Session 8 Formalisms for
Artificial Intelligence

A MODEL FOR CONTROL STRUCTURES
FOR ARTIFICIAL INTELLIGENCE PROGRAMMING LANGUAGES

by

Daniel G. Bobrow

Computer Science Division
Xerox Palo Alto Research Center
Palo Alto, California 94304

Ben Wegbreit

Harvard University
Center for Research in Computing Technology
Cambridge, Massachusetts 02138

Abstract

Newer programming languages for artificial intel-
ligence extend the class of available control regimes
beyond simple hierarchical control. In so doing, a key
issue is using a model that clearly exhibits the relation
between modules, processes, access environments,
and control environments. This paper presents a
model which is applicable to diverse languages and
presents a set of control primitives which provide a
concise basis on which one can define almost all known
regimes of control.

1. Introduction

Newer programming languages! for artificial
intelligence (e.g., PLANNER9" CONNIVER,'® BBN-
LISP.ly QA4.1'1 extend the nature of control regimes
available to the user. In this paper, we present an
information structure model20 which deals with control
and access contexts in a programming language; it is
based on consideration of the form of run-time data
structures which represent program control and vari-
able bindings. The model is designed to help clarify
some relationships of hierarchical function calls,
backtracking, co-routines, and multiprocess structure.
We present the model and its small set of primitive
operations, then define several control regimes in
terms of the primitives, and then consider extensions
to handle cooperating sequential processes.

2. The Basic Environment Structure

In a language which has blocks and procedures,
new nomenclature (named variables) can be introduced
either by declarations in block heads or through named
parameters to procedures. Since both define access
environments, we call the body of a procedure orblock
a uniform access module. Upon entry to an access
module, certain storage is allocated for those new
named items which are defined at entry. We call this
named allocated storage the basic frame of the module.
In addition, certain additional storage for the module
may be required for temporary intermediate results of
computation; this additional allocated storage we call
the frame extension. The total storage is called the
total frame for the module, or usually just the module
frame.

A" frame contains other information, in addition to
named variables and temporaries. It is often useful to
reference a frame by symbolic nomenclature. For this
purpose, each frame has a framename (usually the pro-
cedure name). When a module is entered, its frame
extension is initialized with two pointers (perhaps im-
plicitly); one, called A LINK, is a linked access
pointer to the frame(s) which contains the higher level
free variable and parameter bindings accessible within

246

this module. The other, called CLINK, is associated
with control and is a generalized return which points to
the calling frame. In Algol, these are called the static
and dynamic links, respectively. In LISpH the two
pointers usually reference the same frame, since bind-
ings for variables free in a module are found by
tracing up the call structure chain. (An exception is
the use of functional arguments, and we illustrate that
below.)

At the time of a call (entry to a lower module), the
caller stores in his frame extension a continuation
point for the computation. Since the continuation point
is stored in the caller, the generalized return is
simply a pointer to the last active frame.

The size of a basic frame is fixed on module entry.
It is just large enough to store the parameters and
associated information. However, during one function
activation, the required size of the frame extension
can vary widely (with a computable maximum), since
the amount of temporary storage used by this module
before calling different lower modules is quite vari-
able. Therefore, the allocation of these two frame
segments may sometimes (advantageously) be done
separately and n on contiguously. This requires a link
(BLINK) from the frame extension to the basic frame
which contains the bindings.

When a frame is exited, either by a normal exit
or by a non-local goto which skips the frame (e. g. , an
error condition), it is often useful to perform clean-up
action for the frame. Examples include: close files
opened by the frame which are no longer needed,
restore the state of more global structures which have
been temporarily modified by the frame, etc. Termi-
nal action for a frame is carried out by executing an
exit function for the frame, passing it as argument the
nominal value which the frame is returning as its
result; the value returned by the exit function is the
actual value of the frame. The variable values and the
exit function are the only components of the frame
which can be updated by the user; all the others are
fixed at the time of frame allocation. Figure 1 sum-
marizes the contents of the frame.

Figure 2a shows a sketch of an algorithm pro-
grammed in a block structure language such as Algol
60 with contourslO drawn around access modules. BI
has locals N and P, P has parameter N, and B3 locals
Q and L. Figure 2b is a snapshot of the environment
structure after the following sequence: Bl is entered;
P is called (just above P, the program continuation
point after this outer call); B3 is entered; and F is
called from within B3. For each access module there
are two separate segments — one for the basic frame
(denoted by the module name) and one for the frame
extension (denoted by the module name*). Note that
the sequence of access links (shown with dotted lines)
goes directly from P to B1* and is different from the
control chain of calls. However, each points higher

(earlier) on the stack.

A point to note about an access module is that it
has no knowledge of any module below it. If an appro-
priate value (i.e., one whose type agrees with the
stored return type) is provided, continuation in that
access module can be achieved with only a pointer to
the continued frame. No information stored outside
this frame is necessary.

Figure 3 shows two examples in which more than
one independent environment structure is maintained.
In Figure 3a, two coroutines are shown which share
common access and control environment A. Note that
the frame extension of A has been copied so that
returns from B and Q may go to different continuation
points. This is a key point in the model; whenever a
frame extension is required for conflicting purposes,
a copy is made. Since frame A is used by two pro-
cesses, if either coroutine were deleted, the basic
frame for A should not be deleted. However, one
frame extension A* could be deleted in that case, since
frame extensions are never referenced directly by
more than one process. Since the basic frame A is
shared, either process can update the variable bind-
ings in it; such changes are seen both by B and Q, In
Figure 3b, coroutine Q is shown calling a function D
with external access chain through B, but with control
to return to Q.

3. Primitive Functions

In this model for access module activation, each
frame is generally released upon exit of that module.
Only if a frame is still referenced is it retained. All
non-chained references to a frame (and to the environ-
ment structure it heads) are made through a special
protected data type called an environment descriptor,
abbreviated ed. The heads of all environment chains
are referenced only from this space of descriptors.
(The one exception is the implicit ed for the currently
active process.) The primitive functions create an ed
for a specified frame and update the contents of an ed;
create a new frame with specified contents, and allow
execution of a computation in that context; and access
and update the exit function for a frame. Note that
none of the primitives manipulate the links of existing
frames; therefore, only well-formed frame chains
exist (i.e., no ring structures).

1) environ(pos) — creates an environment descriptor
for the frame specified by pos.

2) setenv(olded, pos) -- changes the contents of an
existing environment descriptor olded to point to
the frame specified by pos. As a side effect, it
releases storage referenced only through previous
contents of olded.

3) mkframe(epos,apos, epos,bpos,bcopflg) -- creates
a new frame and returns an ed for that frame. The
frame extension is copied from the frame specified
by epos, and the ALINK and CLINK are specified
by apos and epos, respectively. The BLINK points
to the basic frame specified by bpos, or to a copy
of the basic frame if bcopflg=TRUE. In use, argu-
ments may be omitted; bcopflg is defaulted to
FALSE; apos, bpos and epos are defaulted to the
corresponding fields of the frame specified by epos.
Thus mkframe(epos) creates a new frame extension
identical to that specified by epos.

4) enveval(forrA,apos,cpos) — creates a new frame
and initiates a computation with this environment
structure. ALINK and CLINK point to frames
specified by apos and epos, respectively; and form
specifies the code to be executed, or the ex-
pression to be evaluated in this new environment.
If apos or cpos are omitted, they are defaulted to
the ALINK or CLINK of this invocation of enveval.
Thus, enveval(form) is the usual call to an

247

interpreter, and has the same effect as if the value of
form had appeared in place of the simple call to
enveval.

5) setexfn(pos,fn) — places a pointer to a user defined
function in the exitfn field of the frame pos. If the
system is using the exitfn, this will create a new
function which is the composition of the user
function (applied first) and the system function. On
frame exit, the exitfn will be called with one argu-

ment, the value returned by the frame code; the
value returned by fn will be the actual value re-
turned to the frame specified by CLINK.

6) getexfn(pos) — gets the user set function stored in

exitfn of frame pos. Returns NIL if none has been
explicitly stored there.

7) framenm(pos) -- returns the framename of frame

pos.

A frame specification (i.e. , pos, apos, bpos, epos,
epos above} is one of the following:

1. An integer N:

a. N=0 specifies the frame allocated on activation
of the function environ, setenv, etc. In the case
of environ, setenv and mkframe, the continu-
ation point is set up so that a value returned to
this frame (using enveval) is returned as a
value of the original call to environ, setenv or
mkframe.

b. N>0 specifies the frame N links down the control
link chain from the N=0 frame.

c. N<O specifies the frame INI links down the
access link chain from the N=0 frame,

2. A list of two elements (F,N) where F is a frame-
name and N is an integer. This gives the Nth
frame with name F, where a positive (negative)
value for N specifies the control (access) chain
environment.

3. The distinguished constant NIL. As an access-link
specification, NIL specifies that only global values
are to be used free. A process which returns
along a NIL control-link will halt. Doing a
setenv(ed,NIL) releases frame storage formerly
referenced only through ed, without tying up any
new storage.

4. An ed (environment descriptor). When given an ed
argument created by a prior call on environ,
environ creates a new descriptor with the same
contents as ed; setenv copies the contents of ed
into olded.

5. A list "(ed)" consisting of exactly one ed. The
contents of the listed ed are used identically to
that of an unlisted ed. However, after this value
is used in any of the functions, setenv(ed.NIL) is
done, thus releasing the frame storage formerly
referenced only through ed. This has been com-
bined into an argument form rather than allowing
the user to do a setenv explicitly because in the
call to enveval the contents are needed, so it can-
not be done before the call; it cannot be done ex-
plicitly after the enveval since control might never
return to that point.

4. Non-Primitive Control Functions

To illustrate the use of these primitive control
functions, we explain a number of control regimes
which differ from the usual nested function call-return
hierarchical structure, and define their control struc-
ture routines in terms of the primitives. We include
stack jumps, function closure, and several multipro-
cessing disciplines. In programming examples, we
use the syntax and semantics of a LISP-like system.

In an ordinary hierarchical control structure

system, if module F calls G, G calls H, and H calls J,
it is impossible for J to return to F without going back
through G and H. Consider some program in which a
search is implemented as a series of such nested
function calls. Suppose J discovered that the call to G
was inappropriate and wanted to return to F with such
a message. In a hierarchical control structure, H and
G would both have to be prepared to pass such a mes-
sage back. However, in general, the function J should
not have to know how to force intermediaries; it should
be able to pass control directly to the relevant module.
Two functions may be defined to allow such jumpbacks.
(These are implemented in BBN-LISP;19 experience
has shown them to be quite useful.) The first function,
retfrom(form,pos), evaluates form in the current con-
text, and returns its value from the frame specified by
pos to that frame's caller; in the above example, this
returns a value to G's caller, i.e., P, The second
function, retevaKform, pos), evaluates form in the con-
text of the caller of pos and returns the "value of the
form to that caller. These are easily defined in terms
of enveval:

retfrom(form,pos) = enveval{form,2,pos)
retevalform, pos) = envevalform, pos, pos)

(The second argument to retfrom establishes that the
current environment is to be used for the evaluation of
form.)

As another example of the use of retfrom, con-
sider an implementation of the LISP error protection
mechanism. The programmer "wraps a form in
errorset", i.e., errorset(form) which is defined as
cons(eval(form),NIL). This "wrapping" indicates to
the system the programmer's intent that any errors
which arise in the evaluation of form are to be handled
by the function containing the errorset. Since the
value of errorset in the non-error case is always a
list consisting of one element (the value of form), an
error can be indicated by forcing errorset to return
any non-list item. Hence, the system function error
can be defined as retfrom(NIL,(ERRORSET 1)) where
uppercase items are literal objects in LISP. This
jumps back over all intermediary calls to return NIL
as the value of the most recent occurrence of errorset
in the hierarchical calling sequence.

In the following, we employ envapply which takes
as arguments a function name and list of (already eval-
uated) arguments for that function. Envapply simply
creates the appropriate form for enveval.

envapply(fn,args,aframe, cframe) =
enveval(list(APPLY , list(QUOTE, fn),
list(QUOTE, args)), aframe, cframe)

A central notion for control structures is a pair-
ing of a function with an environment for its evaluation.
Following LISP, we call such an object a funarg.
Funargs are created by the procedure function, defined

function(fn)=list(FUNARG, fn, environ(2))

That is, in our implementation, a funarg is a list of
three elements: the indicator FUNARG, a function,
and an environment descriptor. (The argument to en-
viron makes it reference the frame which called
function.) A funarg list, being a globally valid data
structure, can be passed as an argument, returned as
a result, or assigned as the value of appropriately
typed variables. When the language evaluator gets a
form (fen arg1 arg2 ... argn) whose functional object
fen is a funarg, i.e., alist (FUNARG fn-name ed), it
creates a list, args, of (the values of) argl, arg2,
argn and does

envapply(second(fcn),args,third(fcn), 1)

The environment in this case is used exactly like the
original LISP A-list. Moses12 and Weizenbaum?®
have discussed the use of function for preserving bind-
ing contexts. Figure 4 illustrates the environment

248

structure where a functional has been passed down: the
function foo with variables X and L has been called; foo
called mapcar(X,function(fie)) and fie has been entered.
Note that along the access chain the first free L seen
in fie is bound in foo, although there is a bound vari-
able L in mapcar which occurs first in the control
chain. Since frames are retained, a funarg can be
returned to higher contexts and still work. (Burge3
gives examples of the use of funargs passed up as
values.)

In the above description, the environment pointer
is used only to save the access environment. In fact,
however, the pointer records the state of a process at
the instant of some call, having both access and
control environments. Hence, such an environment
pointer serves as part of a process handle. It is con-
venient to additionally specify an action to take when
the process is restarted and some information to be
passed to that process from the one restarting it. The
funarg can be reinterpreted to provide these features.
The function component specifies the first module to
be run in a restarted process, and the arguments
(evaluated in the caller) provided to that function can
be used to pass information. Hence, a funarg can be
used as a complete process handle. It proves con-
venient for a running process to be able to reference
its own process handle. To make this simple, we
adopt the convention that the global variable curproc
is kept updated to the current running process.

With this introduction, we now define the routines
start and resume, which allow control to pass among a
set of coordinated sequential processes, i.e., co-
routines, in which each maintains its own control and
access environment (with perhaps some sharing). A
coroutine system consists of n coroutines each of
which has a funarg handle on those other coroutines to
which it may transfer control. To initiate a process
represented by the funarg fp, use start (we use
brackets below to delimit comments):

start(fp.args) = curproc — fp;
[curproc is a global variable set to
the current process funarg] ;
envapply(second(fp),args,third(fp),third(fp))

Once the variable curproc is initialized, and any co-
routine started, resume will transfer control between
n coroutines. The control point saved is just outside
the resume, and the user specifies a function (backfn)
to be called when control returns, i.e., the process is
resumed. This function is destructively inserted in
the funarg list. The args to this function are specified
by the coroutine transferring back to this point.

resume(fnarg,args,backfn) =
second(curproc) — backfn;
[save the specified backfn for a subsequent
resume back here]
setenv(third(curproc), 2);
[environment saved is the caller of resume]
curproc — fnarg;
[set up curproc for the coroutine to be
activated]
envapply(second(fnarg),args,third(fnarg),
third (fnarg))
[activate the specified coroutine by applying
its backfn to args]

We call a funarg used in this way a process
funarg. The state of a "process" is updated by de-
structively modifying a list to change its continuation
function, and similarly directly modifying its environ-
ment descriptor in the list. A pseudo-multiprocessing
capability can be added to the system using these
process funargs if each process takes responsibility
for requesting additional time for processing from a
supervisor or by explicitly passing control as in
CONNIVER,18 A more automatic multiprocessing
control regime using interrupts is discussed later.

Backtracking is a technique by which certain en-
vironments are saved before a function return, and
later restored if needed. Control is restored in a
strictly last saved, first restored order. As an ex-
ample of its use, consider a function which returns
one (selected) value from a set of computed values but
can effectively return an alternative selection if the
first selection was inadequate. That is, the current
process can fail back to a previously specified failset
point and then redo the computation with a new
selection. A sequence of different selections can lead
to a stack of failset points, and successive fails can
restart at each in turn. Backtracking thus provides a
way of doing a depth-first search of a tree with return
to previous branch points.

We define fail and failset below. We use
push(L,a) which adds a to the front of L, and pop(L)
which removes one element and returns the first ele-
ment of L. Failist is the stack of failset points. As
defined below, fail can reverse certain changes when
returning to the previous failset point by explicit
direction at the point of failure. (To automatically un-
do certain side effects and binding changes, we could
define "undoable" functions which add to failist forms
whose evaluation will reset appropriate cells. Fail
could then eval all forms through the next ed and then
call enveval.)

failset{) = push(failist,environ(2))
[2 means environment outside failset]
fail(message) = enveval(message,list(pop(failist)))

The function select defined below returns the first
element of its argument set when first called; upon
subsequent fails back to select, successive elements
from set are returned. |If set is exhausted, failure is
propagated back. The code uses the fact that the bind-
ing environment saved by failset shares the variable
fig with the instance of select which calls failset. The
test of fig is reached in two ways: after a call on fail-
set (in which case fig is false) and after a failure (in
which case fig is true).

select(set,undolist) =
progt (fig)

s1: if null(set) then fail(undolist) [leave here and
undo as specified]
fig — false;
failsetOT

[fig is true iff we have failed to this point; then
set has been popped]
if fig then go(sl);

fig — true;
returnTpop(set));
end

Floyd,"” Hewitt,9 and Golomb and Baumert® have dis-
cussed uses for backtracking in problem solving.
Sussman'® has discussed a number of problems with
backtracking. In general, it proves to be too simple
a form of switching between environments. Use of the
multiple process feature described above provides
much more flexibility.

5.

Coordinated Sequential Processes

and Parallel Processing

It should be noted that in the model above, control
must be explicitly transferred from one active en-
vironment to another (by means of enveval
We use the term, coordinated sequential process, to
describe such a control regime. There are situations
in which a problem statement is simplified by taking a
quite different point of view - assuming parallel (co-
operating sequential) processes which synchronize only
when required (e. g., by means of Dijkstra's4 P and V
operations). Using our coordinated sequential pro-
cesses with interrupts, we can define such a control
regime.

or resume).

249

In our model of environment structures, there is
a tree formed by the control links, a dendrarchy_ of
frames. One terminal node is marked for activity by
the current control bubble (the point where the
language evaluator is operating). All other terminal
nodes are referenced by environment descriptors or
by an access link pointer of a frame in the tree. To
extend the model to multiple parallel processes in a
single processor system, k branches of the tree must
be simultaneously marked active. Then the control
bubble of the processor must be switched from one
active node to another according to some scheduling
algorithm.

To implement cooperating sequential processes in
our model, it is simplest to think of adjoining to the
set of processes a distinguished process, PS, which
acts as a supervisor or monitor. This monitor sched-
ules processes for service and maintains several
privileged data structures (e.g. , queues for sema-
phores and active processes). (A related technique is
used by Premier,')

The basic functions necessary to manipulate
parallel processes allow process activation, stopping,
continuing, synchronization and status querying. In a
single processor coordinated sequential process
model, these can all be defined by calls (through
enveval) to the monitor PS. Specifications for these
functions are;

1) process(form ,apos, cpos) -- this is similar to
enveval except that it creates a new active pro-
cess P' for the evaluation of form, and returns
to the creating process a process descriptor (pd)

which acts as a handle on P'.

In this model, the pd could be a pointer to a list which
has been placed on a "runnable" queue in PS, and
which is interpreted by PS when the scheduler in PS
gives this process a time quantum. One element of
the process descriptor gives the status of the process,
e.g., RUNNING or STOPPED. Process is defined
using environ (to obtain an environment descriptor
used as part of the pd) and enveval (to call PS),

2) stop(pd) — halts the execution of the process

specified by pd — PS removes the process from
runnable queue. The value returned is an ed of
the current environment of pd.

3)
4)
5)

continue(pd) -- returns pd to the runnable queues.
status(pd) — value is an indication of status of pd.

obtain(semaphore) — this Dijkstra P operator
transfers control to PS (by enveval) which de-
termines if a resource is available (i. e,, sema-
phore count positive). PS either hands control
back to Pl (with enveval) having decremented the
the semaphore count, or enters P1 on that sema-
phore's queue in PS's environment and switches
control to a runnable process.

release(semaphore) this Dijkstra V operator
increments the semaphore count; if the count
goes positive, one process is moved from the
semaphore queue (if any exist) onto the runnable
queue and the count is decremented. It then
hands control back to the calling process.

We emphasize that these six functions can be de-
fined in terms of the control primitives of section 3.

Scheduling of runnable processes could be done by
having each process by agreement ask for a time
resource, i.e., obtain(time), at appropriate intervals.
In this scheduling model, control never leaves a pro-
cess without its knowledge, and the monitor simply
acts as a bookkeeping mechanism. Alternatively,
ordinary time-sharing among processes on a time
quantum basis could be implemented through a timer
interrupt mechanism. Interrupts are treated as forced

calls to environ (to obtain an ed for the current state),
and then an enveval to the monitor process. The only
problem which must be handled by the system in forc-
ing the call to environ is making sure the interrupted
process is in a clean state; that is, one in which basic
communication assumptions about states of pointers,
queues, buffers, etc. are true (e.g., no pointers in
machine registers which should be traced during gar-
bage collection). This can be ensured if asynchronous
hardware interrupts perform only minimal necessary
operations, and set a software interrupt flag. Soft-
ware checks made before procedure calls, returns and
backward jumps within program will ensure that a
timely response in a clean state will occur.

The ed of the interrupted process is sufficient to
restart it, and can be saved on the runnable queue
within a process descriptor. Because timer inter-
rupts are asynchronous with other processing in such
a simulated multiprocessor system, evaluation of
forms in the dynamic environment of another running
process cannot be done consistently; however, the ed
obtained from stopping a process provides a consistent
environment. Because of this interrupt asynchrony, in
order to ensure system integrity, queue and sema-
phore management must be uninterruptible, e.g., at
the highest priority level.

Obtaining a system of cooperating sequential pro-
cesses as an extension of the primitives has a number
of desirable attributes. Most important, perhaps, it
allows the scheduler to be defined by the user. When
parallel processes are used to realize a breadth-first
search of an or-graph, there is a significant issue of
how the competing processes are to be allotted time.
Provision for a user supplied scheduler establishes a
framework in which an intelligent allocation algorithm
can be employed.

Once a multi-process supervisor is defined, a
variety of additional control structures may be readily
created. As an example, consider multiple parallel
returns — the ability to return from a single activation
of a module G several times with several (different)
values. For G to return to its caller with value given
by val and still continue to run, G simply calls
process(val, 1,2). Then the current G and the new
process proceed in parallel.

6. Conclusion

In providing linguistic facilities more complex
than hierarchical control, a key problem is finding a
model that clearly exhibits the relation between pro-
cesses, access modules, and their environment. This
paper has presented a model which is applicable to
languages as diverse as LISP, APL and PL/I and can
be used for the essential aspects of control and access
in each. The control primitives provide a small basis
on which one can define almost all known regimes of
control.

Although not stressed in this paper, there is an
implementation for the model which is perfectly
general, yet for several subcases (e.g., simple re-
cursion and backtracking) this implementation is as
efficient as existing special techniques. The main
ideas of the implementation are as follows (cf. [2] for
details). The basic frame and frame extension are
treated as potentially discontiguous segments. When
a frame extension is to be used for running, it is
copied to an open stack end if not there already, so
that ordinary nested calls can use simple stack disci-
pline for storage management. Reference counts are
combined with a count propagation technique to ensure
that only those frames are kept which are still in use.

Thus, the model provides both a linguistic frame-
work for expressing control regimes, and a practical
basis for an implementation. It is being incorporated
intoBBN-LISP.19

7. Acknowledgments

This work was supported in part by the Advanced
Research Projects Agency under Contracts DAHC 15-
71-00088 and F19628-68-0-0379, and by the U.S. Air
Force Electronics Systems Division under Contract
F19628-71-C-0173. Daniel Bobrow was at Bolt
Beranek and Newman, Cambridge, Massachusetts,
when many of the ideas in this paper were first de-
veloped.

References

[1] Bobrow, D.G., "Requirements for Advanced
Programming Systems for List Processing,"
CACM, Vol. 15, No. 6, June 1972.

[2] Bobrow, D.G. and Wegbreit, B. "A Model and
Stack Implementation of Multiple Environ-
ments," BBN Report No. 2334, Cambridge,
Mass., March 1972, to appear in CACM.

[3] Burge, W.H. "Some Examples of the Use of
Function Producing Functions," Second Sym-
posium on Symbolic and Algebraic Manipu-
lation, AC:M, 1971.

[41 Dijkstra, E.W. "Co-operating Sequential Pro-
cesses," in Genuys (Ed.), Programming
Languages, Academic Press, 1967.

[5] Dijkstra, E.W. "Recursive Programming,"
Numerische Mathematik 2 (1960), 312-318.
Also in Programming Systems and Languages,
S. Rosen (Ed.), McGraw-Hill, New York, 1967.

[6] Fenichel, R. "On Implementation of Label Vari-
ables, CACM, Vol. 14, No. 5 (May 1971),
pp. 349-350.

[7] Floyd, R.W. "Non-deterministic Algorithms,"
J_. ACM, 14 (October 1967), pp. 638-644.

[8t Golomb, S.W. and Baumert, L.D. "Backtrack
Programming," J. ACM, 12 (October 1965),
pp. 516-524.

[9! Hewitt, C. "PLANNER: A Language for Manipu-
lating Models and Proving Theorems in a
Robot," in Artificial Intelligence,
Washington, D.C., May 1969.

[10] Johnston, J.B. "The Contour Model of Block

Structured Processes," in Tou and Wegner,

Proc. Symposium on Data Structures in

Programming Languages. SIGPLAN Notices,

Vol. 6, No. 2, pp. 55-82.

[11] McCarthy, J., etal. Lisp 1.5 Programmer's
Manual, TheM.Il.T. Press, Cambridge,

Massachusetts (1962).

Moses, J. "The Function of FUNCTION in
LISP," SIGSAM Bulletin, No. 15, (July 1970),
pp. 13-27.

[12]

[13j Prenner, C,, Spitzen, J. and Wegbreit, B.
"An Implementation of Backtracking for Pro-
gramming Languages," submitted for publi-
cation, ACM-72.

[14J Prenner, C. "Multi-path Control Structures for
Programming Languages," Ph.D. Thesis,
Harvard University, May 1972.

[151 Quam, L. LISP 1.6 Reference Manual, Stanford
Al Laboratory.

250

[16]

[17]

(18]

[19]

[20]

[211

(22]

[23]

[24]

(25]

Reynolds, J. "GEDANKEN - A Simple TypelesS
Language Based on the Principle of Complete-
ness and the Reference Concept," CACM,
Vol. 13, No. 5 (May 1970), pp. 308-319.

Rulifson, J. et al. "QA4- A Language for
Writing Problem-Solving Programs," SRI
Technical Note 48, November 1970.

Sussman, G.J. "Why Conniving is Better than
Planning," FJCC 1972, pp. 1171-1179.

Teitelman, W., Bobrow, D., Murphy, D., and
Hartley, A. BBN-LISP Manual. BBN,
July 1971.

Tou, J, andWegner, P. (Eds.), SIGFLAN
Notices — Proc. Symposium on Data
Structures in Programming languages.
Vol. 6, No. 2 (February 1971)

van Wijngaarden, A. (Ed.). Report on the
Algorithmic Language ALGOL 68, MR 101,
Mathematisch Centrum, Amsterdam
(February 1969).

Wegbreit, B, "Studies in Extensible Program-
ming Languages" Ph.D. Thesis, Harvard
University, May 1970.

Wegbreit, B, "The ECL Programming System,"
Proc. AFIPS 1971 FJCC, Vol. 39, AFIPS
Press, Montvale, N.J., pp. 253-262.

Wegner, P. "Data Structure Models for Pro-
gramming Languages," in Tou and Wegner,
pp. 55-82.

Weizenbaum, J. "The Funarg Problem
Explained," M.I.T., Cambridge, Mass.,

March 1968.
Module Nome Parameter |
BASIC
Parameter n FRAME
Size [Max | CXT
¥
I
|
+ t
i [Binding Link' [Exitfn
T Access Link Control Link FRAME
Module Name Refurn Type [Conf. Pt. EXTENSION
Size | Max USE
Framename

Temporary |

Temporory 2

FIG. 1 GENERAL FRAME STRUCTURE

> FRAME

=z

B3

P

P

FIG, 2a (from Johnston) FiG. 2b SNAPSHOT OF FRAME STRUCTURE

BLOCK B' WITH LOCALS N, P STARTING AT B1, CALL TO P, ENTER
PROCEDURE P WITH NEW B3, CALL TOP
VARIABLE N

BLOCK B3 WITH LOCALS @, L
CALLS TO P WITHIN Bl AND B3

[P TP .

CONTROL

i ACCESS

Fii, 3 CORQUTIMES SHARING
ANCESTOR MODULE A, Q IS
ACTIVE

FIG. 3b CORQUTINE Q EVALUATING FUNCTION D
IN ACCESS CONTEXT OF B*

252

1\

Tt

FOO

X
L
¥
[
LA N L} l

sutssenind

e L T T

*
H
3
H
.
.
.
4

MAPCAR

MAPCAR »

FIE : B

ACCESS CONTROL

FIE *

FIG.« APPLICATION OF A FUNCTIONAL ARGUMENT

253

