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SUMMARY

The classification of a set of patterns
is a problem that appears in very many fields. In
general, the number of possible classes
To define a distance (or similarity) matrix on the
set of patterns, we must summarize the available
date in the form of a finite set of features with

an information loss as small as possible. To eva-
luate distance coefficients, the best is to pro-
ject the pattern on a total orthonormal basis

on the condition of choosing a base matching the
pattern properties which concern the classifica-
tion problem to be solved. In the case of geome-
tric patterns where the discontinuities play an
essential role, Haar's discontinuous functions
appears to be very promising as shown in the given

examples. Morever, Haar's functions are well adap-
ted to digital computation.
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1 - PATTERN CLASSIFICATION

The classification of a set of patterns
is a problem that appears in very many fields. |In
the most simple case the number of different clas-
ses possible is known a priori this is the case,
for example, of printed characters of a given ty-

pe. But in general their number is unknown.
In a general way, the problem of classi-
fication is the following being given a set of

patterns one makes certain measurements on these
patterns and wants to determine subsets which are,
with respect to these measurements, internally as
similar as possible and externally as dissimilar
as possible. More formally, we have to define a
partition of the set of patterns that is, a set
of sub-sets which are mutually exclusive and col-
lectively exhaustive. It is not always possible to
reach this ideal goal, sometimes the sub-sets are

is unknown.
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internally similar and externally dissimilar but
neither exclusive nor exhaustive.

The logic diagram of figure 1. schema-
tizes the ideal proceedure for defining such a
partition. One uses a set of distance values (or

similarity coefficients) in the form of a train-
gular matrix ; each distance (or similarity) being
attached to a pair of pattern independently of
the order in which one considers these patterns.
The distances are to be evaluated from the rough
data available on these patterns. If, in making
the evaluation, one does not lose information the
distance matrix will exactly represent the initial
date. Unhappily this is rarely so. Moreover actual
patterns are very often composite, the distance
between two composite patterns is not very signi-
ficant and it is necessary to extract first the
elementary components of composite patterns.

2 - FEATURE EXTRACTION

In all that follows we will especially
consider geometrical or more exactly topological
patterns. A good example is a meteorological map.
In this latter case, we are interested by ombi-
lical points (either highest or lowest atmosphe-
ric pressure), and by evolution of these points.
The problem to be solved is to summarize first
the actual pattern by a set of features and af-
ter to classify a set of such maps.

For this kind of pattern, it is possible
to associate with each pattern S a certain cha-
racteristic function s which contains all the
rough date available concerning that pattern.
energy /E*?2dE associated with this characte-
ristic function is finite because the actual pat-
terns are of finite dimensions. The set of cha-
racteristic functions s constitute a Hilbert spa-

and it is possible to define on L2 a base
orthonormal function i so that

The

(). (E)dE = if* i



L (E).  **(E).dE = 1

Thus it is natural to use as operators

G. the group of scalar products which are the pro-

jections of pattern on the base i, and to define
the main features g” of the pattern S by :

Jk_ L s(E). ¢, (E).dE

The set of coefficients ¢g. jg cgonver-
gent and we have the Parseval equality for a cer-
tain base of orthononnal functions called total
(and complete if the set is finite)

E}sf = l/];uz(li)cl*z.‘

The above property is interesting as it permits
evaluation of that which we might call the quali-
ty of pattern features extraction : the right si-
de of the relation measures the pattern energy,
we can evaluate as a function of the rank i to
which we have carried the analysis what is the
percentage of the energy of the pattern summed
up in the set of i first computed features g by
calculating the sum of their squares and decide
to stop the analysis when the summation corres-
ponds to 80 or 90 % of the total energy of the
pattern to be summed up.

If it is possible to use distance bet-
ween two patterns s(E) and (E), this quantity is
the sum of the squares of the differences of the
corresponding coefficients g* and X*

[--]
Dlog) =2 (g, - ¥,)°

This type of analysis is extremely classic ; the
Fourier transformation is a particular case using
the orthogonal properties of circular functions.
Two spatial or temporal functions are identical

if they have the same spectrum and we can compa-
re several functions by calculating the sum of

the squares of differences between the frequency

components ; the greater this sum is the more dis-

tinct the functions will be. In place of the cir-
cular functions one also uses the orthogonal po-
lynomials of Tchebicheff, Legendre, Hermite,
Jacobi, Laguerre, etc. Bases are more or less
efficiency ; theoritically, the best efficiency
is achieved with a Karhunen-Loeve base of ortho-
gonal eigen-functiona [6]. But, from a practical
point of view it is sometimea preferable to use
more classic orthogonal bases.

In a first part of our study, we have
used a base of orthonormal functions deduced from
Hermite's polynomials to characterize geometric

unidimensional patterns of the Morse type si-
gnals dot-dash-space [3]+ The use of Hermite*s
polynomials for pattern recognition has been
proposed by G.E. LOWITZ [4]. We have pointed
outlhe interest of this proceedure but also the
discrepancy between the discontinuous character
of the patterns to be summed up and the conti-
nuous aspect of the Hermite Functions. In other
words, an Hermite base is a bad one to summari-
ze rough date if one admits that these rough
data are essentially linked to the discontinui-
ties of s.

It is more normal to think of using
bases of discontinuous orthonormal functions
which permit a priori a better analysis there-
fore a smaller information loss ; thus we can
define the distances between patterns which will
have more sense.

3 - HAAR'S ORTHONORMAL BASE

Haar's functions [2] constitute an
example of such a base. Their use in pattern
recognition proceedures has already been envi-
saged [1], Therefore our study has been modified
and Hermites functions have been replaced by
Haar's functions.

The goal is the automated analysis of
maps. But, it is too difficult to front-attack
this problem and we have used first the same one
dimensional patterns as before.

Without losing anything of the gene-
rality one can, because the monodimensional pat-
terns to be analysed are of finite energy and
therefore of finite dimensions lead the study
in the normalized range 0.1. Haar's 2" functions
of the n'" order are defined as follows (see fi-
gure 2).

22 on [(2 - 20, (2x - 1)%)
yn‘)(x) POR 2n/2 on [(2!& - 1) , 2k
n 0 for all others x £ [0.1)

1

where o = 2% and k =1, 2, ..., 2%

The amplitude 2'1/2 result of normali-
zation necemsity :

1
2, .
/OO(:(x)] dx = 1

and we really have the orthogonality relation-
ship



‘ZX (x)X(x)danwithkﬁ;
lX‘(X)X (x)dx = O withn £ m
k=1,2,...,2"

J=1,2,0..,20

non

For each level n there exists 2" Hasr functions
and thersfors 27 patiern features at the level n.

4 - NUMERICAL EXAMPLES

The interest in using a base of Haar's
orthonormal functions is brought out in the exam-
ples that follow.

Some of the analyzed patterns are re-
presented in figure 3. The amplitude can only take
but two values 0 or h, h being such that the total
energy of the pattern will be unity on the norma-
lized range (0,1).

Figures 4, 5, 6 represent the Haar
spectrum up to the 5th order, which is 63 coef-
ficients per pattern. From this we can deduce a
certain number of properties which are the follo-
wing (for the unidimensional patterns analyzed).

a) a coefficient equal to 0 over a given inter-
val signifies that over that interval the fea-

ture representing the signal is a constant, null
or not or that it is symetrical relative to the
mean of that interval.

b) a positive coefficient signifies that on the
first half of the interval the signal is longer
than on the second half, this indicates that at
least a discontinuity exists over the interval.
A negative coefficient leads to the inverse con-
clusions.

c) if all the coefficients are nuls to the M
order, and if the sum of the squares of the coef-
ficients calculated up to then is equal to the
energy contained in the signal all the other
coefficients of an order greater than M will be
nuls, the calculated coefficients exactly sura up
the pattern.

d) as soon as the quantity c<= 2 - J being
the order of the Haar function - is less than
the smallest interval appearing in the pattern,
only the discontinuities will appear. This pro-
perty is very important because it permits to
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state that from a certain number N, which s
unknown a priori because we don't know the pat-
tern, only the discontinuities remain ; which
clearly appears in the examples shown.

e) the accuracy with which we represent the
pattern is linked to the value of the interval,
i.e. to the order of the Haar function where
the analysis has reached.

Therefore it is possible to recons-
truct the pattern from the coefficients of the
N order, taking into account the discontinuities
appearing on the intervals of a lenght greater

than 2~N-1. As an example this is shown in fi-
gure 7 at the 5% °"9®" of the Haar functions
the 5", 10", 13", 18", 23" and 26'" coef-

ficients are different from zero, the interval
lenght for this order is 1/32, thus we know that
the pattern presents a discontinuity for the
5", 10, 13'", 18'™, 23" and 26th interval
of the reconstructed pattern of figure. 7.

The extraction of the main features
of a monodimensional geometric pattern by pro-
jection on a Haar orthonormal base is then a pro-
ceedure that permits a very small information
loss. In this way we can make the comparisons
between structures, on one hand by considering
the number of discontinuities brought out at the
order where one has stopped and on the other
hand by considering the value of the coefficients.
For example, the patterns of figure 4. are very
close to each other and have just two disconti-
nuities, they are symetrical in relation to the
middle of the interval (0.1). These properties
appear in the values of the coefficients which
are symetrical in relation to 0.5.

If the patterns to be analyzed have

not the noiseless character of figure 3. but
they are deformed, for example, by the presence
of noise, the analysis will remain valid. As we

can see in figures 6, 8 and 9 the nuls coeffi-
cients are no longer nuls, but certain of the
most characteristic amongst them stand out clear-
ly from the background noise of the others. The
pattern signal to noise level is roughly 17 dB.

5 - CONCLUSION

The classification of a set of patterns
by the projection on a total base of orthonormal
functions permits to summarize the patterns in
an efficient manner ; on the condition of choo-
sing a base matched to the properties of the
patterns which concern the classification. In



the case of geometric patterns where the discon-
tinuities play an essential role, the use of
Haar's functions appears to be very promising
as we have seen in the examples given above in
the particular case of monodimensional patterns.
Ve must add that Haar's functions are particu-
larly well adapted to computation by digital
computer.

For actual bidimensional patterns such
as maps, it is possible to use either bidimen-
sional Haar's function or a topological descrip-
tion of bidimensional space onto monodimensional
one [5]. Ve are trying to evaluate what is the
most efficient.
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