NG ATNS
Tim Finin and George Hadden

Coordinated Sciemce Laboratory, University of Illinois
Urbana, Illinois 61801

Augmented Transition Networks (ATNs) have code which achieves a speed-up factor of 5 to 10
become a popular and effective tool for and a_size reduction factor of up to 1/2.
constructing natural language understanding The translation of an ATN network into LISP
systems. Our own system. PLANES [Waltz 76] is code is straightforward process, each state in the
based on a large "semantic grammar" which s network resulting in a simple LISP function. Our
implemented as an ATN network. In developing our compiler, however, attempts to produce efficient
system, we were frustrated by numerous problems code by applying three sets of optimization
and shortcomings IN the basic ATN formalism. (expressed in a simple pattern matching language)
Consequently, we have augmented and extended the rules _at different stages of the translation.
model to overcome some of these problems. We have The first set of rules defines
also developed an optimizing compiler for ATN source-to-source transformations on ATN networks
networks which translates them into LISP functions and individual ATN states. For example, one rule
and an interactive program which allows one to will bundle any adjacent word arcs of a state into
easily extend and modify an ATN grammar. a single SELECT arc if the set of words tested by

Extensions to thel__ ATN. Model the arcs are disjoint.

Some of the extensions are relatively simple: The second set of optimization rules s
the inclusion of new arc types such as PHRASE applied as the ATN network is translated into LISP
which matches two or more input words) and ROOT code. The domain of these rules is the set of ATN
(which matches on the root forra(s) of the current arcs. For example, one rule carefully examines
input word). ~ Others have involved re-examining the condition and actions on an arc to ~determine
the basic ATN mechanism in order to alleviate more if they might cause a side-effect (e.g. set a
fundamental problems. register). If no side-effects are possible, then

We have extended our ATN system to provide code for generating a new register context need
several control primitives which can be used to not be included.
dynamically prune the tree of decision points on The final set of optimization rules defines
the developing "parse." One primitive, FAIL LISP source-to-source translations which result in
(included both as an arc type and as an arc faster and/or more compact code. This set of
action) can propagate a failure message to any rules also includes transformations which can
point on the decision tree. Other primitives optionally "open code" the more common built-in
allow one to save environments, both control and ATN actions (e.g. setting or accessing a
variable binding. This allows one to suspend the register).
processing activated by a specified PUSH arc or Network Editor
action and to continue parsing as if it had have developed a special purpose editor,
failed. If ~subsequent attempts to find a Darse NETEDI [Waldzvkﬁnwmaspemamur ose76][Hadden77],whichknowsabo
fail, the suspended processing will automatically the structure of ATN's and takes advantage of
be resumed in the same environment. their redundancies.

Even with the ability to control backup, we NETEDI expects as its main input a list.
have found that the ATN model still suffers from a Each element of this list corresponds to a new arc
paucitv of control primitives. Evaluating an ATN in the ATN with the following exception: if some
state is conceptually a simple process in which initial segment of the input list would correspond
one evaluates each arc leaving a state until one to a set of arcs already in the ATN, no new arcs
is found which can be taken (leading to a new are added for these. The input list can be as
state to be evaluated) which does not return simple as a list of words which form a sentence or
failure. Thus the basic control primitive is the phrase or complex enough to form any possible arc
IF-THEN-ELSE-IF-ELSE... applied to the arcs of a — complete with embedded tests, LISP expressions,
state. We have found it convenient to add the and transition modes.
ability to conjoin or disjoin bundles of arcs Consider one of the elements of the input
leaving a state. For example, it is ouite common list. If it is an atom which begins with a "&".
to have a group of arcs leaving a state in which it represents a PUSH arc. When NETEDI sees one or
only one arc can possibly be taken. these, it adds register-setting code to the PUSH

In the standard ATN formalism, there is no arc; the register will have the same name as the
easy way to encode the knowledge that if one of subnet PUSH-ed to. Any other atom in the input
these arcs can be followed but eventually leads to list represents a WRD arc.
failure, then the other arc(s) can not possibly be Any arc (including WRD and PUSH) can be
followed. Our ATN system supports a SELECT represented by including its name as the first
construct which will “only allow one arc in the element in a list, preceding the name with a ":
bundle to be followed. The SELECT construct has and putting the rest of the arguments in the list.
the additional benefit of signaling to the reader For example, "(:CAT PREP)" would form a CAT (for
that the governed arcs are locallv exclusive category) _arc which recognizes prepositions. So
possibilities, distinguishing some of the ((:CAT PREP) &NP)" would produce the code
deterministic from the non-deterministic aspects required to recognize prepositional phrases
of a grammar. assuming the ATN contained a state called ANP

In our own work we use long sequences of which is the first state of a noun phrase
single-arc states to parse special constructions recognizer.
or idiomatic phrases. This auickly results in a
spaghetti like network which is difficult to read
and understand. To avoid this situation and to abriel. R.P. and Finin, T.W.; "The
keep together code which logically belongs LISP Editor"; Working Paper 1, Advanced
together, we have defined an AND construct which Automation Group. C.S.L., Univ. of 111,
conjoins a bundle of arcs into a single unit. The 19754

destination of each arc in the bundle (except for r NETEDI: An Augmented

D. .
the last arc, of course) is just the next arc in [Ha'ﬂ%rﬁsdl]oﬁ Eﬁ {\Noﬁ(cqidltor" MSEE Thesis, Univ.
the bundle.

These extensions to the ATN model have been [Sussman 72 Sussman G.J. and McDermott, D.V.:
built into an efficient interpreter (written in From "LAWNEERto CONNIVER — A Genetic
MACLISP) which uses a simple recursive technique A].proach; Proc, FJCC; 1972.
for simulating non- determlnlstlc automata. [Waltz 76] Waltz,” D.L., et.al.; "The PLANES

Compller fox AIM. JteiM System: Natural Language Access to a Lar1ge

Another major component of our ATN system s Data Base"; C.S L. Technical Report T-3
an optimizing compiler which translates ATN 1976.
networks into compact, efficient LISP code. This
LIgP code can then be passed through a standard
LISP compiler to produce machine language code. i i i
Compilation of the ATN networks used in the PLANES g, oo otfey Wu;?;k e B ree o Novel Rechort | was
system and several other large parsing networks contract number NOOO1*1-67-A-0305-0026
has resulted in corresponding machine language ’

Natural Lan1ggu3age-IO: Flnin

