i: x = fead(X) and

O empry(Y) then false

else y = Aead(Y) or y € tail(Y)}
the union-

Applying the if-then-else distribution rule and

introduction rule (3) produces

Manna

Coal 9*: Compute if' emi>ty(Y)
then {{x ¥} : x = Zead{X} and false}
else {{x y) 2 = hecd{X} and y = headl¥)}
Ul b x = head(X) and y € tail(Y)] .

The then-clause of Goal 9* is transformed by the logical rule
P and false -> false ,

and the empty-set introduction rule (2). The first component of
the else-clause is transformed by the equality-elimination rule
(4). The resulting goal is

Goal 10*: Compute if emptyY')
then {]
else {{Aead(X) heediY 1}
U fix yx = deed{X) and y € tail(Y)} .

Now the subexpression
fl ¥) 2 x = Aead(N} and ye raifY)}

is an instance of Goal 7*. This suggests that we introduce an
auxiliary function cart2(X Y) to achieve Goal 7%, and replace
the above subexpression by the recursive call cart2(X tail(Y)).
To establish that this proposed recursive call is legitimate, we
must prove its input and termination conditions.

Even though the main program cartf(X Y) had no input
specification, the auxilhary function ca,rt2(X Y) is applied in the
else-branch of the program, for which it is known that X is not
empty. This condition -. empty(X) is therefore the input
specification for cart2(X Y). Thus, [he input condition for the
recursive call cart2(X tail(Y)) is simply
Goal 11* — empty{x} .
This condition is satisfied immediately, because it is identical to
the input specification for c<zr'2(X Y).

The termination condition for the recursive call car/2(X tail(Y))
is

Goal 12*: Find a well-founded set W, with ordering
? ety SUCh that o
(X YyeW,_ .and (X aill¥Y)eW
and (X Y) > . (X reilY) .

rard

rar|

Goal 12* can be achieved by taking Wean to be the set of all
pairs of finite sets, with the usual proper containment ordering
applied to its second component.

Having established both the input and termination conditions,
we are justified in introducing the recursive call cart2(X tail(Y))
into Goal 10%, yielding

Goal 13*: Compute I empiylY)
then | }
else {head(D) head(Y) v cart2{X taif{¥)).

Because Goal 13* is composed entirely of primitive constructs,
we have succeeded in constructing the auxiliary function

Auto.

Prog.-3:

cart2(X Y) <= 1f empryl¥)
then { }

else (head(X) head(Y)) v cart2(X tall(¥}

This program computes the Cartesian product of {head(X)} with
Y.

The auxiliary function car:2(X Y) is intended to satisfy Goal
7*. a subexpression of Goal 7. We can therefore replace that
subexpression by a call to the new function, yielding-

Goal 14: Compute if empiyiX)
then |

else caria(N YD u cert{taif{X) Y)

Now Goal 14 contains no nonpnmitives and we have succeeded
in constructing the desired program

cart{X Y) <= il empty(N}
then |}
else cart2(X Y} v carf{raitix) Y} .

VI. Limitations and Future Research

The preceding example illustrates construction of the simplest
form of auxilliary function, which does not call the main
function. The general case is more difficult, and is beyond the
capabilities of our current system because of the complexity of
the termination condition.

We introduce a recursive call only when a subgoal is an instance
of a higher-level subgoal For some problems it may be
necessary to generalize the higher-level subgoal to force the
match to occur. This situation is analogous to proving a
mathematical theorem by mathematical induction: it is often
necessary to generalize the theorem to be proved, so that the
induction hypothesis will be strong enough for the induction step
to be proved. Some such generalizations have been performed
automatically by the theorem-proving system of Boyer and
Moore [1975], and the program synthesis system of Darlington
[1975].

Our current SYNSYS only constructs pure LISP programs,
which produce an output value but do not have any side-effects.
Systems by Warren [1974] and Waldinger [1977] can produce
programs with side-effects, but they cannot introduce recursive
or iterative loops into these programs. We intend to integrate
both abilities into a single system.

VIIl. References

Bledsoe, W. W., and M. Tyson [1977], Typing and proof by cases
in program verification, in Machine Intelligence 8:
Machine Representations of Knowledge, (E. W. Elcock
and D. Michie, editors), John Wiley 8c Sons, New
York, N.Y. (to appear).

Boyer, R. S., and J S. Moore [Jan. 1975], Proving theorems about
LISP functions, JACM, Vol. 22, No. 1, pp. 129-144.

Burstall, R. M. and J. Darlington [April 1975], Some
transformations for developing recursive programs,
Proceedings of the International Conference on

Reliable Software, Los Angeles, Ca. pp. 465-472.

Manna

Darlington, J. [July 1975], Applications of program
transformation to program synthesis, Colloques IRIA
on Proving and Improving Programs, Arc-et-Senans,
France, pp. 133-HI

Manna, Z. and R. Waldinger [August 1977], The automatic
synthesis of recursive programs, Proceedings of the
SICART-SIGPLAN Symposium on Artificial
Intelligence and Programming Languages, Rochester,
N.Y.

Waldinger, R. J. [1977], Achieving several goals simultaneously,
in Machine Intelligence S: Machine Representations of
Knowledge, (E. W. Elcock and D. Michie, editors), John
Wiley 8c Sons, New York, N.Y. (to appear).

Warren, D. H. D. [June 1974], WARPLAN: A system for
generating plans, Technical Note, Dept. of
Computational Logic, University of Edinburgh,
Edingurgh, Scotland.

Warren, D. H. D. [July 1976], Generating conditional plans and
programs, Proceedings of Conference on Artificial
Intelligence and Simulation on Behaviour, Edinburgh,
Scotland, pp. 344-354.

Wilber, B. M. [Mar. 1976], A QLISP reference manual, Technical
note, Stanford Reserch Institute, Menlo Park, Ca.

Auto. Pror.-3:
hi i

Manna

SISP/I AN INTERACTIVE SYSTEM ABLE TO
SYNTHESIZE FUNCTIONS FROM EXAMPLES

FRANCE
de Programinati on

Jean-Pierre JOUANNAUD
Maitre-Assistant a 1'Institut
Universite Paris VI

A, Place Jussieu

75005 PARIS

FRANCE
Laboratoire de Recherche

Gerard GU1THO

Maitre de Conference -
en Informatique
Universite Paris
91405 ORSAY

Sud

Jean-Pierre TREUIL FRANCE
Chercheur - Laboratoire de Recherche en
Informatique
Universite Paris

91405 ORSAY

Sud

The research presented in this paper is supported
by IkIA-CESORI under contract number 76.
ABSTRACT
SISP/i is an interactive system whose goal is
the automatic inference of LISP functions from a
finite set of examples {(x., f(x.))) where x. is a

list belonging to the domain of the function f we
want to infer. SISP/I is able to infer the recur-
sive form of many linear recursive functions and

its stop-condition. SISP/l tries to work with one

example only. When it fails, it asks for new ones:

using then a method of generating new partial sub-
problems, SISP/l is able to perfect its generated
recursive function until it gets a correct one.

I INTRODUCTION
In this paper we describe the system SISP/I
whose goal is the automatic inference of LISP func-
tions from a finite set of examples {(x., I1(x.))},

where x. is a list belonging to the domain of the
function f we want to infer.

The problem originates from a more general
one: how to build a "Learning-Question-Answering-
System" (L.Q.A.S.) using a functional method to
provide an answer to any given question. The me-
thod we propose in SISP/l is naturally well adap-
ted to the L.Q.A.S. we are. developping (6.1, 17 1.

In the field of "Automatic Programming from
Examples", an important piece of recent work is

THESYS by SUMMERS L5J. The major result of this

work, is the following: using a small number of

well chosen examples

((NIL, f(NIL)), ((A), f((A)))...} THESYS is able
to infer a recursive expression $ equivalent to f
for every x belonging to the domain of f.

class of functions can however
be obtained by Summers's method, which works by loo-
king for a recurence relation between representati-
ve predicates p. of the given input structure and

Only a small

recurence relation between the map functions
the given outputs from the given
using a fixed point theorem, V is cons-

for a
m. providing
puts. Then,
tructed .
Although Summers's method

in-

is very powerful it

Auto.
412

Prop:.-3 :

has four important drawbacks:

1.- The constructed expression <p is necessarily
recursive: for instance the identity function will
be infered by V (x) » if X * NIL then NIL

else CONS (CAR(x), “(CDR(x)))
chosen examples, which in
the stop condition of the
For instance, the construc-

2.- THESYS needs well
particular must contain
recursive function V.

tion of the function REVERSE requires the following
set of examples:

{(NIL + NIL), ((A) - (A)), (A B) - (B A)),

((A B C) + (C B A))}

3.- The function to be constructed has to present
only one "iterative level''. For instance, THESIS
fails to construct a correct function corresponding

to the example: (P QR S) > PPQPQRPAQRS).
4 .- When THESYS has to solve a difficult problem,
it does not try to generate a partial, simpler
problem for which it could either find a correct
solution or perhaps use a knowledge previously
stored in a data base by the system itself. Thus,
THESYS cannot be efficiently used in a L.Q.A.S.
without important modifications.

The method we propose in this paper
differentin particular, it has the built
to use a Professor in interactive mode. It does
not lie yet on any theorical groundwork, but allows
us to overcome some of the previous drawbacks, al-
though new ones appear:

- recursion is not automatically infered by the
synthesis algorithm; for instance, using the exam-
ple (A B C) -* (A B C)), STSP/1 infers the function
P vp (x) = x for any x.

- for some "simple" functions,
one example (x, f(x)).

is very
capacity

S'ISP/1 needs only

In the case where a recursive expression is infered,
the stop condition is then found by SISP/l itself.
However the. list x must be long enough to be re-
presentative of the function f. For instance,
REVERSE is obtained using the only example
(WBCD) + (UC B A)), but is not obtained with
(A B C) > (C B A)).

- when the function f is "more complicated" SISP/I

fails to construct a correct function with only one
example and it then tries to work with two examples.
- when the function f is "much more complicated",
SISP/I generates a new partial simpler problem

(y> &(y)) where y is defined in terms of x and

g(y) is defined in terms of f(x). To solve this
new problem, SISP/I sometimes needs a new example
(x", f(x')) which is used to deduce an example

(y'» g(y"))« The interaction is only used in the
sense of asking for new examples, when necessary.
SISP/l is thus extensible and has the potentiality
to use a self constructed knowledge data base.

Some objections can be raised to our interac-
tive method:
- when a function f needs several examples to be

infered, the professor sometimes has
appropriate sequence of examples.
- we do not exactly know the class of functions

to give an

which SISP/I is able to infer. However, it seems
to be much larger than THESYS one. For instance
((PQRS)-»(PPQPQRPQRS)) is infered by

SISP/l using only one example whereas the HALF

function (P Q R S T U) + (P Q R)), which is infered

by THESYS, requires two examples by SISP/I. In fact,
JouannauH

that SISP will be able to infer a
linear recursive functions.

we hope
class of

larger

I'l. GENERAL DESCRIPTION OF THE METHOD
1.- L§ngu§ge

SISP/I infers functions defined on character
strings "ABCD..." which will be represented by the
list (A B C D...).

SISP/1 synthetizes LISP-functions built with
the following basic functions, described here by
examples:

LCAR: (A B C D) -* (A) CDR: (A B CD)-> (B C D)

LRAC: (A B C D) -+ (D) RDC: (ABC D) -> (A B C)

CONC: (A B), (C D) m> (ABCD)

CONCT: (A B), (C D), (EF) + ABCDEF

PREF: (BC), (ABC D) «> (A) LPrefix of (B C) in
(ABC D)]

SUFF: (B C), (A B C D) m+ (D) | Suffix of (B C) in
(A B C D)j

and a control structure using COND and NULL.

2*~ Notion_of_tYp_e

A type is a set of lists which can be defined
by rules which are summarised as follows [6 1:
a) the set of known inputs "x" and the set of out-
puts "f(x)™ of the function f to be synthetized are

types.
b) if X is a type and f a LISP function, then the
set of outputs of f restricted to X as input is a
type.
c) if Y is a type and g a LISP function then the

set X of x such as g(x) C- Y is a type.

3«~ Segment”].i_on_pattern

Let f be a function to be synthetized and
(x, f(x)) an example of "input-output" of this
function.

SISP/1
expression of

uses a general heuristic to create an

the function:

a) segmentation of strings x and y = f(x) into
three consecutive segments such that:

CONCT (px, ¢, sx) m+ X

CONCT (py, ¢, sy) -» vy
where c¢ denotes the larger string common to x and

y, px and py denote the prefixs of ¢ in x and vy,
sx and sy denote the suffixs of ¢ in x and vy.
b) building of relations between these segments.
A "Segmentation Pattern" of (x,y), for all x
and y, is defined as the network shown in figure |I.
We can see on this network:
- seven nodes representing types respectively as-
sociated to the strings x,y,c,pXx,py,sx,sy.

- twelve relations between nodes. Each relation
consists of a function and a scheme (l,» l«, <>
I ->J) which indicates the input nodes | , | ,...,
| in this order and the output node J. This order

n
is represented on the network by a double arrow.
Note that functions FX, FY, GPX, GPY, GSX,
GSY are built by SISP/1 using the basic functions
LCAR, CDR, LRAC, RDC, and the composition rule.
They are choosen of the less possible complexity
(the smallest number of basic functions).
In some cases, the segmentation pattern is
simpler:
- when one or several
the associated nodes are suppressed
pattern.
- when

strings are empty (NIL),
from the

two strings are equal, the associated

Auto.

Pror.-V

nodes are joined
x and y are the same,
node; if x and y have no common part,
is reduced to only two nodes.

4*" §Y.£It}Esis fron}_on£_exam£le

The synthesis consists of three steps:
a) SISP/1 generates a network (called a "Segmenta-
tion Structure") by the following process:

(1) Generate the segmentation pattern of
(x,y).The generation gives the two sets of pairs:

together. For instance, if
the pattern is reduced to one
the pattern

{(px» py), (c,py), (sx, py)} Kpx,sy), (c,sy), (sx, sy)}
(2) As long as py and sy are not empty, choose

one pair in each set by a heuristic way; for each

of these pairs, rename it as (x,y) and go to step 1.

b) SISP/1 looks at the segmentation structure for

a lattice in which the minimal and final nodes are

respectively X and Y (that is x and y types). This

lattice is stepwise constructed using Algorithm 1,
defined as follows:
Def initi ons:

- LAT is
at any step (except in
a lattice).

- an incomplete node of LAT
that the relation ending at this node (in LAT)
owns some entries which are not connected to X.
These nodes are called unsatisfied entries.

lattice
is not

the constructed part of the
the final step, LAT

is a node such

- BEG (Z) is the set of nodes in LAT which
are less than Z and which are not unsatisfied
entri es.

- P is a "path" from BEG (U) to V, where U

and V are nodes of LAT, if P is an oriented path

starting from one node belonging to BEG (U) and
ending at V. This path may contain incomplete
nodes together with their unsatisfied entries*

Example of LAT:

Nodes 6, 7, 11 are
Nodes 12, 13, 14,

incomplete nodes
15 are unsatisfied entries
All others nodes are complete nodes.

BEG (9) - {X, 1, 2, 7, 8}

Algorithm 1:

1. LAT « X

2. Look for a path P between X and Y.
3. Add path P to LAT.
4.

Lf there is no incomplete node in LAT then
stop
else select the minimal one and call it N.

(It can be demonstrated that Algorithm 1
generates a set of incomplete nodes which
is totaly ordered on LAT).

JonannauH

o L

7.
I

Let Y. be one unsatisfied entry of node Ni
Look “for a path P between BEG(N.) and Yi'
Let X. be the origin of P on ﬂEGtN.) and

try to detect a recursivity between X, and
Yi using Algorithm 2.

Go to step 3.

follows from algorithm | that when Algorithm

2 is called, a part of LAT has the following struc-

ture:

Sublat

X. N.
1 1

1
P
Y.

1

where sublat is restricted to he a lattice, and Yi
is the previous unsatisfied node.

Algorithm 2:

or

1f no path from X. to N. (in sublat) matches
a subpath of ¥ (ifi the fense of an identi-
cal sequence of operaters) then step alpo-
rithm 2,

EIﬁc liet x.+] - N,+I be the subpath of P
which has heen malched.
The above structure is changed to:

Sublat

. If the segmentation struclure does not con-—

tain a lattice starting in X. " ending in
N.+1 and analogous tov sublat then stop
aigorithm 2 elsc assume Lhe following re-
cursion:

Ki b Ni
@(x) = h lsublat (x), v{p{u(x}))1

X, —f N,
1 1

¥ (x)=hl v{¢(u(x))), sublat{x)]

3.

depending on the order of arguments of h.

Find & primitive stop condition of the re-
cursive funttion ¢ as follows: mateh the
operators of path P from X. Lo Ni in

A 1+é +1
the segmentation structure, then

from Xi+ to Ni and s0 oun, until it fajls.
Assumg 1? failes From X, te N.. Find a path
w from X. to N.. The primitive stap con~
ditien id assuthed to be:

if x € Kj, Lthen w (¥)

Reduce the primitive stop condition as fol-

lows:

a) remove Sublat from LAT.

b) if 4 relation from tho'Nk+1

itk <}, cannot be found in the segmentatiun

gtructure, then set P+ (X, ¥, N.) and
stop algerithm 2 else let r be thé found
relation.

c¢) find k, the smaller non negative integer

guch that w, = rk (w(x)) is not a fixed
point of eguation:

for every k,

Auto.

Prog.-3:

n [sublat (W(0), v(r(w (0N T = ()
for gvery x € X..
d) Set P e (X, —%N)
with w{r} ={1f x € ok (Xj) then zk(k)
[gublat (x), v{@(u(x)))]

is solution of the following

else h

where 2
equation:

ik (uk {x)}) = rk{w(x)) for every x & Xj

Remark To roduce the primitive stop condition,
the following process is iterated:
Suppose the last stop condition is

1f x € Xi then wix)

Using the functions u and r, it i% possible
Lo caleulate ¢ (x}), X € X., as shown on the follo-
wing figure: 3

X; W » w(Xi)
u T
u(Xi) —— npew stop cendition— T(W(Xi))

that is: ¥ (x)= b {sublat (x), viw{u(x}))i

x h [Tsublat {x), v(r{w(x)})3' = wix)

which means, i1f the correct answer w(x) is obtained
that w{x) is a fixed point of the lasL equation.

It thug follows that there exists a funcrion
z such that:

z{u(x)) = r{wi(x)) for cvery x € xj
Thus now the stop condition is:

if xEu {Xj) then z{x)

5.- Synthesis_from two cxamples

Let us suppose that after a first example,
SISP/1 generates a function which fails on a second
example. Let the two examples be {x,y) and (x',y").

The principle is always to build a structure
from the generation of segmentation—patterns; SISP/I

here generates the segmentation palterns associated

with the initial pairs OGLx") L (r,y') (X y), (x7 L y™)

and goes on in the same way as in the first method.
SISP/1 then tries to find a three parts split-

ted path from X to ¥:

- a path from X to X'.

- the function witself from X' to Y'.

~ a path from Y' to Y.

Remarks: - using this technique, SISP/1 looks expli-

citely for a recursive form of the function ¢.

— when unsatisfied nodes are remaining in
the path, SISP/) generates sub-problems which are to
be solved either by algorithm | or again by using
onc more example when algorithm | fails {3 bis].

For instance, let YI be a remaining unsatisfied node
in the path:

Jouannaud

SISP provides the following expression of ¢:
w(r) =(if x € X' then w(x)
else b 19(f(x)), ¥(x}]

whete § is a sub-problem to be sclved by SISP/I and
wherte w(x) is the function which has been found by
algorithm | working on only the example (x',¥').
This stop condition can then be reduced as explai-
ned in algorithm 2.

III. PRACTLICAL EXAMPLES

t. Let ws use cur method to {ind Lhe REVERSE
function. The input (A B C D E) is given to
SISP/1: it does not knrow the answer and asks the
Frofessor whe returns: (F D C B A). S18P analyses
input and output and generates the segmentation
structure indicated in figore 3.

S15P looks then for a path from the Ques-
rion Q containing the list (A B C D E) te the
answer R containing {E D C B A) and {inds Lhe

following onc:
LCAR r HCONC

Q= — R

"

Looking for the unsatisfied entries, SISF

finds r . 1t lovks again for a path from BEG(R)
to 1, and finds the folluwing one:
g .— .50 LEAR CONC
! 2 TTTTTREIE Ry

S$1SP now cxamines both paths. %he mapping (LCAR-
CONCY of the first one matches into the mapping
{CDK-LCAR-CONC) of the second one. This statement
is sufficient to infer a recursive expression ¢:

¢ix) = CONC L@(CDR(x)), LCAR (x)1

5ISP has to still find the stop condition. Mat-
ching the three cperators CDR, LCAK, CONC with the
strTucture, it remarks that it can apply CDR on

type Ay giving ty but cannot apply LCAR on type Cye

SISP/1 thus knows Lbat the stop condition is to be
found in this part of the structure:

cun\\\\
LCAR CONC

q3 * T4 ,T3

CDR

Auto.

Prog,.-3:
415

SI8P/I
from t5
here to be identical to t.. It finds the trivial

one and generates the primitive stop condition:

tyies now to find a new binding of the path
to the unsatisfied entry of Ty which happen

itxg tg Lthen x

S15F now has to reduce the stop condition, using
the following mappings:

LIHR
e o —RBC
9 Yies i Tisl
Assuming that CDR ((E)) = NIL-Y—s RDC((E)) -
N1l is the firsL reduced stop condition, SISP cal-

culates now ¢(x} for every x belonging to LS:

@{L) = CONC @ (CDR({E)}), LCAR((E})!
e CONC L¢(NIL), (F}|

using the new stop vondition: w(E) = CONC | NiL,
{F)] = (E) which here gives the correct answer.

The process cannot be performed further, because
CDR(CDR{(E)}) does not exist. The function
generated by SISP is thus:

¢{x) =}if x = NIL then NIL
wlse CONC (@w{CDR(x)), LCAR (x))
that is the usuval REVERSE.

2. The secund example we display now needs
more material than the first one since two couples
(input - gutput) are necessary. Let HALF be the
function to synthetize:

- first couple: (ABCUDEFG M) +
From this first example, SISP/! constructs
the fullowing structure:

(ABCD)

RDDDDC

The relation ¢:Q' + R' found here is thus
w(x) = RDDDEC(X).

- The professor gives now the following input:
(A BCDEF). SISFP uses ¥ to answer (A B), which
is false. The professer then gives the correct
answer: (ABCDEPF) - {ADBL).

SISP then generates the structure displayed
on figure 3. Assuming that EB' can be ocbtained
from Q" using the correct function ¢ to be synthe—
tized, SISP, as explained before, uses the follo-
wing path from Q' to R':

RDDC ' CONC
Q' - Q" —-l{" - R'

SR

Jouannand

The problem is now to find a path from BEG

{R'} to SR. The pimplest one which is found here
e SUFF LCAR
Q"—‘ﬁ—’ gn ——— SR
o’

¥ is thus represented by the lattice:

RDDC ¥ CONC

» R'

q r - Q" - R"

SUFF
& LCAR . oo
it follows that @(x) = CONC [w{RDBC{x)), LCAR({SUFF
L@ (RDBC(x)), RDDC{x)1)} with the trivial stop
coendition:

if x € @' then RDDDC(x)

SISP now has to reduce this stop condition using
the following mappings:

RDLC RDC

Q r Qll and RI R"

Assuming that BDDC ((A B C D E F)) = (A B C D)

—f 5 KOC ((A B C D)) = (A B)
S518P computes now ¥(x) for every x belonging to Q":

w{(A BCDETF) = CONC [¢(RDDC((A B C D E F)},
LCAR(SUFF [@w(RDDC{((A B C D E F)),
RODC({A B C D E F))])]
= CONC [w((A B C D)),
LCAR(SUFF [w({A B C D)), (A BCD)])I
= CONC [(A B), LCAR(SUFF L{A B),
ABCD)Y]
= CONC [(A B),
which is the correct answer.
The primitive =stop condition can thus be
reduced to:
if x € ROBC(G") then RDLC(X)

{C)] = (A B C)

where RDDC is the solution eof the following equation

on T
2 (RDDC({x)) = RDC (RDDDC(x}) for every x € Q".

This process is recursively applied and stops
when RDDC ((A B)) = KIL. At this step, we obtain
the function HALF defined as follows:

w(x) ={if RDDC(x) = NIL then RDC(x)
else CONC [¢(RDDC {x)),LCAR(SUFF
[w(RDDC{x)), RDDL(x)1)]

Iv. LIMITS AND PROSPECTS OF THE METHOD

.- Progpects
SISP/t is already able to synthetize most of

the functions given in SUMMERS [5] and HEDRICKS [2]

in particular it synthetizes the following ones by

uging algorithm I:

(ABCDE)—+>(EDCEA) -

(ABCDE) » (AXBXCXDXEZX)

(ABCDE)+ (AABBCCDDEE)

(ABCDE) > (AABABCABCDABCDE)

By uping two or more examples it synthetizes:

(ABCDEFG)» (AAGGCGBEFFCCELDID

(ABCDEFGH) > (ABCD)

(ABCDE)+(EDCBAEDCBEDCETDE)

(ABCD) (DCEACBABAADCBCBBDCCD
Auto,

{(ABCDE)Y» (ABBCCCDDDDETEEEE)
(ABCDEFGH » (DCBAHGTFE)
{ABYy » (AAAAAAAA (cube of the entry length)
(ABCD) ~{AAAAAAAA) (half square): such
a way is not always easy to use, as we shall see
now!
- agsume SISP has to synthetize the HALF function
using the previous example (A BCDETF G H} »
(4 BCD). Algorithm | fails and the professor
gives as second example:
(BCDEFG -~ (BCD)
SISP here generates the following HALF function:
P{x) = ii ® = NIL then NIL
clse CONC [LCAR(x), ¢(CDR(RDC(x}))1
which is muth simpler than previous HALF function.
This simplicity was however found by the professor
who gave better examples.
- assume new Lhat SISP has te synthetize
tion using the example
(ABCDE)>~(ABBCCCDDDDETEETEE).
Algorithm | fails and the professor gives as
second example (ABCDY+ fABRCCCDDD D).
SISP generatcs the following functions:
P(x) =fif = € " then R"
{elﬁc CONC [P (RDT(x)), ¥(x)
vhere W(x) is hound to the following subproblem:
(ABCDE ~(EEEEE)
Algorithm ! fails then to provide a correct func-
tion ¥ and the professor now has to give the two
particularly well choosen examples:
(BCDE}y~{(BCCDDDEEEE)
(BCD)y+(BCCULDD)
they allow SISF to generate a new appropriate
example in order to synthetize a correct
Y(x) =fif x = NIL then NIL
{ZTse coNC TW{CDR(x)), LRAC(x)]
the stop condition of ¢ is then found:
if x = NIL then NIL
the genetated function ¥ will thus be given by the
linear recursive system @
¢:{w(x) m if x = NIL then NIL else

a func-

T CcoNG [w(RDC(x)), W(x})
W(x) = if x = NIL then NIL else
CONC [y{CDR(x)), LRAC(x)]
These twe last examples show the main im-
portance of good examples. We hope however that
it would be possible to use “bad examples" joined
together with a unification process, in order to
improve the given "bad examples’.

- with the exception of stop-condition, the func-—
tions generated by BSISP do not use predicates in
their definition . Thus the functien:
if "length of x is even" then reverse (x)
elge x
cannot be synthetized by SISP.
attacked in (6].
- SISP/} requires a good sequence of example in
order to use the second technique. They have to
be of decreasing length and consecutive.
- 51SP/t! only works on atomic lists.

This problem is

V. CONCLUSION

In summary, the described wethod consists of
congtructing a structure from an adequate set of

Pror.=3: Jouannand
416

exanmples {{xi, f(xi))} and in extracting from the

structure a lattice which represents an expression
of the function f.

SISP is a L1ISP pregram working om PLUP 10

using VLISP 10 [1).

Future developments will tend to make SISP

able to:

- define and store self contained problems in its
Memory,

- recognize that a partial problem has already been
enicountered and solwved,

- improve the professor's bad examples in order to
be able to sclve partial problems which have never
before been encountered,

- synthetize n-any functions {the two presented
technigques can easily be generaliZzed).

L1t

L21

(23]

VI. BIBLLIOGRAPHY

GREUSSAY P., at all: "VLISP 10. Reference
wanuel". Rapport interne Univ. Vincennes.

HEDRICKS C.L.: "Learning Production System
from examples'”, Artificial Intelligence Jour-
nal n® 7, January 1976.

JOUANNAUD J.PF., GUIHO G., TREUIL J.P.,
COALLAND P.: "SISP, systéme interactif de
synthése de programmes & partir d'exemples".
Publication de 1'lastitut de Programmation,
Mars 1977.

{ 4bis | JOUANNAUD J.P., GUIHO G.: "Inference of

[6]

[7]

funclions with an intcractive system” to be
published in Machine Intelligence n? 9 edited

by D. MITCHIE.

POHL Irt.: "Bi-Directional and Heuristic Search
in Path Problems", Thesis, Computer Science
Dept. Stanford University, 1969,

SUMMERS P.D.: "Program Construction from
examples". Phd. Thesis, December }975.

TREUIL J.P., JOUANNAUD JF.E., GUIHC G.: "“Une
méthode d'apprentissage de concepts, Colloque
AFCET: Panaroma de la Nouveauté informatique
en France, Gif s/Yvette, Novembre 1976,

TREUIL, J.P., JOUANNAUD J.P,, GUIH(},G.:
"L.Q.A.S., un systéme question-réponses basé
aur 1'apprentisezge et la synthése de program—
mes A partir ¢'exemples. Publication de
1'Institut de Programmation, Mars 1977.

Autn, Proes,-3:
417

Segmentation pattern associated
to (x,¥)-

Figure 1:

e)

CONCG

TONG |

Segmentation structure associated
to the REVERSE function.

Figure 2:

Jouannaud

EDC RDDDDC RLC
/‘—-—‘_F

e

SUFF

O ()
___ RnbDe
ABCDEF ABC

Figure 3: Structure associated Lo the
HALF function.

Auto. Pror.-3: Jouannaud
418

