A CONTEXTUAL RECOGNITION SYSTEM FOR FORMAL LANGUAGES*

Stephen C. Darden
The University of Texas at Austin

Austin,

Introduction

This paper describes work in progress aimed
at obtaining a practical recognition system by fil-
tering the noisy output of an inexpensive charac-
ter classifier through multiple stages of context
analysis to produce high-quality final output. The
system is designed to process the text of hand-
printed formal languages, such as programming lan-
guages and mathematical notation. The system is
syntax-directed in that a contextual processor for
a particular language is constructed by a one-time,
algorithmic analysis of the language grammar. The
resulting analysis engine massages the classifier
output by successive vocabulary matching, name-
space™ clustering, and syntactic analysis to pro-
duce as output a syntactically valid interpretation
of the text, with as many errors corrected as pos-
sible. A more complete description of the system
can be found in Darden.

Figure 1 depicts the process by which the sys-
tem "learns" the language that is to be recognized.
This knowledge comprises a convenient representa-
tion of the grammar and a dictionary of basic sym-
bols which occur in the grammar (e.g., DIMENSION,
CONTINUE, ...).

Figure 2 depicts the resulting analysis engine,
which accepts as input the output of a single-
character classifier, in the form of a list of lists
of alternatives for each character. This system
is designed to exploit three types of redundancy
exhibited by the class of languages under study:

vocabulary redundancy results from the grammatical
specification of a set of strings (basic sym-
bols) which have a high a priori probability of
of occurrence;

statistical redundancy results from the high proba-
bility of multiple occurrence of members of the
name-space of such languages;

This work was supported in part by a grant
from Texas Instruments Incorporated and in part by
Public Health Services Grant GM15769 (NIH).

The collection of names, occurring in the
text, which are supplied by the author of the text,
i.e., identifiers.

* 2

Following Duda and Hart,
data structure as a "P-list"; the alternative
lists are called "L-lists." Each alternative list
is composed of a list of pairs (l.c) where i is a
character and c¢ is a confidence proportional to
the logarithm of the probability that £ is, in
fact, the correct character.

we refer to this

Texas

structural redundancy results from the grammati-
cal constraints on concatenation of well-formed
strings.

All three types of redundancy are necessary to
successfully clean-up garbled text. Indeed,
there are certain errors (such as recognizing
XVAX as YMAX) that can only be detected by con-
sidering semantic redundancy (resulting from the
property of these languages that only a fraction
of the syntactically valid strings are meaningful,
either a_ priori or in context). It is hoped that
uncorrected-error rates on the order of 1% can be
achieved without introducing the staggering com-
plexities of semantic analysis.

Related Work

A lucid discussion of past approaches to the
use of contextual post-processors to improve the
performance of pattern classifiers is contained
in the recent paper by Duda and Hart.** We shall
not duplicate their efforts here.

The use of an error-correcting parser as a
contextual post-processor was first suggested by
Irons.* The FORTRAN context analyzer of Duda and
Hart is a specialized instance of such a processor
which has proven the soundness of the idea. They
have developed a formal decision-theoretic solu-
tion to the utilization of context and have shown
that the application of syntax analysis does not
do violence to the formal approach. Our own work
in this area was well underway before we became
familiar with their investigation.?® We have
naturally been influenced by their contributions
and have noted the points in the body of this re-
port where our development has profited from
their efforts.

The unbounded-context parsing system described
in this report is a major departure from classi-
cal parsers such as that described by Irons, which
do not take into consideration sufficient context
to make reliable error-correction decisions. The
parsing system most similar to ours is reported
by Unger. In the final chapter of this paper we
discuss possible extensions to the unbounded-
context parser which derive from the quick-checks
used by Unger.

A Normal Form for Context-free Languages

This section describes a particular represen-
tation for context-free (CF) grammars that has
been developed to satisfy the needs of an error-
correcting parser.

When a human context-analyzer is given the
task of correcting a sample of garbled text

Dictionary
of basic

]
A suitable single !
character classifier '
1
]
t

//No:l.lx Transducer >

P-list of al-
ternative

Figure 2

(e.g., Figure 3), he is usually sble to irmmediately
select the appropriate linguistic pattern (e.g.,
(for statement} or {conditional statement} {n
the exampla) to be used in a more detailed analysis
of the text, He abatracts from all the noise, the
presence of the for _ :» __ step umtil do,
ad Lf _ then __ else patterns. The main purpose
of the pormal form is to give to the parser this
global view of syntactic structures.

:= 1 STEP ; ONTIL N DO V[I]
;= / 1269 1 VM22F H OU YLLI
, 6J88) YHJT6 V GD UC2T
T 5567 / XvSJ{ W Q@ JIT2
YBFZ1UWFC M3 J,
- SE F
1 5

- ? ;
OO ﬂ!s’j?

C020 IT ELSE X = K+l
2KBV GUTU P2 6GIF Y ;= Y&/
FDJID SP FFE~ % , =,
65 15 =B5G 4 4TI
NEH © 2 6688 b]
4G T 8[6

J

Figure 3

The casual reader will probably wish to akip
the remainder of this section, referring back as
needed from the discussion of syntactic snalysis.
The norsal form will hereafter ba abbreviated as
RODER-form (for Ragular, Operator, Disjunctive,
Edbedding, Hormal)., In the following, it is an-
sumad that the reader is familiar with the rudi-
mente of context-free languages. The survey by
Floyd® is recoomended as an introductiom, and it
has a comprehansive bibliography.

~598~

/ RODEN \
»{ Transfar gramma >
\ to normal fo

§

basic symbols are
replaced by the cor
corresponding
basic wymbol

RODEN form
of grammar

Parse

he UBC parser
corrects ramain-
ing syntactic
errors

Firnal form
of text

A RODER-form grammar G comprises & set of
rules A =+ in 1-1 correspondence to a vocabulary
of non-terminal symbols (see example Gy below).
The genatrix, A, 1s a non-terminal. The pattern,
@, is an expression conetructed from the vocabu-
lary of non-terminals together with the vocabulary
of basic symbols, and the operations of concatena=
tion {or conjunction, denoted by juxtaposition),
disjunction (denoted by [), replication (or finite
closure, denoted by superscript *), and selection
(denoted by superscript ¢ ; selection is identical
to the disjunction of the empty string with the
single operand of the selection operator).

centers

Both left and right recursion have been elim-
inated in favor of replication by iteration, In
addicion, each pattern ¢ is in operator form; {.e.,
thersa i{s no derivation « PUy Uyw where 0,0,
are non-terminal symbols. Finally, esch pattern
is in disjunctive normal form; i.e., all disjunc-
tion operators oceur at the highest level, and
the disjuncts are ordered by deacending redundancy
(presence of head or tail basic eymbols, minimm
numbar of basic symbols),

An exsmple should serve to give the flavor
of the RODEN-form reprasentation. G, is the
usual CF-grammar for ALGOL arithmetic expreesions;
Gz is the equivelent RODEN-foru grammuar.

Observe that (a) disjunction, and ite szsso-~
ciated branching and backtracking, has been almost
eliminated; (b) subgoals are uniquely determined
by delimiting basic symbola (thus the operator=-
normsel form requirement); and (c) if self-embedding
subphrases were properly suppressed, the parser
could immediately assign a complete parse at the
current level using all occurrences of tha

pattern’s basic symbola, in the entire text under
conslderation.

=l

{aexp) — (simple aexp)|(if clause){simple aexp)
else (aexp)

(1f clause} — if (Bexp) then

(simple aexp) — (term)| X (term)|(simple aexp)
* {term)

(term) — {factor)|(term)*/+ {factor)

(factor} —+ (primary)|{factor}t(primary)

(primary — {ungigned number}|(variable)|

{function designator)|({aexp})

G
2
{aexp) —» {if (Bexp) then {simple aexp) else]*

{eimple aexp)
{simple amexp) - [*+}° (term) [+ (term))*
{term) — (factor} {*/+ (factor))* ‘
{factor) — (primary) {t{primery)}*
{primary} — ({aexp))|(function designator)|
{variable}|{unsigned number})

For example, the string
E+Y+ (N+1)*¥N

cannot be parsed directly as a {simple aexp) be-
cause the embedded + would lead to the assignment

of {term) to beth (N and 1) *+ M. Rather, the
parser should see the string as
I+Y+ * M

(N+1)

where the embedded aubstring is not “visible" at
the current level.

In order to characterize this suppression pro-
cess we need to introduce the concepts of admia-
gible basic gymbole and their assoclated minimal
cover lists, Briefly, if A - «, a basic symbol t
18 eald ro be admissible with respect to the gensa-
trix A if elither

(a) t does not occur in & or

{(b) for each instance of t ¢ & one of the fol-
lowing two conditions is satisfied:

(1) & 18 of the form t@ (or @dt). That is,
a corresponding instance of t in any
valid ground—derivatian* ogof A ls
uniquely determined by matching t to
the head {or tail) of o.

(2) @ 18 of the form ftw. Then either
(4) thare is no aubphrase B ¢ O such

#5 %5 o, 40 seld to be a ground-derivation if
® 1s¢ composed antirely of basic symbols.

that B & nty or

(11) if B occurs in ¢, and 1f B &> ney
is a valid ground-derivation,
then this derivation must have

the form
N> QU B DU
. £t
L IO S
t

where X 18 & non-terminal and
[#] are basic symbole distinct
t t

from t. The pair of bracketa

[,] are said to cover the lower-
t t
level occurrence cof t. If, how-

evar, t = [{or £t =]), then a
must satisfy the additional con-
dition ¢t = $tw = n{ X Ju where

t t
B ¢ k and t does not appsar in
any ground-derivation of either
T Or W.

When an admiseible basic symbol t is of rype (ii),
the aet of bracket pairs, which uniquely delimit
lower-level inatances of t, fs called the minimal
cover list for t. For example, in grammer G; we
can show that + is admissible with respect to
{simple aaxp), by condition (i1i). We observe that
B in thils case can only be {term} and that there
are ouly three ways to obtain a + in a ground-
derivation from B:

<+ ({aexp))

{tenm}m..(Eactor)...—Kprimary)...i;..(function
degignator }
v+ (variable)

We shell consider only the ailmplest case:

({aexp)} - (... {aimple aexp) ...)
- (... (term) + {term) ...)

where we see that the + in (... {term} + {term)
«vs} 18 indeed "covered" by the pair of brackets
{+«.): In a aimilar fashion, the other two cages
lead to the discovery of the additional peir of
brackets [].

We ahall say that a baslc symbol ie admiasible
in a grammar if it is admissible with respect to
every genatrix of the grammar.

When every basic symbol of a grammay is ad-
missible, a valid parse is obtained by preprocess-
ing every text segment for a well-formed nest of
minimal covers for all the basic aymbole of a
pattarn, beafore associating the basic symbols to
corresponding occurrences in the text, Fach
covered gegment 1s pushed down one level to be
analyzed by subgoals descendsd from the currsnt
level of analysie. The existance of auch nests
alsc provides another powerful comsietency check
on the text, permitting the cover processor to
correct many errors involving the covering brackets
themselves.

=599~

Our parser requires that every basic symbol
of a RODEN-form grammar must be admissible. How-
ever, in general, CF-grammars may contain non-
admissible symbols. Furtunately, for the CF-gram-
mars in common use, this is not a problem. All
basic symbols in FORTRAN and LISP are admissible.
In ALGOL, the set of symbols jLf, then, else, for,
:m do are inadmissible due to the construction
which permits

if-then-else for- :« - do JLf - then-else

In actual practice, this construction almost never
appears. Indeed, in ALGOL-68, the problem has been
eliminated by providing conditional statements with
a closing basic symbol: if-then-else-fi.

In summary, the RODEN translator transforms a
broad class of CF-languages to RODEN-form; in the
process, basic symbols are examined for admissi-
bility and their corresponding lists of minimal
covers are associated with the proper genatrices.
Additionally, lists of basic symbols occurring in
the final form of the handle are associated with
the corresponding genatrix, and a dictionary of
all basic symbols is compiled. This dictionary is
then analyzed for any entries which can be "ex-
tended" (hence the term extended dictionary). That
is, each word is examined to see if every occur-
rence of this word, in strings of the language, is
contained in some larger unique context. For ex-
ample, ignoring spaces, this leads to the replace-
ment, in the dictionary, of all LISP functions
(fun) by ((fun), of all FORTRAN verbs (verb) by
:(verb), of FORMAT by FORMAT(, etc. (: is used as
a column 7 indicator, ; is an end of line in pro-
cessing FORTRAN).

Il Simulation of a Single-character Classifier

Data for testing the context analysis system
are provided by a computer-simulated character
recognizer. The input to the simulator is error-
free text from the language to be investigated.
The garbled output is in the form of a P-list for
the context analyzer.

The operation of the simulator is controlled
by a confusion matrix (constructed bo approximate
the error maps reported by Duda and Munson* for
their TOPO 2 program), a noise factor, and a "con-
sistency" factor.

On the assumption that classifiers can be con-
structed so that the correct character will almost
always appear among the first few entries of the
output alternative list, the confusion matrix has
about six non-zero entries for each character.

The noise factor controls the undetected -error
rate of the simulated classifier. The consistency
factor is a measure of the probability that, given
two alternative vectors for the same character, a
character which occurs in one vector will appear
in the other vector. The reliability of the inter-
string distance measure (see 4.2), used by the sys-
tem, improves as the mutual consistency of alter-
native vectors increases.

-600-

IV. Context Analysla

The first two phases of the context analysis
system are aimed at reducing the combinatorial
complexity of the task to be performed by the syn-
tax analysis phase. Since, In principle, all ex-
cept name-space errors can be corrected by syntax
analysis, care is taken to ensure that the dic-
tionary matching and clustering do not Introduce
errors; however, neither is foolproof.

4.1 Extended-dictionary Matching

The strategy of extended-dictionary matching
(box 1, Figure 2) is similar to the table look-up
method used by Vossler and Branston.® Spaces
are treated as error-free characters, and each
substring of length n delimited by spaces is pro-
cessed in turn. The substring is matched against
all possible dictionary entries of length n, n-1,
.., k until the first entry is found which is
closer than a fixed minimum distance to a (possi-
bly proper) substring of the current object P-
list. The lower limit, k, on the length of entries
to be matched is established experimentally. Pre-
sently, with up to 35% noise and 50% consistency
(see Section Il11) in the simulated data, a value
of k = 2 has been found to introduce no erroneous
matches in the processing of LISP, ALGOL, and
FORTRAN texts.

The distance, d, between a dictionary entry

E: £112 tm

and a P-list of the same length

a: ({(“11"'11)'”(‘1:::1"'1;:11”

(e oVoy)enele, v,)}
21721 m, n,

(g ¥+ (pg Vg 1))

rm
n
iz given by
S
d = nf v, ,B{Z, ,c)
1a1 =l 1] 171}
where
0O ifaséb
B(a,b) =
1 ifawbd

provided that every £, corresponds to a ¢, for
some k; otherwisa, d = «. If & satisfactory match
iz found, the text F-list is modified by replacing
the corresponding L-lists by singlston L-1ists
containing the letter of the dictionary entry
pairad with the highest possible confidence. Thia
replacement is & level zaro suppress operation.?t

‘nll':lll that ths extended dictionary contaims
tha basic symbols of the language (e.g., begin,
end, ...).

*in aach case, the deleted entries have basn

For example, the P-list

6 S ET 8 (SETQq
I I = 5 B becomes

C 6 G 2 F

{ 3 6 Q

L F

where the associated confidences are suppressed
for clarity.

4.2 Name-space Clustering

The clustering procedure (box 2, Figure 2) em-
ployed by the system is related to the methods em-
ployed by Duda and Hart-3, but necessarily differs
in several ways due to the requirements of handling
a variety of languages. The strategy is based on
the assumption that a sufficiently sensitive clus-
tering method can discriminate names without a
priori knowledge of the context in which names are
likely to occur. This assumption obviously depends
on both the length and average number of occur-
rences of names in the text. It is more important
for the algorithm to identify at least one instance
of all of the names than to locate all of the oc-
currences of each name. Those occurrences which
are overlooked will very likely be found by the
pattern associating routines which use the diction-
ary of known names compiled during this pass.

Typical performance of the method is indicated
by the results of clustering analysis on a 272-
character ALGOL program. The output of the simu-
lated character classifier exhibited an uncorrected
error rate of 33.1% and a consistency factor of

48.8%. The results are given in Table 1.
Number of Number Unified

Name {ceocurrencesa Identified Spelling

I 8 6 1

J 6 2 J

K 5 2 K

N 5 5 N

RAD 3 3 QAD

TRY 2 2 TR2

BASE 3 3 BASE

FIND 2 2 FING

PERM 4 2 PFRM

ORDER 5 4 GRDER

Table 1

descended from an auxiliary pointer on the L-list.
This auxiliary list is used to restore the original
structure if the selected entry is later found to

be invalid and has the structure

((I.l,L-].ilt)
(I.2 ,L=14sL)
(I.n,L-lilt)]I

where L¢. is the integer-level number at which the
decision to suppress the associated L-list was
made. We shall refer to this operation as the sup-
press operation.

-601

Thirty-one out of forty-three total instances of
all names were identified, including at least one
instance of every name. After syntax analysis
two instances of the name 'I' were incorrectly
identified as 'J'; all other instances of names
were correctly recognized.

4.2.1 Sample collection. The clustering
algorithm processes the entire text for "name-like"
substrings, constructing as many groups as needed
of identical length samples. Presently, a P-list
is treated as a possible name if

(a) it contains no spaces,

(b) it contains no characters classified as
delimiters (this information is input
along with the RODEN-form grammar) whose
confidence exceeds a fixed value,

(c) a letter is among the alternatives for
the first position,

(d) no longer P-list satisfying (a)-(c) con-
tains it.

Since most formal languages define names in this
way, this definition is built into the clustering
program. It is clear that this sampling procedure
will collect a number of strings which are not
names at all, but substrings of names, composites
of names and other symbols, etc. The assumption
is that these undesirable strings will form de-
generate singleton clusters of their own and will
be ignored in the unification step at the end of
this procedure. In the example described by
Table 1, six such strings were collected by the
sampling procedure; all formed degenerate clusters
and were discarded.

4.2.2 Clustering. The clustering procedure
is applied to each group of identical length sam-
ples in turn. First, a set of "representatives"
is selected from the sample. The procedure for
locating the representative samples is similar to
that used by Casey and Nagy9 to select an initial
set of centers for the clustering stage of their
recognition system. The first sample is chosen
as the first representative. The sample having
maximum separation (defined below) from the first
is taken as the second representative. Similarly,
the remaining representatives are chosen to be
those with the maximum minimum separation from
those already selected. This procedure is itera-
ted until a sample is selected whose separation
is less than a fixed minimum distance. It is as-
sumed that at this point an instance of each name
of length n has been located.

The success of this procedure is in large
measure dependent on the performance of the dis-
tance function, defined for two P-lists U and V
where

R G PR TRLC T PR P PR

((azl.uu) (322. nzz) Ve (.Zmz . uhz))

((anl. nl) . (amn.umn))

Va ((&11'"11) e (blk1'v1kl))

(((bnl.vnl)...(bnkn.vnkn?)

E Ei ;1
d(u,v) = o/ (u, ,+ v)5(a
13 2 i} it

13°P1g)
where
0 if aij % bi£
Blagybyy) =
1 if aij - bu

If in any position no two characters correspond,
then d(U,V) m . If, in general, two alternative
vectors for the same character have a reasonable
high consistency, then this should be a richer dis-
tance measure than a simple sum of the highest con-
fidence corresponding characters.

The final stage of the clustering procedure
is very simple: each remaining sample is assigned
to the cluster with the closest representative.

4.2.3 Unification. When all clusters of a
given length have been established, a unification
procedure is applied to all but singleton clusters
to select the highest confidence common spelling
for each. Then, as in the dictionary matching,
each cluster member is replaced in the text P-list
by this common spelling. The deleted L-list entries
are suppressed at level zero.

While there are certainly many refinements
which can be incorporated into this procedure, our
philosophy is to apply effort where the greatest
returns appear to lie, and this is in the syntactic
analysis phase. The only improvements currently
planned for the clustering phase are (a) a refined
distance measure which will attempt to detect the
presence of prefixes (suffixes) (e.g., xmax, ymax)
and give relatively more weight to the contribution
of the prefix (suffix) to the distance; and (b) the
dynamic computation of the center of a cluster as
new members are added.

4.3 The Parse Graph

In order to follow the next section on syntac-
tic analysis, it is necessary to have in mind the
parse graph which represents the current state of
that analysis. The overall structure of the parse
graph is, naturally, a tree. The nodes of the tree
have a branching structure which corresponds to the
RODEN-form meta-operator at the node (thus there
are conjunctive, disjunctive, iterative, and selec-
tive nodes). In addition, there are phrase nodes
(e.g. (statement)) and terminal nodes (e.g., begin).
Associated with each node are a number of indica-
tors which describe the state of the parse repre-
sented by the subgraph descended from the node.
Among the possible entries are those which give the
value of the basic symbol match, the number of char-
acters in basic symbols which selected this node,
and the level number of the parent cover for covering

-602-

brackets. The entries relevant to error recovery
are: left- and right-extensibility indicators,
left- and right-truncation indicators, and an en-
try which reflects the detection of an Invalid
covering bracket assignment.

4.4 Syntactic Analysis

By combining the unbounded-context parser and
a particular RODEN-form grammar we obtain an error-
correcting parsing system which is nearly free of
back-tracking. Through hierarchical consistency
checking, the parser is able to discard fruitless
paths inexpensively and is able to correct many
errors before exploring the detailed structure of
the text. At each level the parser associates
with the current object P-list (a) an instance of
the current pattern (p) on the basis of corre-
sponding basic symbols. The method employed
causes the pattern to be self-positioning. This
property, together with the fact that all basic
symbols of the pattern have been mapped with a
high average confidence to the P-list, improves
the parser's probability of success in selecting
the correct recovery steps when errors are de-
tected.

4.4 1. The basic strategy of parsing. In
the following, the parser is considered to be ana-
lyzing a with respect to the current subgoal G.

G may be a phrase (a single non-terminal), a
basic symbol, or a skeletal instance of a pattern
assigned by a higher-level goal. If G is a pat-
tern (p), then M and S are the associated minimal
cover lists, and basic symbol lists, respectively.

If G is a basic symbol, it has already been
matched to the text at a higher level (by the as-
sociation procedure), so the parser simply reports
the value of that match.

If G is the phrase (identifier), the parser
invokes a special process which attempts to ex-
ploit the relatively high a priori probability of
occurrence of identifier dictionary entries.

If G is any other phrase, the parser retrieves
the pattern, p, associated with G, and matches the
pattern to the text in the three steps of covering,
association, and resolution, described below.

If G is a pattern, the parser applies itself
recursively to each subpattern of p. In the case
of disjunctive patterns, the parser returns the
first disjunct to achieve a satisfactory match.

In the case of conjunctive patterns, failure of a
subpattern causes the parser to invoke the recov-
ery procedure appropriate to the type of failure.
The details of failure recovery are discussed be-
low. On exhausting all subpatterns of p, the
parser invokes a scoring procedure to evaluate the
success of the analysis for G. Errors which have
been detected in disjunctive structures are re-
ported to the parent goal at this point. In con-
junctive patterns, comparison of the bounds of the
substructure to the bounds of G reveals the pre-
sence of L-drop and R-drop errors (see Error Re-
covery and Correction below).

4.4.2 Analysis of the (identifier) phrase.
The special processing of identifiers serves to
compensate for the lack of structure of this phrase
type, as defined for most languages. Otherwise,
virtually any text segment would satisfy the syn-
tax of (identifier). It is assumed that the iden-
tifier dictionary contains an instance of every
identifier.

First, o is matched to all identifier dic-
tionary entries of the same length. If a suffi-
ciently good match is found, the parser reports
the value of the match. This failing, the process
attempts to determine if a is a head, tail, or
proper substring of a valid identifier occurring
in the text P-list which includes a. If an identi-
fier is found which matches the P-list in a neigh-
borhood of a, the parser reports the appropriate
type of add or drop error.

4.4.3 Matching patterns to the text. As in-
dicated above, when the parser begins analysis of
a new subgoal, which is a phrase, the matching of
the pattern associated with that subgoal proceeds
in three successively more expensive steps, cover-
ing, association, and resolution. Each step must
be successful before entering the next, and each
has its own error detection and correction tactics.

4.4.3.1 Covering. The list, M, of minimal
covers associated with p, is retrieved. If M is
empty, the algorithm proceeds to the association
step. The covering process accepts the text P-list,
the bounds of G which delimit the portion of the
P-list to be considered, and the cover list M of
the form

M= ((11 trl) (32 nrz) s (Enlrn})

of n distinct pairs of covering brackets. The
covering procedure is given the task of finding
the highest confidence well-formed nest of these
brackets.

The procedure presently under investigation
abstracts from the text P-list a list (called a
B-list) which has an L-list for each possible oc-
currence of any of the brackets. Each such L-list
has the entries: the bracket together with its
confidence, (B,U), and a null character, 0, repre-
senting selection of a symbol other than the bra-
cket, together with a confidence which represents
the effect of suppressing the bracket, (#,¥} (note
the example below). If there are K brackets on
the original L-list, there are ¥+l entries on the
new L-list. For single-character brackets, the
non-bracket confidence, V, is simply that of the
highest confidence non-bracket character on the
original L-list. For multiple-character brackets
V it the average of the highest-confidence non-
bracket characters. This latter measure has not
been tested, since the extended dictionary-matching
procedure has never failed to correctly classify a
multiple-character basic symbol which was also *
covering bracket.

The cover procedure selects a nest from the B-
list by generating, by descending number of brackets

-603-

(strings with equal numbers of brackets are ordered
by descending total confidence), all possible
strings, taking the first well-formed nest.

If a well-formed nest is found, the portions
of the P-list bounded by each bracket pair are
suppressed one level by combining that portion of
the P-list with the new operator, *cover*.

For example, consider processing the P-list

P := CHI)/12;
8 ;- (1%1,1/):
7, 6)=F2 0O,
Z G8TS3 Z
9 11
52]
T

for the covers associated with (arithmetic expres-
sion) in ALGOL, where M contains the bracket pairs

() and [. We have the B-list
@.45 8,25),45 9,35
(.30 1,25 $,30),25
),20 =2

The algorithm selects the correct nest (_) _
and transforms the P-list to

P = 12
8;-(J+ 1)1/ 0
7, 8«7 Z,
Zz » = F 1
9 3TS
2 1
2
T
which i represented in list notation Bse:
({(P.40)...)
({52.100))
((:.50)...)
(= 60)...)
((SP.100))

(*COVER* 5 (((LP.30))
((3.35)(8.15) (,.3)(5.2))

((+.45)...)
((1.30}...)
((rRP.45)))

(t/.60)...)

((L.60)...)

((2.35)(¢.20) (2.15)(1.3))
((;.50)...3)

The form of a P-list entry for a coverad sub-
structurs is (*cover® {length) P-list) where
{length) denotes the number of character positions
in the suppressed P-liat, Note that in the new P=-
list, the four L-lists which contained brackets
have a new etructure: those containing the selec~
ted brackets have been replaced by singlaton lists,
and the brackets have bean suppressed in thas other
two liscs.

4.4.3.2 Association. This is the critical
stap in unbounded-context parsing., Association
astablishes the correspondance betwean an abstract
reprasentation of the text, in the form of an

ordered list of principal basic symbols, and an ab-
stract representation of the global structure to
be assigned to the text, a RODEN-form pattern.

The success of the method depends on the abil-
ity of the association procedure to "spread the
risk" of selecting a particular pattern over a suf-
ficiently large number of characters in the text,--
thus the need for eliminating recursion and adja-
cent non-terminals in patterns in order to bring
to the surface the principal basic symbols which
serve to identify the occurrence of that pattern
(for example, note the explicit structure of (aexp)
in example G2 of Section I1). Another important
property of the method is that the pattern is auto-
matically positioned with respect to a. Thus, miss-
ing delimiters, which cause the bounds on a phrase
to be set incorrectly, are detected by noting that
the pattern was successful in matching the inter-
ior of the bounded text. Similarly, erroneous de-
limiters are detected by noting that the pattern
has been truncated on one or both ends by an in-
correctly positioned bound. For an example of the
latter, consider the processing of the (for state-
ment) of Fig. 3: after the first two phases of
context analysis, the P-list might have the form

a
{statemant } {statement }

POR I := 1 STEP ; OUNTIL N DO V[I} := 0

/ 1 LI D

.) ¢T U

/ 12]

1 P

Q

Figure 4

The erroneous ";" has caused a higher-level goal

to partition the string into two (statement)'s.
The high confidence head match of (for statement)
to FOR o will cause the association proced-
ure to immediately report an "R-add" failure (i.e.,
a delimiter is hypothesized to have been "added"
just beyond the right end of a).

The task of the association procedure is to
process the bounded segment, a, of the P-list to
produce a skeletal instance (N) of the pattern p.

First, a process is invoked to construct from
0 and B, the basic symbol list (W) for p; i.e., W
is a list of occurrences of these basic symbols.
The elements of W are triplets ((symbol),(value),
(pointer)) where (value) is the average confidence
that the string found at (pointer) in a is, in
fact, the basic symbol (symbol). Symbols found at
the head and tail of a are tagged with special®*-,
-4 indicators so that patterns which require head
and/or tall symbols can distinguish them.

All possible occurrences of basic symbols of
more than one character will be found on W. An
unpleasant problem is encountered if all possible
single-character symbols are also included: errors
may be introduced which will not be detected by
the subsequent context-free analysis. For example,

-604-

in any algebraic language, the symbol which would
be selected from the alternative list for some
operator, such as *, will be the first operator
in the hierarchy which occurs on the list. That
is, If a + appears as the lowest confidence en-
try on an L-list for *, then the expression will
parse as @ + £, and the error will never be de-
tected. The following approach seems to circum-
vent the difficulty: when processing a single-
character basic symbol, which is classified as a
delimiter, an L-list is selected only if that
delimiter has higher confidence than any other
delimiter which may appear on the L-list. De-
limiters which are missed with this procedure are
detected as drop errors in subsequent syntactic
analysis and corrected by the recovery procedure.

The second step in the association process
has the task of selecting and expanding elements
of the pattern p. The match is controlled by the
list W, of occurrences of basic symbols. Briefly,
the association procedure sequences through W,
from left to right. The elements of W serve to
select a subpattern of p if a correspondence can
be established between the basic symbols of each.
Selected subpatterns are appended to the growing
skeletal node, N. Iterative and selective pat-
terns, if not selected, are appended with an X
(unexpended) indicator in the event that they may
be needed in subsequent drop recovery. In rare
cases, on exhausting the pattern, a string erron-
eously recognized as a basic symbol may result in
a partially satisfied conjunctive pattern accom-
panied by unused symbols on W. (E.g., an erron-
eous do in processing a (for statement) in ALGOL
could lead to an unsatisfied :=, with the :- and
the correct instance of the jio left on W.) These
cases are corrected by sequencing through the
pattern (the match is now controlled by the pat-
tern) and W from right to left, searching W for
an instance of each unsatisfied symbol in the
pattern. If all of these can be satisfied, and
W is still not empty, we examine the remaining
entries on W for symbols which are both in the
proper order (position in 0) and have higher con-
fidence than a symbol already selected. If such
an instance is found, the original symbol is re-
placed.

If in a conjunctive pattern a head or tail
match is obtained, then the right-extensibility
(R-add) or left-extensibility (L-add) indicators,
respectively, are set at the node. The R-add in-
dicator at a node specifies that the associated
pattern is satisfied with the portion of the P-
list bounded by G but that the remainder of the
pattern can only be satisfied by matching more of
the P-list to the right. Thus, if an error has,
in fact, been detected, it must be an erroneously
recognized basic symbol (an "add"), which caused
the right bound of G to be incorrectly positioned.
Similarly, the L-add indicator specifies a pos-
sible Incorrect left bound.

4.4.3-3 Resolution. If the association
process was not able to correct all detected er-
rors, the parser reports the failure to the parent

node. Otherwise, a procedure is invoked, given N
and the bounds of G, to set the bounds for the sub-
phrases of N. Then the parser is applied recur-
sively to N. If the recursive call reports an er-
ror involving a covering bracket assigned at the
current level, the parser restarts the cover, asso-
ciate, resolve process with the next valid cover
nest in the sequence (see "cover conflicts" below).

4.4.4 Error recovery and correction.* The
only (syntactically-correctable) errors which re-
main to be considered are those which cause the
incorrect positioning or positing of subgoals.
When the parser reports a failure in the analysis
of a subpattern, the indicated failure is of four
main types, cover-conflict, add-failure; drop-
failure, or total failure.

The treatment of failures is, of course, de-
termined by the context of the type of pattern in
which the error is detected. In disjunctive pat-
terns, the failure may simply indicate a syntactic
dead-end, i.e., incorrect positing of a subgoal.
Therefore, error processing is postponed until the
entire disjunctive pattern Is scored in hopes that
a subsequent disjunct will succeed. This strategy
proves to be reliable since the most difficult pat-
terns to satisfy, i.e., the most redundant, are
matched first.

4.4.4.1 Add-fallures. An add-fallure occurs
when a substring has been erroneously recognized
as a basic symbol, at the current or higher level,
resulting in the assignment of a phrase to a sub-

string which has been truncated at one or both ends.

The strategy of add-failure correction is to
back the failure up the parse graph until

(a) a conjunctive branch point is encountered
where an adjacent iterative or selective
node can be removed along with the basic
symbol which is presumed to be the source
of the difficulty; or

(b) a disjunctive branch point is encountered
where the parser can postpone the error
recovery (the effort could be wasted on a
syntactic dead-end).

4.4.4.2 Drop-failures. When a basic symbol
is missed by the association process (i.e., a drop
error), the result is an improperly bounded sub-
goal. The error is detected at a lower level, when
the subgoal is analyzed, as a left-drop (L-drop)
or right-drop (R-drop). The stragegy of drop re-
covery is to back up the parse graph until

(a) a context is encountered which permits
the introduction of a new lIterative phrase
to cover the unrecognized text; or

(b) basic symbol which delimited the subgraph
containing the drop is encountered, per-
mitting the parser to replace this in-
stance of the symbol with another instance
in the unrecognized portion of the text;or

e —

For examples, see Darden.

-605-

(c) a selective node is encountered, allow-
ing the parser to abandon the recovery
effort, or

(d) a disjunctive branch point is encountered,
allowing the parser to postpone error re-
covery.

4.4.4.3 Cover-conficts. Since the cover
generation algorithm produces covers ordered by
descending total number of brackets, cover errors
are detected during an attempt to suppress a basic
symbol which is also a bracket belonging to a
cover established at level K. When this condition
is detected, the parser sets the "request recover
indicator" at the current node. As with the other
error indicators, this information is backed up
the parse graph until the parser either shifts to
another successful analysis path at a disjunctive
node or reaches the phrase node at level K where
the culprit nest was assigned. At this point the
parser restarts the cover, associate, resolve pro-
cess with the next valid nest in the sequence.

4.4.4.4 Total failure. A total failure is
usually an indication of a syntactic dead-end or
is the first indication of an add-error. The
strategy of total-failure recovery is to back up
the error indication until either a disjunctive
branch point is encountered, permitting the par-
ser to try another analysis path, or a conjunc-
tive branch point is encountered. In the latter
case, the recovery investigates three possibili-
ties: first, that the unsatisfied conjunct was
an erroneously expanded iterative phrase; second,
that one or more basic symbols, which delimit the
conjunct, are mispositioned (i.e., a combined
add/drop error has occurred); and third, if the
conjunct which failed occurs at the head or tail
of the pattern, then a higher-level L-add or R-
add is assumed and reported to the parent node.

In the first case, we must have a pattern
fragment ..aby..., with possibly one of a,y null
and p an iterative subpattem. The basic symbols
which selected p are suppressed at the current
level and the text segment reanalyzed as an aY.

In the second case, we must have a pattern
fragment of the form ..atb... where only one of
a,p failed. Since we have symmetry, assume that
p failed. If the recovery is to succeed, t must
be an add-error and must have been dropped in the
text bounded by p. Therefore, we suppress t and
search for the highest confidence occurrence of
a t in the text bounded by otp, If found, we re-
analyze the text segment with the new assignment.
The process is continued until there are no more
t's to try or a successful parse is obtained. If
errors still remain, which are only head or tail
errors, then it is assumed that the third case
holds, and the appropriate error is reported.

4.4.5 Scoring the complete node. When the
parser completes the analysis of a particular
node, the scoring procedure is invoked to eval-
uate the success of the analysis. The process-
ing of a disjunctive node will not reach this

stage unless all the dlsjuncts reported some type
of error. In this case the parser attempts to se-
lect the most promising path for error recovery by
replacing the disjunctive node by the subnode re-
porting the highest basic symbol match score (ties
are broken by taking the subnode with the largest
number of selecting characters). If all subnodes
reported total failure, then total failure is in-
dicated for the node.

The scoring of conjunctive nodes is straight-
forward. The basic symbol match score has already
been recorded by the association process. The
complete node score is simply the logical product
of the scores of all the subnodes. Iterative and
selective nodes are simply given the score of
their respective subnodes.

Summary of Context Analysis

The context analysis system comprises three
phases. The first phase (extended-dictionary
matching) replaces substrings of the text which
are sufficiently close to basic symbols in the
dictionary. The second phase (Name-space cluster-
ing) attempts to discriminate an instance of every
name in the text and to assign a common spelling
to all occurrences of the same name. The third
phase (Syntactic Analysis) applies a strategy of
unbounded-context parsing and hierarchical consis-
tency checking to achieve reliable partitioning of
the entire text into simpler subproblems.
path through the parser accomplishes the matching
of patterns to the text by successive covering,
association, and resolution processes.
are given special treatment. Error detection and
recovery is based on the discovery of either par-
tial matches (e.g., head or tail matches) or
matches which are properly contained within the
bounds assigned to a subgoal.

V. Discussion

This paper has been concerned with the methods

employed in a syntax-directed contextual post-pro-
cessor for the detection and correction of charac-
ter recognition errors. We conclude with a few

observations about these methods and about possible

directions for future work.

The high reliability of the extended-diction-
ary matching process follows from the fact that
dictionary entries of the same length are gener-
ally quite distant from one another (in the sense
of a Hamming-distance) and from arbitrary strings
which may occur in the object language.

If one is satisfied with the assignment of a
common spelling to all occurrences of the same
name, the name-space clustering performs satisfac-
torily. Even if this spelling is different from
that intended by the author of the text, if the
name is local to the processed text, then the re-
sulting program is semanticaliy equivalent to the
original. However, the author of the text may be

dismayed to find that every occurrence of his vari-

able MIN has been changed to MOM.

The main

Identifiers

It is clear that if the present strategy and
tactics prove inadequate to achieve our goal of
a 1% overall error rate, that there are a large
number of extensions which can be expected to
further enhance its performance. These generally
involve improvements in the parser's handling of
local context, for we are fairly confident that
the parser has a firm grip on global syntactic
structure.

The principal techniques currently employed
in hierarchical consistency checking involve the
parenthesis-counting of minimal cover nests and
the basic-symbol matching of the association pro-
cess. Many additional checks are possible: for
example, constraints on the minimum and maximum
(where maxima exit), lengths of substrings,
checks for valid prefixes and suffixes and for
substrings which cannot appear in the tentatively
assigned subgoal. 4,°

There are two extensions which we are parti-

cularly interested in investigating: (a) The de-
tection of prefixes or suffixes in identifiers.
The intrinsic nature of clustering methods is to
group very similar samples. Thus is it likely
that a method which associates all instances of
BUFFER will also group together all instances of
both BUFFERI and BUFFERI. However, the distance
measure should be able to recognize the cases
where two strings have tail (head) substrings
which are quite distant relative to the root sub-
string and give proportionately more weight to
the tail (head) contribution to the distance.
(b) The concept of a name needs to be extended to
Include names (such as arrays or functions) which
nearly always occur with some accompanying struc-
tures (e.g., MATRIX [...,...] or FUN (... .. ,...))
The recognition of this structure will help both
in discovering instances of the name and in cor-
recting errors in the accompanying bracket struc-
ture.

A final observation is that the unbounded-
context parser's grasp of global structure may
well prove sufficient for the system to discover
the language membership of a piece of garbled
text. That is, if the system contains RODEN-form
grammars for ALGOL, FORTRAN, LISP, and SNOBOL, the
parser could determine which grammar to apply,
based on an initial analysis of the text by each
grammar, taking the most redundant grammars first.

Acknowledgements

The author wishes to thank his colleagues at
The University of Texas at Austin, and especially
Dr. Woodrow W. Bledsoe and Dr. E. M. Greenawalt.

References

1. Darden, S. C, "A Contextual Recognition Sys-
tem for Hand-printed Formal Languages," TSN-1,
Computation Center, The University of Texas
at Austin (January 1969).

2. Duda, R. 0., P. E. Hart, and J. H. Munson,
"Graphical-Data-Processing Research Study and

Experimental Investigation," Fourth Quarterly
Report, Contract DA 28-043 AMC-01901(E), SRI

Project ESU 5864, Stanford Research Institute,
Menlo Park, California (March 1967).

Duda, R. 0., and J. H. Munson, "Graphical-Data-
Processing Research Study and Experimental In-
vestigation," Fifth Quarterly Report, Contract
DA 28-043 AMC-01901(E), SRI Project ESU 5864,
Stanford Research Institute, Menlo Park, Cali-
fornia (June 1967).

Duda, R. 0., and P. E. Hart, "Experiments in
the Recognition of Hand-printed Text: Part Il
- Context Analysis," AFIPS Conf. Proc, Fall
Joint Computer Conference (1968).

Irons, E. T., "An Error-correcting Parse Algo-
rithm," Comm. ACM 6, 11, pp. 669-673 (November
1963).

Unger, S. H., "A Global Parser for Context-free
Phrase Structure Languages," Comm. ACM 11, 4,
pp. 240-247 (April 1968).

Floyd, R. W., "The Syntax of Programming Lan-
guages - A Survey," |[EEE Trans. EC-13, 4
(August 1964).

Vossler, C. M., and N. M. Branston, "The Use

of Context for Correcting Garbled English Text,"
Proc. ACM 19th National Conference, paper D2.4-1,
D2.4-13 (1964).

Casey, R. G., and G. Nagy, "An Autonomous Read-
ing Machine," I[EEE Trans. EC-17, 5, pp. 492-
503 (May 1968).

-607-

