A SYSTEM WHICH AUTOMATICALLY

J.

Department

of Machine

Session 18

IMPROVES PROGRAMS

Automatic Programming

Darlington and A.M. Buxatall

Intelligence

University of Edinburgh

Abstract

We give methods of mechanically converting
programs that are easy to understand into more
efficient ones, converting recursion equations using
high level operations into lower level flowchart
programs.

The main transformations involved are (i)
recursion removal (ii) eliminating common sub-
expressions and combining loops (iii) replacing pro-
cedure calls by their bodies (iv) introducing
assignments which overwrite list cells no longer in
use {compile-time garbage collection).

t Introduction

This paper ia an introduction to an automatic
program improving system that we have implemented
and are developing further.

A programmer is able to present his algorithms
to the system in a clear and abstract language. The
system converts them to efficient but probably not
transparent versions.

For example, here are two versions of one
program which reverses lists.

{1) meverme(xl) = null(zl} then nil
o i else cancT:?rworu{tl(zlJ)

oona(hd{n),mﬁ)*

{11} reverse{xl) = pegulfiwnil:
wlle not null{xl)
do n

4o begin
Tempi=tl(z1); t1(zl)t=result;
regult:=xl; xli=temp
end

One is clear and abstract, the other more
tortuous but efficient. Siven the first as a
definition, a competent programmer should be able to
produce the second. Our system can do this for him.

The system is built around the concept of
abstract programming, and we hope to encourage a user
to formulate his algorithms in abstract terms
appropriate to hia problem domain and leave to the
system the task of implementing them efficiently.

Our work was partly inspired by Minsky's homily
on form versus content in computer science in which
he recommended programming as a good application area
for Artificial Intelligence work. It was also
influeneed by Dijkstra® ideas on structured pro-
gramming, differing in that we start from a functional
LISP-like language.

Our investigation took as its starting point a
collection of prooedures written by Ambler and
Burstall which aimed to provide transparent, but
quite efficient operations on finite sets. We used
this example to study the transformations which are
needed to implement a collection of high level pro-
cedures as efficient code. To enable one to write
programs about finite sets some operations on sets,
for example, UNION, INTERSECTION, StBTBACT.NULLSET,

NILSET, CONSSET, CHOOSE and MINUS are defined. These
* The operations we use are based on the POP-2
language, Burstall,Collins and Popplestone . The main

features to note are that hd is the LISP car, t1 the.
LISP cdr and concat joins two lists (the LISP append;.

479

basic set operations must be implemented as structured
definitions in terms of the array or list primitives

available in the programming language. The user of
the set system can define and run new functions, such
as powerset, using these operations. However, when

he looks at his definition. he notices that he could
have produced a much more efficient program by writing
a special procedure for powerset directly in terms of
the array or list primitives. This is what our sys-
tem attempts to do. A well written program in a
LISP-like language expresses its structure as a hier-
archy of functions. Our system eliminates higher

level function calls to gain efficiency, flattening
this hierarchy. Four distinct improvement processes
seemed to be indicated.

1. Recursion removal,

2. Eliminating redundant computation, by merging

common subexpressions and combining loops.
3. Replacing procedure calls by their bodies.
4. Causing the program to reuse data cells which

are no longer needed, in order to reduce
storage allocation and garbage collection at
run time.

We have devised algorithms to perform these pro-
cesses on programs and implemented these algorithms as
POP-2 programs (section 7 gives an example of their
use). These algorithms are applicable to a variety
of domains and require only a collection of rules
specifying potentially useful equivalences for a
particular domain. We have tried our programs on our
original example (programs about finite sets), and we
can reproduce automatically a lot of the trioks incor-
porated in the original handwritten programs for the
sets domain.

The overall system using processes 1 to 4 takes
as input programs in a non-imperative language of
recursive definitions and converts them, via inter-
mediate stages, into an imperative language. This
imperative language uses while statements as well as
recursive definitions and permits assignment to com-
ponents of data structures.

In order to produce efficient programs the system
must use properties such as associativity or commutat-
ivity for the operations to be performed.

The principle techniques used are (i) matching,
involving functional abstraction to detect the form of
a recursive definition, (ii) matching to detect common
subexpressions and compound operations involving the
occurrence of several functional symbols, using
algebraic equivalences, (iii) symbolic running
extract meanings from programs and check that a
tentatively constructed sequence of instructions pro-
duces the required result. No elaborate theorem
proving techniques are used, and the programs run
quite faat, even though we have not xrked to code them
efficiently.

to

2.. Recursion Removal

In this stage the system attempts to oonvert the
set of recursion equations to a single iterative pro-
gram in the same operations. During this process
particular attention is paid to the semantics of the
operationsmakingup the recursion equations. This

process is generally applicable; the only input
required is the set of recursion equations and a table

of rules giving algebraic laws for the operations used.

There has been considerable theoretical invest-
igation into how to translate recursive achemas into
equivalent iterative achemas e.g. Strong , Garland and
Luckham , although as far as we know only the BBN LISP
compiler makes use of any of these ideas, and this
only for simple recursions* These studies apply to
translations of a schema which preserves its effect
for all interpretations of the primitives. Our pro-
gram uses translations which preserve the effect of a
schema only for a class of interpretations in which
the primitives obey a given set of algebraic laws; we
follow Cooper who gave examples of such translations.
We are only interested in translations which will
improve efficiency. The results for translations of
schemas to maintain equivalence under all inter-
pretations seem to be too weak for practical purposes.

The translations that we achieve are of two types

(i) where the computation sequence of the
resulting iterative program is a rearrangement of the
computation sequence of the recursive program but con-
tains the same number of steps. In these cases we
save time and storage overheads associated with the
stacking mechanisms (of. factorial function below)

Cii) where the tree grown by the recursive calls
contains redundancies because the same values are cal-
culated at separate nodes. Our system may produce an
iterative program whose computation sequence is shorte*
as well as having fewer overheads (cf. the Fibonacci
function below).

Our system for recursion removal consists of four
parts:

(i) A set of translation rules. Each rule has
(a) a recursive schema over certain primitives (b) an
iterative schema over these primitives and (c) a set
of equations over the primitives {and possibly some
extra restrictions) which, if satisfied, ensure that
the iterative schema produces the same result as the
recursive one.

(ii) A matching algorithm. This determines
whether a set of equations is an instance of the
recursive schema in one of the rules, and if so finds
the substitution,

(iii) A simple equality-based theorem prover.
This seeks to prove that a substitution is legitimate,
i.e. that the equations associated with the rule are
satisfied.

(iv) A control program. This first partitions
the input equations into the smallest disjoint subsets
such that if the equation for f involves a call of g
and vice versa then they are in the same subset.

Then, for each subset separately, it tries to find a
translation rule which applies to that subset, using
the matohing algorithm and the theorem prover, and
effects the translation to iterative form if it finds
one.

The matching algorithm is a second order one, in
that it finds a substitution which takes primitive
constants to expressions and also primitive functions
to functions gr lambda expressions. It is described
in Darlington . It was coded for lucidity, not speed.
Consider for example this translation rule

Recursion schema

f(x) /a -> b
1 not a-> h(d,f(e))

480

Tterative gchema
£(x) = i€ = then result:=
slpe begin resulti=d; xt=s;
wiile pot & do
begin regult:=h(reault,d);

Iime}
ongs
r;gy;fg::h(mgu;t.b}:
and

Eouatiens
n{h(ol,), ¥) = hi{at,h(B,¥)) (asmociutivity)
Restriction: x does not occur fres in h,

The factorial function defined by tha recursion
equation
=0 «p 1

f(x) =
- {1340 ~> mult(x,fact{x-1))

1s an instance of thim recursive achema, with sub-
stitution a=(x=0)}, bel, d=x, e=(x-1), h=mult. This i=
legitimate since 'mult’ patiafies the eguation for b in
the rule.

The translaticon is

faot{x)
AL x=0 then regulti=t;
2lge bezin
rogult:sx; xi=z-1;
¥alle xf0 do
begin pepult:=mult{result,x);

xi=x-1;
ond:
resulti=mult(reault,1);
orn

This translation took 3.5 seconds on an ICL 413Q where
the time for & OJ0NS ia 400 microseconda, and for AD
and TL 50 miocroseconds. The same saystem took approx-
imately 0.6 meconds to calculats factorial(0) using
the recursive definition and 0,06 peconda umirg the
iterative.
The reverae funciion defined by the recurpion equation
reverse(x) = [nmul{x) -> nil
2ot endl{x) -¥ concat({reverse(tix))
cons(na(x),nt1)}

is sls0 an instance of this recursive schema, with
substitution a=null(x), benil, ducona(ha(x),mil),

e=t1{x), n=Ax! x2; concat{x2,x1). This is & legit-
imate substitution, Notioce the abstracted function
that matehes with h, The tranmlatien is
:B\rersai{x =
1P nall(x) then resulti=-nil;
slge begin

regulti=cona(hd(x),nil); x:=ti{x);
while mak null(zx) do
begin ragultiwsencat(
cona(hd(x),nil),renult);

rr=t1(x):

end;

regalis=concat(nil,regult)

end
This translatien took 52.7 meconda. To reverse &
liat of length 40 took approximately 1.8 secconds using
the recursive definition and .06 meconds uaing the
iterative,
Another tranalatipn ruletw

Recursive schema

)= fa->d
not a => h(r{a1(x)),r{a2(x}))

Lterative gohema
f(x} T >
=hs t=b; Deaultixh;
7 m’iﬁm a do :
begin presulti=h(yt,y2); yl1:=
y2t=pogults xt=di{x)
ead

Equation
dz(d)*d1{d' b{}),h(ﬂ -h(fhm)-h(f-h(“.ﬂ)
Raytriction: x does not ccouvr free in 2 or b.
This epplies to the Fibonacci function

Fiv(n) = [0 v p=l => 1
not{n=0 v n=t) => Fib{n-1)+Fib{p-2)

glvieg the translation

yl:=1; y2:=1; resgult:=1
¥nile not(neO v n=1) go
beagin resulti=yi+y2; yl:=y2; y2i=result; ni=ne!
end
This translation took 48,25 meconds. To calculate
mMb(20) took 12.85 sescnds using the recursive
definition and .125 using the iterative definition.

This section of cur aystem ghows the influence of
the MIT philosophy 'of embedding knowlsdgs in pro=-
grams'. New knowledge, in the form of translation
rules can eagily be added to the system. We currenfly
have alx achemea, mostly with saveral translationas.

3 o Eliminating Radundant Computation
Zals Compound omperations

After removing as muoh recuraicn as possible the
flattening is continued by remeving procedure calle.
This yroceads top down, a leyer at & time, rewriting
sach program infc another one. However, we do not
proceed by the normal method of first replacing the
calls of each procedurs by ita definition {in-line
¢ode introduction} and then optimising., Bafore
replacing prooadure calle we manipulate the program
to eliminate as much redundant computation es possible
and make the program mre amenable to efficient
implementation {aee section 4}. This we do by
exanining the semantic contant of the given program,
At present we mre unable to do this for whole
prograng and we modify them in portions consisting of
seguences of tagta and assignments within & loop.
Consider the following mequence of aasignments

S:aunioniintersection('[‘,ll RN
Wi=unien(intersestion(T,U) W)}

Clearly we can eliminate repeated computation of
intersection{T,U}, rewriting the sequence as

Xemintersection(T,U);
Steunion(X,¥);
Wizunion(X,¥};

Supposs now that intermestion &nd union are to be
implemented in terms of list processing. The pro—
cedure body for union{X,¥) might be

reasulti=¥;
xaile uok null(X} do begin
if pot member(hd{(X),Y)

hen (ha(x) t)
ult: .
e 15 S Zepulld

acd
By veplacing each call of union by this code we
would obtain & program which has two loops on X. But
this is unnscessary; the two can be combined into a
single loop on X which builds up two result lists

481

simultangously. We could let the system replace sach
call of ynion separatsly and then try to combine the
loopa, but thie would be quite difficult. Inetead we
let the system do &a much manipulation as possitle at
the higher level, bafore replacing procedurs calls by
their bodies, Thua it would firat synthealse a

compound pperation, which we will call dgublewjon,

with definition
doubleunion(X,Y,Z} = <unjon{Z,¥),uzien(X,2}>
It would then rewrite the assignment as

Xi=intersection(T,U)
<5, W>imdoubleunion(X, V,¥);

The gysiem is able to produce a body of code for
doubleunien(X,Y,2), wiz.

rogultl:=Y; result2:=Z;
while net null(X) gdo
bogin if not member(nd(X),Y)
then yagultlt=cons(hd(X),resultl);
AL Dot member{nd(Xx),2)

result?:=cons{hd(X},result2);
Xe=t1(X]

and;

and this body will be used to replace the call of
doubleunion in the nert stage {see section 4}.

Kotice that if we had started instsad with the
program

Simunion{intersection{lU,T},V);

Vimunion(¥,intersection({T,U));

wa could have made ithe same economies, glven the fact
that intersection and union are both commutative,
- n myound operations
To be able to spot opportunities for forming com=
pound cperations and produce ths appropriate code

bodies, the aystem preproceszssa the definiticns to
produce

(1) A diat showing which combinations of higher
level cperations can be formed into useful compound
operationa, This is ueed during the manipulation of
the higher level progrem.

{11} A schematic table that enables any
syntheaised compound operstion to be expanded into
code which im already in an optimised form. This
table is used in the nert stage to replsce procedure
calls by their bodies (see section 4).

This 1ist and table are then used in the trans-
formetions of all prograns written ueing these
cperations, To produce them the program uses a
reurite ruls showing how certain combingtionz of loopa
can be condenned.

Suppose for example that it 1s given theas
definitions:

union{X,¥) {= result:=Y;
whils not null{X) do
begin if not member(hd(X),Y) then
result:=cons (hd(X),zegult)

Xi=t1{X)
2nd
subtrect(X,Y) <= resultmnil;
while not null{X) %2 begin
if not member(hd x).ri then
ulti=oona(hd(X}, resuly)
%iﬁ(x)
and

intarsection{X,Y) 4= pegulti=nil;
¥iile not »all{X) do

begin
if member(nd(Xx),Y) ihen
14:=cona{hd(X) ,results
Xi=t1(X)
end
A1} these definitions can be gondensed uaing a rewrite
rmle

£1(x,y) <= pran(x)

yalle x)
Msiz wj%x.yl: r:=f(x)
and;

and

r2(x,y) <= zz=b(z):
while p(x) de
bagin !:::-HI,B)F ri=f(x);
azd

rewrites to

#12{z,5,2) ¢ yl-t{:): z:=‘b(x);
while p(x} do
begin siwh(x,z); yi=g(x,y};
zr=f{x)
and

a0 that £12(x,y,2) = <01(x,5), 20,2

Hers x,¥,Z may each repressnt seversl varkbles,
not jumt ohe, and ab,f,z,h are arbitrary functions.

The system uses this to preprocessa the defizifims
and produces

(1} & 1iet {(union,subtract,intersection))
showing that all theee cparations can be combined
intc compound gperations, provided that when they
oeeur in programs the variables they iterate on (in
thim cage the first variable} have the same value,

and (11} & table from which code can be produced to
reallse any syntheslaed compound opermtor of this
type, namely

Cbodge telpart 13;
shile not null{vart) do
§i]

<part 2%j
var!s=t1(var1)

g

<psrt 1> for uniontiz ragult, twvar2
for gubtractsim :ngul!i tmni]
for interssctionimpesul ti ani]

<part 2> for unioniis f not member(hd(var!)wrd
Shep

for subtracttim

I=
conel Bd(var1) result,)
Af pet mmblr(hdmz

Iuen
t, i=
consi ﬁd(mﬂ %)

for intersection::=if membar(hd(varl},var2
than

e thalrart), comat,)

3.3 Progren menjpulation

If we work on asgignment sequences directly it
is not sasy to recognlwe common subszpreasions and to
detect opportunities for lntroducing compound
operations. So the system executes the given
sequsnce of apwignzents sygbolicglly xnd Finde what
plate it producea, that is, it com-
putes the final value for emch identifisr as sn
expression in terms of the ipitial valuss., I the
above sxample, given initial symbolis values SO,TO,UO,

V. and W, for variables 3,7,U,V and W the final atate
vgctor i

<S=union{interseetion(T,,U.),V.), =T ,U=U_,VaV_,
w=union?in ormection To.“gs .\io%

The gearah for coamon subsrprégsions and sempounbd
cperations is performed on the S5-tuple of expreaaions
constituting the welues of 5,7,0,V and ¥, This sbate
S=tuple is rewritten, introducing subeidiary
variables in whers clauses (in fact the internmal
representation uses pointers to list strucures}, thus

€5, 1,0,9,Wulr, T, U Y, 2>
whord <9, s9mdoublounion(x, ¥ W)
yhere x=1ntmoetion[1‘o,ﬂo}

This new S-iuple of expressions must now be con-
varted back to assignments.

To summarise, thers are thres staps 21; eonvert
from agaignmantis fo state trensformation (2) rewrite
the gtate transformetion, and (3) convert back to
assignments, We will make a few more remarks about
each,

Step 1, From the ssquence of commands the trans-
formation induced im sxtracted by running the sequence
an ayzbelic data. From this state transformaetion a
met of squivalent transformations are produced by
applying all the m riate algebraic aquations
(oommutativity etc.), to a given degres of sffort,

Step 2. In sach ¢f these state trensformaticns
the program seeks common subexpressions and compound
operations,

The improvements made in this atep can be
roapressnted as rewriting rules on n~tuples of
expressions. They introduce 'yhers clauses' using new
1dentifiers, to show the sharing. ILst E, F and ¢ b
asta-variablee denctipg expressiona and v be a meta-
varisble denoting & {suitably distinct) identifier,

We use E(B ""’En) to denote arn expressicn with msub=
axpreanlons E1 . ,En.

The rewrlting rule for extracting commen sub-
expreanions is:-

Rewrite '<E1(E).....En(E)>' as ‘(B'{v),....ﬂ (v)>
ers v«k'

The rewriting rule for intralicing a compound
operation f, defined by f(x'....,zf) =
<F‘(x1n...xk),.-..Fm(l.‘..n.!k}ﬁ Bi=

Rewrite "<&, {F (G, ,000,0)yarasP (Crrnuns
o a E:!iFl(G‘l'.l.'gk;'l.'lfnfcilliilg;;;)‘
Al '<E1(v1pll.|" l;--c;Ek '1....' k’

vheye *vi,...,g?-f(ﬂp..u[;k)'

4 quite slaborats matching process is used to
determine whsre these rulea are applicable,
(Darlington” gives dutailm}, Por sachk of the
variant state transformations produced by using the
equations, the system finds all subexpraseiona
geccurring in 11 and matohes the ¥, against them for
sach compound f. At this stage Only the most
prouiming one, as judged by a rough afficiency
satinate is retained. Thie is rewritien in terms of
the oompound operations.

Step 3. The ayatem converts the rewritten state
tranaformation to a saquence of assignmentsa. It oal-
culates & set of differences batwesn the final
erpresaions for the identifiers and thair initial
valuss, then mmfnm & G.F.8,~1ike sesrch {Ernst
and Newell”, Simon). For sxample, trying to
achisve the transformation <X=conswet{X.,T, .I-xe,quo)
the system notices thres differences betwesn initial
aud final values. It tries to remove these in all
possible sequences until it sucoseds, It would
firat toy 'Limoonamet{X,T);', but Y still diffars

482

from its final wvelue and Xo is lomt. 3o it tries
successively '‘YTiaXy Zi=X;', which losss Y Yoo ascen,
and 'ZimX; Xsxconsset(X,Y)}; YisZ', If necesssry it
introduces extra identifiers,

It weems crucial that the maripulation im done
on the highsr laval program, befors replacing pro-
cedure calls, for two reasons,

(s) The higher level programs are often much
simpler and easisr to understand, since usually u
singles oparation arpands into a body of code,

{b) W¥e are able to make full use of the
algsbraic lawe appropriats to thia higher lewel,
For example, once calls to aet operatinns have besn
replaced by their list procesaing bodies many
possibilities for rearrangesment and optimisstion will
have been loat, Thus union(X,Y)=munion(Y,X) bus if
unjon is represented by list concatenation, ¢ , the
results X & Yand T (& X are two diffsrsnt lista
nlthough they represent the same ast., Sc no liat
optimigar would commute the argumenta however great
the gains in afficiency.

4 Re sdure by their @

Hero the aystem replaces calls of basic oper-
stions by their procedurs bodies and replaces com-
pound operations by code bedies produced using the
compound operator table demoribed sarller, A

In our example abovs the progran

X:=intersestion(T,U};
<§,¥>:= doudbleunion(X,V,¥);

expands into a liat program

Zeaultianils
while not nu11(T)
do begin if mamberfhd(T),U)
%&‘;. regult:=cons(hd(T),resultk
Tt=t1{T H

snd;
X:epegults; £1:=V: result2i=¥;

whils not nullilX
do begin if not member(hd(X),¥)
4han 1t1:=cona(hd(X),ragultt);
4f not memder(ha(X),¥)
then ;r_e_iul_ﬂ:-cons(hd(ﬁ ' ;‘25111*&2);
Kl=tlixj;

2nd;
Si=regulti; Wi=regult2;

At preaent the systenm hag definltions teo provide
a choice of two representations for sets: lismor
blt stringms, Themss involve different sets of com-
pound operations. The user choose= one cf the rep-
rementations.

Se Esuging Discarded List Calls

In sny progran that contains lists as data
structures cur gystem issble to take the improvement
further. It attempts to transform constructive
list progrems, which allow assignment only to ident-
ifiers, into destructive ones, which allow assign-
ment to parta of struntures, for example 'ha{Y):=X',
In LISP torma it ¢liminates CONS in favour of REPLACA
and REFLACD. Progrems written 'desiructively' are
efficlent in store usage, but thesy are recognised as
belng difficult te understand or debug aince side
effocts of desdructive assiguments ars cften far from
obvvioun,

The process involved in this traneformation
followa the sema pattarn as dsscribad in seotion 3.
It is regarded ms a rewriting between two levels of
languags, & 'ponstructive' list langusge and &
‘destructive’ 1list language. Again the system

483

opsrates by finding the state tranaformaticn and re-
irtarpreting 1t as efficisntly as possibla,

The optimiastion attempted is to avoid atore
usage by reuxing any list cells that will have besn
discarded, This process can bs thought of as a
compile time garbages collection.

The aywtenm takes a asguence of sasignmente and
works out the symbolic etate tranaformation they
induce, Usually informatlion is available to make
the starting state more detailed than before. Thuns
bafore Xi=t1(X) we know that X should have as value &
ligt of at lesast one elemant. To examine stors usage
we explicitly ocame list cells and define a starting
state in terma of ildentifiers, I, Atoma, A, limt cells,
¢, and variables, ¥, Thus a state is a triple of
finite functions,

I-2AV C UV Y
hd: C=dA MW OV Y
t1: G-A VOV Y

The variables, V, stand for unspacified list cells or
atoms {compare the variables X Vg 2g ueed previously).

val:

For example hefgre ths program

Y:=cons{nd(X),1);
:=t1{X)

the ayatem creates a symbolic state

val{X)=c .Vll(‘!;--c +nd(c Jua,,t1{e, }=c,,
l-:cl[cj)ﬂ".i:l(c5 ﬂz.hd(cz)x‘f ,tl(a2)=v4

and after executing the ebove program on this symholic
ptate it would have a finml state

val(X}me,,ral{f)=c .thc ;:; .tl%c J=¢,,ndl(e ;a .
t1(c4}-c‘§'.hc1{e3}-v‘:.t1 c; =) bl c;}ﬂg,tl(e; ﬂi

The syetsm now performs a 'symbolic garbage
collection' on this state description %o mes if eny
cells have besn dipemrded, and attemptas to reuse theae
40 avold the introduction of new cells. In the
example it finds tt 1t can use the discarded cell °y
instead of intreducing the nsw cell o4s and it
rewrites the final state thus

nl(x}=c .ul(?%:c .hd(c1gu1.t1(c1g-c ,
hd(cz =v»3.t1(::2 =1r4.hd(c3 -v1,t1(c3 -5

The aystem nov tries various ssquences of
assignments {exhauatively, but with a G.P.S.<like
differancs-cparator nb105 t0 achisve a sequence of
inatructions to implement the new transformation but
avoiding cons'sy In our ezample the sequence pro-—
ducad is

NEWVAR1 swtl(X); t1(X):=Y; Y:=X; X:=NEWVAR!
Thus the list reverse progran

Legult:=nil;
while not nuli(x) do
begin M&-conu(hd[ﬁ .zsﬂlt); Il-tl(x);
and;
is automatieally converted to & revarss program vhich
uass nc new atorets

regulti=nil;
while not null(x) g;r
begin NEWVAR! tmtl(X);
t1(X)s=pegult;: rogultimX; XrwNEWVART;
andy

This trenslation topk 2,125 aeconds.

6y Uge of the Svytem

(ne can experiment with the system uaing simple
intaractive facilities; a sample dlalogue ig glven
below, The user can inveke any of the three
processes: recursion removal (Stage 1 above),

eliminating redundant computation with code intro-
duction (Stages 2 and 3), and destructive list pro-
ceasing (Stage 4).

The system can be applied to a new domain of
diacourse just by giving it new rules and definitions.
The table of recursive schemas and iterative equiv-
alents and the table of iterative compounds are
independent of domain; they may of course be extended
To apply the system to the finite sets domain, so that
it translates recursion equations in basic set oper-
ations (conseet, choose, nullget etc.) to destructive
list processing programs or to bit string processing
programs, we have provided the following.

(i) Equations about the basic set operations,
conmutativity etc. (used in Stages 1 and 2)

(ii) Procedure bodies to implement the basic set
operations by list operations (used in Stage ?)

(ii*)
For the finite set application the system has a

fetf extra tricks built into it as program. We would
like to express these by rules or tables.

as (ii) for bit strings instead of lists.

The idea of symbolic execution of parts of a
program has proved fruitful and we would like to
explore further applications for it. It has also
been used at Edinburgh by Burstall and Topor and
Boyer and Moore Our expression optimising
techniques seem to go beyond those used in current 14
compilers (see for example Sheridan , Roh1 and Lin ;

Hopgood , page 74 gives further references).
I Example of Use
: STARTSYSTEM(): (user commences dislogue)

START OF OPTIMISATION.INPUT PROGRAM
TC BE OPTIMISED ayatems ralpoma)
union{x,y)= user inputs program)
nullset{x -3y,
pot nullaet(x} ->consset(chooge(x),
union(minue(choose{z},x},y))
WHICH OPTIMISATION PROCESS WOULD YOU LIKE FERFORMED
t REC (uger requests Tecursion removal atage)
RESULTING PROGRAM IS
reaulti=y;
Ihila__g_nulluet(x) do
begin Iegult.nconsset(choosa(x), regul ult);
1save i=ninus{choose(x),x);

yi=yi
Xi=xaave;

(system cutputs result)

n
%%CH OPTIMISATION PROCESS WOULD YOU LIKE FERFORMED
{umer wishes to continue optimising his program)
PCDEINTRO
b0 YOU WISH TO IMPLEMENT IN LISTS OR BIT STRINGS
81T STRINGS
RESULTING PROGRAM IS
:=length(z); ni=1; resylti=y;
ghile n€l do
begin 1f I-[-n—]a'l then
begin resultn]:=1; x[n]:=0:
T

end;

ni=n-1

2od

WHICH OPTIMISATION PROCESS WOULD YOU LIKE PERFORMED

FINISHED (user has finisbed with this progrsm)

DO YOU WISH TO PERFCEM ANOTHER OPTIMISATION

YES (user continuea with anothar program)

{FFUT PROGRAM T BE OPTIMISED
donsahufflei=true ;
¥iile doneshuffle do

begin doneahufflei=false;
t:anil; lastizhd(xi);

!y;;?ﬁ'nun(tl(xl)} do

{uoer inputs sorting
Progras

484

bezin if last<hd{tl(xl))
s=eons {1 t’ﬁF‘F"
bl ::I.cf:wlu.:: PO
ond

1ge
begin x1:=41(x1);

ramulits

conp(ha(xl},resulth

donaghuff{let=true

xl:=t%

ead
and;

rosultsmum(g:uigrﬂm)
xli=revaras
and;
ragultiexl}
WHICH OPTIMISATION PROCESS WOULD YOU LIKE PERFORMED
MAKEDEST {atage 4 store overwriting)
RESULTING PROGRAM IS
doneshufflei=true;
Nhilw doneshuffle do
M_ doneshufflez=falsge;
1=nil; last:=hd(xl);
while not nullttl{xl
begin if laat<hd(t1(xl

then b_gg}.%
hd{xl) s=lant; hst:-hdgtl(xll);
newa,rhwtl(xl): tl(xl -] ts:

reaulti=xl:
eng
glge begin

newvarli=t1{x1);
hdixlghhd(tl{ﬂn;
tlixl)t=rosult; reguliisxl;
xl:=pewvarl; donsshufflei=true;
end
snd

regults=cona{last,)
R ererse (zeml] o’

end;

regultiex];

Tl ranewvart

A 1s 8

We would like to thank our colleaguss in the
School of Artificial Intelligance for many helpful
conversations, Brian Randell for waluabls erlticiam,
Elegnor Kerse for spesdy and accurate typing, and the
Seisnce Research Council for financial support,

Rafearences
(1) Buretall, R.M., Collins, J.S5. and Popplestona, R.J.

ogrammi POP-2. Edinburgh: EBEdinburgh
Untvemity Prese, (1971).

{2) Mineky, ¥, Porm and centent in computer mcience.
1970 A.C.M. Turing Lecturs. F‘M.M”
Yol, 17, Yo, 2, 197-215, (1970},

(3) pPijkstre. E,W. Notes cn structured programming.

=03, 2nd edition. Technimche
Hogesohool, Eindhoven, The Nethsarlands. (1970).

(4) Ambler, A.P, and Burstall, B.M. LIB POLYSETS.
POR-2 P L Specification. Department of
Maphine Intelligence and Perception, Univarsity of
Edinburgh. (1971).

(5) Strong, H.R. Jr. Traselating reeursion equations
into flow charts. 2n A0 N, 8

Froo, 2nd Agnua) A,C, M, Symposlum
fgw&' 4.C.M,, Now Yourk, pp. 184197,
1970).

(6) Garland, S.J. and Luckham, D.0. Program schemes,
recursion echemes and formal languages. DCLA=ENGe
‘1154, Sochool of Engineeriog and Applied Science,
Tniversity of California, Los Angelss. {1971),

(7) Cooper, D.C. The equivalence of certain comput-
ations. Computer Journal. Vol. 9. No. 1. May,
45-52. (1966).

(a) Darlington, J. A semantic approach to automatic
program improvement* Ph.D. thesis. Department of
Machine Intelligence, University of Edinburgh. (1972)

(9) Ernst, G.V. and Newell, A. Generality and SPS.
Carnegie Institute of Technology, Pittsburgh,
Pennsylvania. (1967).

(10) Simon, H.A. The heuristic compiler, in
Representation and Meaning (eds. H.A. Simon and
L. Siklossy) Prentioe Hall, New Jersey. (1972).

(11) Burstall, R.M. and Topor, RW. Private
communication. (1972)e

(12) Boyer, R.S. and Moore, J.S. Proving theorems
about LISP functions. Memo 60, Department of
Computational Logic, University of Edinburgh. (1973).

(15) Sheridan, P.B. The arffiimetic translator-
compiler of the IBM Fortran automatic coding system.
C.A.C.M.. Vol. 2. No. 2. 9. (1959).

(14) Rohl, J.S. and Lin, J.A. A note or. compiling
arithmetic expressions. Computer Journal. Vol. 15.
No. +, February, 15-14. (1972).

(15) Hopgood, F.R.A, Compiling techniques. Computer

Mnnographe. Macdonald: London and American
Elsevier Inc: New York. (1969).

485

