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Summary

This paper analyzes an optimal data col-
lection and processing system for detecting a
random signal field in a random noise field
employing multiple antennas. The statistical
model consists of a Gaussian random signal
field and an independent Gaussian noise field.
The time optimal data processing system to be
analyzed is specified in terms of array deploy-
ment and signal/noise space time correlation
structure. An exact expression for the charac-
teristic function of the test statistic computed
by the space-time signal processor is derived
under the assumptions of stationarity and a long
observation time. Analytical difficulties
involved in evaluating and inverse transforming
the characteristic function are considered through
case studies. The test statistic is analytically
shown to reduce to a Gaussian random variable
in the threshold case for the array situation. The
dependence of receiver performance on the space-
time correlation structure of the signal and noise
fields, the antenna deployment, and the optimal
performance criteria (outage rate, pre-detection
signal-to-noise ratio, etc.) is considered. Opti-
mal antenna deployment is considered, for the
threshold case, in terms of several physically
realistic signal and noise field space-time corre-
lation structure models.

Introduction

The problem of detecting a random signal
field in the presence of a random noise field has
received various treatments in the literature.
Despite certain limited analytical treatment this
is an important problem that occurs in many
areas, such as fading on long range communica-
tion and radar links, sonar, radio astronomy,
etc. The treatment addressed to this problem
thus far consists almost exclusively of the deri-
vation of the optimal receiver structure. The
early work was done for the scalar (one antenna)
case by Price* who only considered white noise
and Middleton2/3 who considered colored noise.
In these cases the derivations were performed
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using sampling point analysis rather than the
more rigorous and useful Karhunen-Loeve expan-
sion4 approach employed herein. Middleton2,3
also considered system performance with results
presented in sampling point notation.

An approach for enhancing detectability in
this problem area is the employment of an
antenna array. The antenna array collects
spatial samples of the signal and noise fields.
Key issues are (1) optimal spatial coupling
(antenna deployment), (2) optimal time process-
ing (receiver structure), and (3) the performance
improvement resulting from use of antenna array
collection. The time optimal processing issue for
the general case of detecting a random signal in
random noise with an array receiver has been
resolved by Middleton and Groginsky® and by
VanTrees.6 However, efforts toward determining
exact receiver performance and optimal coupling
have been less successful for both array and
single antenna coupling. This paper analytically
develops the relationships essential for an exact
performance evaluation for the antenna array case.

Problem Formulation

Statistical Model

The incident signal coupled by the n ele-
ments of the antenna array is represented by a
column vectorx(t), and is assumed to contain a
signal component and a noise component under
the indicated hypothesis structure.

rlt) =slt) +N@ ; H
=0 +N(t) ; H

1 M
0
The restriction to the "on-off" case is made to
render the mathematics less cumbersome, and
its removal is a straightforward extension of the
results contained herein. The amplitude time
structure of the signal s.(t) to be detected can be
a narrow band, complex stochastic process y (t)
which has been modulated with some determinis-
tic and possibly complex narrow band function
f(t) 7 |If the carrier frequency is w , then
ju.\ct

5t =Rfxlt) flwye ~1]. @)
The orthogonal components of y.(t) are assumed to
be Gaussian distributed and independent. This
model can be used to represent situations such
as multiplicative Rayleigh fading with a uniformly



distributed additive phase.B8,9 Nt} is assumed
independent of y{t) with independent, Gaussian
distributed orthogonal components. Thus r{t) has
means (specular components)

jw_t
m, ® =E{zt)[H,] =RltWe © E[x|H]})

+E[NWIH,]
myt) = E[(t)|Ho] = E[N(®[H]]
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and covariance matrices
Ll(t,u) =5_5(t.u) +£N(t,u) By

&o(t.u} =%’(t,u) i H

where

K_s(t.u} = 21(t) f*(t}lgl{t.u) .
Time Optimal Continugus Data Processing

The time optimal continuous data process-
ing for optimally detecting the above signal
involves calculation of a test statistic £ which
is compared with a threshold and can be repre-
sented in a number of forms corresponding to
different implementations of the decision equa-
tion. Two such forms are:b

(1) The "phasing/weighting/combining=-
estimator-correlator” form which is specified by

T
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where Gand QN are matrix functions defined by
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Since (7) ls a Wiener-Hopf integral equation,s
then

(8)

T
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i
is the usual optimal {minimum mean square error)
estimate of g{v) under hypothesis I-I1 . The test

gtatistic is this optimal estimate correlated with
a flltered version

(9}
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of the received signal.

{2} The energy detector form specified by
T
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is a filtered version of r(t), with the matrix func-
tion filter k being defined by
T . T,
V[' kv, bk {v,u)dv=I Q{u.VJQN(V,t) dv. {13)
T : T

L i

The above structures can alsc be expressed
in simplified linear matrix operator notation used
by Middleton and Groginsky® as

_LT _L .t
L= G6Quir=,5 2
and (14)
Ly g2 o Loy, T 2
1= 5 Hxl 2 e £l

The block dilagram illustrations of these two
equivalent forms are indicated in Figure 1. For
complex signals, the "T" superscript indicates
complex conjugate as well as transpose so that
from the filter~squarer form, it is evident that 4
is always positive., The above structures are
preceded by a time delay (or phasing) network 1
{or ¢} in Figure 1 to allow for the signal phasing
{beam steering} requirement, Figure 2 illustrates
the detalls of the structures in Filgure 1 forn = 2
antenna coupling elements.

Characterigtic Fupnction Derivation

In order to evaluate system performance
and specify how spatial sampling {array/distri-
buted aperture coupling) might enhance perform-
ance, it is necessary to find the probability
density functions of £ under all hypotheses in
the problem structure {two in this case). This
can be done by first calculating the character-
igtic functions of £ . The above decision equa-



tions {receiver structures) were derived by expand-
ing r(t) in a truncated vector Karhunen-Loeve
serles expansion, writing the log likelihood ratic
in terms of this expansion, and then allowing the
number of terms to become unbounded.2:6 The
mean of r{t) 1s assumed to be the same under both
hypotheses in order to further general non-
threshold analytical calculation. This results in
the test statistic

_lm _ Lim

t=y e = E T - m L - as)

where L is a dlagonal matrix with diagonal
elements

Li=

o =

(3= -5 ] ae)
io il

and where [)\i ] are the eigenvalues correspond-

ing to the ith gtgenfunctlons in the Karhunen-

Loeve expansion under hypothsis H,, j =0,1.

The characteristic function is then J:alculated as

Lim
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Since r 1s complex, write

r-m=K-m} +Jty_-_ruy) as
s0 that
O | 2
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Now let
X
Diz) =g w @ +c, 2 (20)
® x=1 )
where
. =2x, 1, = (-1, 21)
ST S S & VRV

Equation (20) is similar to the Fredholm determt-
nant’ and can be simplified in 8 slmilar manner.
Then

ckdu

1+cku
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Letting
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hir, t:u) & TrIHEr tu)] (24)

where the set of vector functions LE_H(t)} are
complete and orthonormal. Note that h 15 siml-
lar to the resolvent kernel discussed in
Courant-Hlibert, Chapter J11.10 Then

T

Lim e f
x-mM,zxj (w) =exp(- [ [ h{t.t:u)dtdu} (25)

0 Tl.

The next step Is to Interpret Hir,t;u) and
hence hir,t;u) in terms of the space-time structure
of the signal and noise flelds. First it ts agsumed
that the ¢, 's represent a set of elgenvalues (not
necessarily ali posltive), Then if

M”(w}=

)Qle

i{l’,t K= o

K T
I oL (26

converges for some complete, orthonormal set of
vector functions {f (1)}, &(r,t) will be a kernel
having the eigenvalues ck and the eigenfunctions
(£}, vz,

R
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Then Hir.t;u) Ls a solution of the coupled system
of Integral equations

T

Hlo,t;u)+u [ glr.syH(s, tiu)ds=¢(r,t}, (28
T
i
which can be verlfied by substituting the serles
expansions for $ and H in (28).

The problem ls now one of relating % teo the
signal and noise statistlcs by obtaining the

{f ()1, The K covariance functlons have elgen-
value and elgenfunctlon sets defined by
Te
Mgt = [ Kt g ivdvij=0,1.  (29)
T

i

(Note that the A's and p's are dlfferent under the
two hypotheses H0 and H|.} It can be shown that



T

f
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by integrating the product of (29) and (30} over
time. Then if the eigenfunctions were the same
under both hypotheses @kl - for ali k).

1

(- %H) X
Ri T¢
= [1Q4t.0-Q(6,9] [ K.V g (vidvde
T, T,
T T
“I fI [Qo(t-l‘) - Ql(t.r)]_l%(r,v} dr}gk(v]dv
T, T, 1)
s0 that
T
gj{t,v) = [t - Ql(t.r}}.l_(_j{r.v) dr. {32
T

The next step is the solution of the integral
equation (28) for H. This ls facilitated by intro-
ducing the assumptlons that the time {T., T) ts
long and that the processes are satisfactory so
that

T
f
_;tj(m)= 3{1}(11];.1‘ %(T}e—jw.rd-r. r=t-v,{33)

!

It can be shown thatﬁ
T Q0 - Q, (0= S0y (@) - S, (w)

~ 5. )8 (015 (@) = 5] s () (o) (3)

so that
Te
-0 =[Q lr-vEK (v-1) dv
T
Tt
2,0-0=[ Q-vIK (v-0) dv (35)
T

H

Substituring (35} Into (28), taking the Fourler
transform, and solving for Hiw;u) ! then yields

H {wu)

B (o) = U+us @ 5 (017 5] 0 5, (o)

Lu-tres)ws W™ we)

where J, g =0,l and j # g, and
ﬁj(w:u) = E}{_H_j(-r:u)]= H fﬁj(t—'r, t;u) dt}

(37}

Note that this is the complete solution for H
because of the above assumption of a longzlmer—
vatlon perlod. Then

T
£ -
. & =0:u) = oy
[ bl uwde = 1 ﬁj(w-o,u)—rr-jmgj(m.u)z—ﬁ
T (38)
so that

-jw m
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TR ot U -1 - 1dx
expl- [ [Trir[I- T+ug ‘08 (017 J5% aud

(39}

Qptimal Receiver Performance

The cptimal recelver performance is found
by (a} evaiuating equation {39) to obtain the
characteristic function Mp(w} of the test statistic
¢, (b} tnverse transforming M,(w) to get thep.d.f.
p{#) of 2, and (¢) Integrating p(4) over the appro-
priate limits to get the error probabllitles.
Unfortunately this cannct be done in closed form
for the general case, An exception to this is the
classical and useful threshold case which wili
now be developed for array coupling.

Threshold Case

The threshold condlition is broadly defined
as corresponding to @ low SNR and the analytical
condition for this assumption is

Tr [ 18] ) 8, 8] ) 8, )] g%
<<Tr [ g W1 (40)

for g =0,l. If (40) is satisfled, then
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Li+us; ) 8,7

~

1-uS; W, 0 oS W) 8 () 5, 0 5 o

(41)
and
'I'f .
j‘ hj(t,t:u}dt= m, - uo,
T

=Tr_£[§;1(w),s_s(w)-ug;l(w)zs_s(m)g;(wygs(wng—ﬁ

(42)
where mj and crjz are constants. Then
-jw Tf
Mm(m) =exp[- [ [ hJ{t,t:u) dt du]
0 T
i
= exp [ju:mj - Lz w? c?] (43)

which is seen to be the form of the characteristle
function for a Gaussian random varlable with

nean m, and variance 02. It can be shown in a
straighgforward manner 'I‘.hat the error probabilities
with @ Gaussian distrtbuted test statistic £ are
£ - mo
PF = erfc{ - )
(44)
£ -m1
PD = erfc( ~ )|
1
where lo is the optlmal threshold and
® e-vz/z
erfc(X) = [ ——— dy {45)
X JZTT

Micldleton2 has demonstrated that the test
statistic becomes Gausslan in the scalar {one
sntenna) case under threshold condltions uslng
sampiing peint analysis. The above results hold
for contlnuocus waveform processing and multiple
antennas,

Optimal Threshold

The system performance is then completely
specified if a closed form expresslon for the
aptimum threshold £ can be found. The analy-
tical mechanlics lnvc?lved closely parallel those
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used to develop the characteristic function and
only a general outline of the steps will be glven
here, In the Karhunen-Loeve derivation of the
optlmum test statistic,® the serles expansion for
the optimum threshold was found to be

® IS
g =inn-2 3 1n(kﬁ]) (46)
k=1 ki

where 1 iz a blas constant determined by the
optimality criteria employed (Bayes, Neyman-
Pearson, etc.} and the i's are as previously
deflned. In order to obtaln a closed form expres-
slon for this series it is convenlent to assume
that the nolse also contalns a white component

of spectral intensity No/z. This assumption is
physically realistic because of receiver nolse and
as will be seen later, is also related to the deter-

mination of optimal antenna spacing. Then
Akl=N0/2 ”\ctk ; 1=0,1 47)
and
> 2 = 2
£ =inmM+ £ In(l+=—x . )- Z ln(l+=x__ )}
5 k=1 No clk k=1 No cok
(48)

Each summation {s handled as before by defining
a Dylz), Hylr.tu), and hy(r,t;u), and showing
that H; is the solutlon of
T¢
ﬂi(r,t:u)ﬂl‘r Kylr,s) H(s,t;jupds = K((r.t)

Ty

{49)

where K, Is the covariance matrix of the non-white
portion of the received voltage under hypothesls

i, L=10,1l. Assuming statlonarity and a long
observation time then yields

2/N_ =

t=im et [0 {eus )]s
0 -
- 4ug W)7's W52 du (50)
where _S_l{w) =§,Nc(r.u) "'_S_s(w)
St =8y (o) (51)

c

are the spectra of the non-white portions of the
coupled voltages under the two hypotheses.



Optimal Antenna Dimensions

In order to maximize system performance it
is necessary to simultaneously make Pf as small
and PD as large as possible. This is done by
maximizing the difference between the arguments
in (44), or equivalently, by maximizing the square
of the difference which is

y & {E[L/Hoj - E[t/Hl]} 2/ci/H
1)
e 22,2
= (n‘tl mo) /00 (52)
since Ln the threshold case 9 Z g . For the
threshold case, @
5w} =[5 () + § (0]t
=1 ] =N
= [1- 55 ()8 (]S (o (53)
and from the above characteristic functlon
analysis,
_ ® -l dw
m, = Tr_£ [“S'g (w)&s(w)] T
}‘f
=Tr I {t, VK (v,t}dv dt (54)
T, % $
2  reml -1 d
o= 'I‘r_{'U [§g (w) _S_s{m)§g () _S,S(m}] '2':”—1
Tf
=Tr [JJQ MK v.0Q (.yIK (r.) -
Tl dv dx dy dt.
so that
¥ = ajz = m - mg
T
=T [[[ QMK (v. 0 Qlx. VK (v, 0 -
Tl dv dx dy dt {55)

= Tr [ I8y 5,0 S )8 W1 FE

Singular Detection

At this point the phenomena of spatial singu-
lar detection can arise In the maximization of Y.
This phenomenon arises If receiver noise Is
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neglicted, i.e., if all the noise is assumed to be
received through the antennas. Singular detec-
tion occurs when the sy(W) matrix becomes
singular2 and two such cases need to be distin-
guished.

In the first case y is maximized for zero
antenna spacings, i.e., when the antennas are
(ideally) located at the same point.'? Later in
this report it is shown that the Sy matrix becomes
singular for zero spacings so that y appears to
become unbounded. The physical significance of
this phenomenon is that for zero spacings the
noises in the antennas are identical and the
optimum receiver structure phases and sums the
antenna voltages In such a way as to completely
eliminate the noise. Unfortunately the desired
signals In the antennas are also ldentical and are
also completely eliminated by the optimum
receiver.

The second case involves plane wave noise
yielding noises In the antennas as delayed ver-
sions of each other. Thus It Is theoretically
possible to completely eliminate the external
noise without eliminating the signal provided the
signal Is not received from the same direction as
the noise. In this case the performance Is
theoretically the same for all non-zero antenna
spacings. The plane wave noise Is therefore not
considered further In regard to optimal antenna
spacing.

The zero spacings solution is invalid as is
also evident from the fact that for singular
detection the threshold assumption no longer
holds since the inequality In equation (40) is
reversed. If the threshold assumption does not
hold, then equation (55) for Y IS Invalid and it is
no longer evident that the optimum procedure is to
maximize Y.

In order to obtain physically meaningful
results It is necessary to avoid the spatially
singular detection situation. This is done by
including an additive receiver noise whose
statistical properties are independent of the
antenna spacings. The receiver noise need not
be white but may reasonably be assumed uncor-
releted. This is the approach taken by
Gaarder13'"' in maximizing the antenna gain
function and challenges the conclusion of Martel
and Mathews who Indicate that near zero
spacings are optimal.

Problem Simplification

The Insertion of receiver noise Increases
the complexity of the Integrand In (55). Even In
the most simple cases the exact evaluation of Y
becomes so cumbersome as to render a direct



approach practically useless. It is therefore
desLrable to simplify the analytical task by finding
some simpler expression which Is maximal for the
same antenna deployment that maximizes y. The
cases under which this is possible will now be
developed.

A considerable simplification results If max-
imizing the Integrand Is the same as maximizing
the Integral. The development which maximizes
the Integrand will be a function of w unless the
Integrand can be factored Into the product of a
function of only the deployment and a function of
frequency alone. With physically realistic
antenna cross correlation spectra such a factor-
ization Is not possible. Thus the two maximiza-
tions coincide only If the optimal deployment for
the Integral equals that for the Integrand
evaluated at a particular frequency; w , perhaps
the carrier frequency. This In turn occurs only
when the Integrand contains, as a factor,

6(w- w)o). If the signal covarlance matrix contains

a common spectral term [S (W)=S (w) P (w))] then
S S

¥ =_£S§(m] Tr[_S_;Il(w} zs{w} §;ql(w) _Es{tu)] czj—t:
(56)

and the two maximizations colnclde only if Sz(w)
approximates g delta functlon. This will be Fhe
case If the 3 db width of S_{w) 1s much less than
that of Tr[§ u) P {0} 81 {w) P (u)].

In some cases It is also possible to use a
slmpler expresslon than the lntegrand In the

maximization. If x, are the elgenvalues of
A=5-!PF , then
= ~N-s
Tefs'p slp 1= £ a7 (57)
=N “-s5=N*s _ l

i=1

It would be much simpler to maximize £ \{I
1=1
Instead, but the two maximizations do not In
general coincide. There are two obvious cases
In which the maximizations do coincide, these
being (1) when all the X's are equal and (2) when
all the X's except one are zero.

If all the X's are equal, then (assuming A
Is normal) A Is similar to a scalar multiple of the
Identity matrix and hence Is Itself a scalar mul-
tiple of the Identity matrix. This in turn would
require SN to be a scalar function of Ps, which
Is not possible here because of the assumed
additive receiver noise. Thus the case In which
the X's are all equal Is physically unrealistic.

If all but one of the X's are zero, then A
must have rank 1 and hence Ps must have rank 1.

E,

-55-

This then {s the plane wave signal case in which
=1 {a matrix, all of whose elements equal one)
and vy reduces to

v= [ 8w P (58)
nn i
Here G (w=I I Sbj’{m) (59)

1=l =i

Is sometimes called the array gain function since
It represents the SNR gain effected by the antenna
array. The maximization of the antenna gain
function by Gaarder13,14 Is valid only for narrow
band plane wave signals (requiring that S*(W)
approximate a delta function).

The Integrand can also be simplified by

further selection of the SN and P matrices. That
~N —s

this Is the case might be suspected because these
matrices have the often convenient properties of
being Hermltlan and positive definite. The pro-
duct SNTs is Hermltlan only If SI" and Ps
commute. S" and P, will commute If and only If
they have the same eigenvectors, or equlvalently
If SN Is a scalar function of £5, or vice versa.
(Note that these statements are true only because
S n and Ps are Hermltlan.) For the physically
realizable cross covarlance spectra considered In
this report, the restriction that S.y be a scalar
function of Ps requires that the additive receiver
noise be uncorrelated and that the external noise
and signal sources be of the same type.

Case Study

At this point It Is desirable to Investigate
(1) specific functional forms for the signal and
noise statistics and (2) the plane wave signal
case without the benefit of the threshold assump-
tion. These will be considered as the case studies.

Physically Relevant Space-Time Correlation and
Power Spectra Models

If physically meaningful conclusions are to
be obtained, physically realistic space-time
covarlance functions must be employed. The
system designer must first model the physical
noise field environment and then use the model to
obtains; (w) and hence £n(w). The procedures
Involved, and some representative results will
now be considered.

A treatment of this aspect has been given
by Childers'®In terms of a vector antenna height
function h(@>0,cp) of the antennas used, which Is
useful when the coupling elements are dlpoles.
The voltage coupled In by an antenna Is the dot



product of Its vector height functlon and the
electric fleld vector of the incident radtation
field. The cross power speciral density function
between the signals coupled in by two antennas
(Flgure 3) ts given by the guadratic form

™
2r T —jiz- cosg , T
Syl =] Je’c B (w:8,9)
0.
2
sm{w:r.e.w)g*z(w:e.cp) sing dep de {60)
where
s s
Nee Nég
' |
Sxa | i (61)
'8 !
i N N
{ 98 9% |

Is a power spectrum matrix of the 9 and cp com-
ponents of the electric vector of the Incident
field and where z is the separation between the
antenna phase centers. Note that the auto power
spectrum can be obtained from (60) by setting
z=0 and hi. =Jh2. Note also that if h*Jlo/ then
sN h3 rank 1 hence is singular for z=0,
illustrating the singular detection phenomenon.

and

It Is readily apparent that various possible
functional forms for Sn12 exist. Unfortunately
except for a few special cases the resulting
analytical forms of Sy.12((D)In terms of field,
environment, and coupling element variables, are
usually very complex and lead to unwieldy math-
ematical complications. However, a number of
special cases have been developed In the
literature'®+'7+18:19:20:27 \which result In
reasonably simple analytical forms for Sniay ).
Four such physical cases are now considered.
The assumption that the noise is homogeneous
(SNA is Independent of r) Is common to all these
cases and will not be separately stated for each
case.

The first case Is one considered by Chllders
and Reed'® In which dlpole antennas and Isotropic
(Sn Is independent of 0 and cp), unpolarized

**Ne0 "*Ncpcp N 2" SNO SNO~ °) noise are

assumed. The resulting expression for w))
then SNDP}
SN12(W)= SNA[sInOi Sin02 cos(m 02>
[- sinwz/c  coswz/c . :sinu.»z/c3
w2/’ w2/ (wz/o)
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sin r.uz/c

{wz/ c)

_ coswz/c ] }
(mz/c)

{62)

cos8, [

+
2cos BIl 2

where the dipole orlentatlnns are defined by
(Bl rpl) and (9 . Inthe case of white noise
(Syaw) = N/ 611-1)2 this inverse transforms Into a
reasonably stmple cross correlation function
between antennas,

R (}=N° [b[l"'(-—l-)z in@ sing_cos{yp-p,)
122" T 27 /o) 18in® sind, coslyre,

[1- (i}z]cos 8, cos8,]; |1} < z/c.
(63)

The remalining three cases Involve isotroplc
antennas so that the quadratic form in (60) may be

a scalar SN.&("’:B'"’):
I’_
Zn coscp
Sz = g Sy 0i0.9) sing dode.
-% (64)

The second case assumes that the nolse s iso-
tropic (SNﬁ is. independent of 6 and ¢} and results
in the particularly simple expression

I () X2

Ni2 (65)

SNa.(w, sinclwz/c).

This Is the case most frequently found In the
literature.'7'18'19120 The jsotropic assumption
Is equivalent to the assumption that the random
incident field is the result of a large number of
independent random sources uniformly disturbed

In a sphere centered around the antennas (See
Figure 4). Such a situation Is encountered when-
ever the antennas are enclosed In a large volume
of random scattering elements (any elements
whose size approaches operating wavelengths) and
where there are no nearby (In terms of wavelengths)
boundary surfaces.'®'2°

The third case Is also frequently found In
the literature'®2%2" and Involves non-isotropic
noise such as obtained when the noise Is gene-
rated by a large number of Independent noise
sources uniformly distributed on a large circular
area of any plane passed through the array volume
(See Figure 4). Such a situation Is encountered
when the random field is due to scattering from a
"distant" plane surface.'®?° The cross antenna
power spectrum then has the form

(W) = {66)

Sxi2 SN.@.(“’) Io(wz/c COB ¥)

where vy Is the angle between a line connecting the
antennas and the plane of the random sources.,



The final case Involves a directional random
field of the form

Sy l0:8 ) = 8.y, (o) 1(6) o-Blcos(e- o}t (67)

so that the double integral In (64) factors Into the
product of two Integrals. The function of f(0) can
be arbitrary except that It should be normalized
to make Its Integral equal to some convenient
constant. The noise field will then have the
shape f(0) In the O dimension and e-B |cos(cp-cpo) |
In the cp dimension. This latter form Is that of a
lobe centered at = -2 + cpq. This structure can
be employed as a model for the situation Involving
a distant random source (jamming, etc.) and a
multlpath environment so that the noise appears
to be coming from an angular region of arbitrary
dimensions (See Fig 4). Narrow Lobe widths of
the noise field correspond to large p values and
for 3sIn(|>o greater than about three, the rational
cross antenna power spectrum

28sln ;posm(wl jﬂ
Sle{w) = 5 e’ ¢ cos P (e8)
{Bsin ) + (wz/c)
Is obtained. The 3 db lobewldth of the noise
field Is determined by B and Is
3 db lobewldth = 2 sin A %) . (69)

This spectrum agrees well with available experi-
mental data for point sources in multlpath
environment. (For example see the data given
by Kurlchara.??)

The limiting case of (68) In which B becomes
unbounded corresponds to the plane wave noise
field In which the noise comes from one particu-
lar angle. In this case the noises in the different
antennas are ldentical (spatial coherence) except
possibly for a delay. Also, unless the signal
field is of an identical space-time correlation
nature, the noise can be completely eliminated
by properly phasing, weighting and combining
the signals, leaving only the system noise
introduced in the receiver front end. However If
the signal field Is exactly of this space-time
form, no advantage can be obtained from space
diversity since the spatial filtering of both signal
and noise Is Identical.

Plane Wave (Point to Point Spatially Coherent)
Signal Case

The trace operation In finding h (W,U) can
be performed exactly without the threshold
assumption In the special case In which the
signal In the various antennas Is the same
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(spatially coherent) except possibly for a delay,
which can be phased as shown In Figure 1. In
this case all the elements of the § (w) matrix are
the same; thus s

,lis(u:) = Ssiw}l (70)

where!l is a matrix, all of whose elements are 1.
It can be shown that

Trii+aa 11 b encazea are seaty (1)

where n Is the rank and AU represents the {j
element of A~). Thus, with (71)

b, (wiu) =L 1 u+u_S_:(w) 5 (117

11

o
5@ = I P i
_ 1=l j=1
- non
1+uS_() £ = 89w
=l g=t

where again j = g. (Note that the summations are
a result of the multiple antennas and have nothing
to do with the Karhunen-Loeve expansion
approach used earlier In the report.) The evalu-
ation of (72) Is greatly simplified if the additive
noise Is assumed to be white and uncorrelated

from antenna to antenna, so that
5w = - L5 s wl+1)7 (73)
o] o]
This yields
n n ) n{2/N_)
ij [+)
£ I 5°w = I s /N (74)
=] j=1 ! b+n8_(uH2/N )
so that
n(Z/No) Ss(w}
ho il = S
u) n(Z/NolSS(w}
and (75)
n(2/No) Ss{w}
hl{m:u) =iz
un(Z/NJSs(uJ)

For the assumption that Ss{w) is ratlonal, so that

8_() = N(H)/D() (76)

where the order of D exceeds that of N, then
a(2/N ) Niw?)

h_{wiu) =
° Dlwh + L+ u) n2/N ) Niw?)



n(2/N ) N(wd)

h{wiv) = —5 7 (77)
Dw") + un(Z/No) N(a™)
and
[ ]
dw
J Bhlww) ' (78)
-
can be evaluated by residue theory. As an
example, for 5(t} plane wave and Markovian,
5, = 2ok /” + D). (79)
The assoclated characteristic functions are
M; (w} = exp[o{/TFC - JT+ T -jul))
0 (80)

M, (0} = explefl -1 - juC) ]
L

where

anD 2nR

¢= a(N°72) = o (8

R = 2K /N being a measure of the slgnai-to-nolse
ratio (s N R)°In this case. Neither of these charac-
teristic functions can be Inverse transformed In
closed form. It Is observed that the effect of the
multiple antennas, In this case, is to Increase

the SNR by a factor of n. This is a direct con-
sequence of the assumptions of uncorrelated

noise from antenna to antenna and plane wave
(spatially coherent) signal.

Other assumptions which allow an exact
evaluation of the trace in (39) are possible but
usually lead to characteristic functions which
cannot be inverse transformed in closed form.
Numerical inversion can be used in these cases
but the results are necessarily valid only for the
specific case postulated and cannot be con-
veniently extrapolated to other cases or used to
form broad, quantatlve conclusions. The exact
performance analysis approach was therefore dis-
continued by the authors in favor of the more
productive threshold case assumption, which
allows simpler interpretations of steps to take in
enhancing detectablllty by specific antenna
deployment.

Critique

The contribution of this paper consists of
(1) an analytical development of the exact charac-
teristic functions for the test statistic computed
by a time optimum data processing system
employing multiple antennas for a random signal
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and noise field in terms of the space-time structure
of the signal and noise fields and the antenna
array configuration, (2) a simple, concise analy-
tical demonstration that, in the threshold case the
test statistic distributions for the array case
become asymptotically Gaussian, and (3) analy-
tical treatment in terms of physically realistic
space-time correlation models of signal and noise
field structures. The assumptions include
Gaussian noise, statlonarlty, and "long" obser-
vation times.

Unfortunately the characteristic function
form derived herein cannot be inverse transformed
in closed form in the general case. Numerical
solutions may be of value in specific instances
but cannot be expected to provide broad quantita-
tive Information. Thus the only route leading to
quantitative results appears to be the threshold
case for which closed form inversion is possible.

In the threshold case the test statistic is
Gaussian distributed and hence its p.d.f. is
uniquely determined by its first two moments.
Even in non-threshold situations the accuracy to
which the signal and noise fields can be statis-
tically characterized may preclude a more accurate
representation of the test statistic p.d.f. Thus
the threshold assumption will probably yield
results which are as meaningful as can be obtained
even in non-threshold situations unless an
unusually accurate statistical formulation is
possible.

It is of interest to note the general effects
of the array upon reception capability for specific
classes of random noise fields and fading signal
fields in terms of their space-time correlation
structure and array deployment. These aspects
are currently being pursued through a detailed
investigation of a number of special situations
by the authors and will be presented in a later
report. A thorough discussion of anticipated
results is at this time premature but a number of
speculations can be projected:

(1) Performance capacity can Increase with
the number of antennas, n, but the extent of any
Improvement, as well as incremental gain, is
greatly dependent upon the space-time correlation
of the signal and noise fields and the antenna
geometry employed.

(2) Deploying antennas so as to increase
the noise cross-correlation between antennas
increases the performance capability, assuming
that the deployment does not render a similar
effect upon signal cross-correlation between
antennas. For example, for fully correlated
(spatially coherent) noise between antennas, the
Interesting case of singular detection is obtained
in which theoretically the noise can be completely



eliminated if that noise is the only source of
interference and the antenna's front end can be
ignored.

(3) The effect of signal cross-correlation
between antennas (correlated fading) is such that
increasing this correlation, by appropriate antenna
deployment, will Increase the combined signal to
noise level, but will also increase the "outage
rate" due to spatially correlated fading. Thus
deploying antennas to increase signal cross-cor-
relation under these conditions increases perfor-
mance capacity if SNR gain is the criteria and
decreases performance capacity if signal loss or
outage rate is the criteria.

It should be emphasized that physically
realistic space time correlation models are used
in the preceding analysis. The set of cross-
power spectra cited in .his paper should realisti-
cally model a number of situations of engineering
Interest.
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