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Abstract

We explore equivalence relations between states in
Markov Decision Processes and Partially Observ-
able Markov Decision Processes. We focus on two
different equivalence notions: bisimulation [Givan
et al., 2003] and a notion of trace equivalence, un-
der which states are considered equivalent if they
generate the same conditional probability distribu-
tions over observation sequences (where the condi-
tioning is on action sequences). We show that the
relationship between these two equivalence notions
changes depending on the amount and nature of the
partial observability. We also present an alternate
characterization of bisimulation based on trajectory
equivalence.

1 Introduction

Probabilistic systems are very useful modeling tools in many
fields of science and engineering. In order to understand
the behavior of existing models, or to provide compact mod-
els, notions of equivalence between states in such systems
are necessary. Equivalence relations have to be defined in
such a way that important properties are preserved, i.e., the
long-term behavior of equivalent states should be the same.
However, there are different ways in which “long-term be-
havior” could be defined, leading to different equivalence no-
tions. In this paper, we focus on two equivalence relations
which have been explored in depth in the process algebra lit-
erature: bisimulation [Milner, 1980; Larsen and Skou, 1991]
and trace equivalence [Hoare, 1980]. Roughly speaking, two
states are bisimilar if they have the same immediate behavior,
and they transition with the same probabilities to equivalence
classes of states. Two states are trace equivalent if they gen-
erate the same (conditional) probability distribution over ob-
servable system trajectories. At first glance, these notions are
quite similar; however, they are not the same, and in particu-
lar bisimulation has stronger theoretical guarantees for certain
classes of processes.

In this paper, we focus on bisimulation and trace
equivalence in the context of Markov Decision Processes
(MDPs) [Puterman, 1994] and Partially Observable Markov
Decision Processes [Kaelbling er al., 1998]. Bisimulation
has been defined for MDPs by Givan et al [2003] and has
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generated several pieces of follow-up work and extensions
(e.g. Dean & Givan [1997], Ferns et al. [2004], Taylor et
al. [2009]). Comparatively little work has focused on bisimu-
lation for POMDPs, except for a basic definition of a bisimu-
lation notion for POMDP states [Pineau, 2004] (though the
terminology of “bisimulation” is not used there). To our
knowledge, trace equivalence has not really been explored in
either MDPs or POMDPs. However, using traces holds the
potential of offering a more efficient and natural way of com-
puting and approximating state equivalence through sampling
methods (rather than the global, model-based process used
typically to compute bisimulation). Moreover, in POMDPs,
trace equivalence is intimately related to predictive state rep-
resentations (PSRs) [Litman et al., 2002] as well as lossless
compression [Poupart and Boutilier, 2003]. As we will dis-
cuss in more detail later, this link opens up other potential
avenues for checking trace equivalence efficiently.

In this paper we investigate the relationship between bisim-
ulation and trace equivalence, focusing on partially observ-
able systems. We show that these two notions are not equiva-
lent in MDPs, but they can be equivalent in POMDPs. We
also present a different characterization of bisimulation in
MDPs based on trace equivalence, which could potentially
yield new algorithms for computing or approximating bisim-
ulation.

The paper is organized as follows. In Sec. 2, we present
the definitions and theoretical analysis of the relationship be-
tween bisimulation and trajectory (or trace) equivalence in
MDPs. The analysis reveals the surprising fact that trajec-
tory equivalence makes unnecessary distinctions in MDPs. In
Sec. 3 we present a weaker version of trajectory equivalence
that does not suffer from this problem. In Sec. 4, we consider
these equivalence relations in the context of POMDPs, under
two reasonable definitions of bisimulation. Finally, in Sec. 5,
we discuss our findings and present ideas for future work.

2 Fully Observable States

Definition 2.1. A Markov Decision Process (MDP) is a 4-
tuple M = (S,A,P,R), where S is the set of states; A is the
set of actions; P : S x A — Dist(S) is the next state transition
dynamics; R : S x A — Dist(R) is the reward function.

Since R and P are defined as functions, we will denote
P(s,a)(s’) = Pr(s'|s,a) and R(s,a)(r) = Pr(r|s,a). We note



that most often in the MDP literature, the reward function is
defined as a deterministic function of the current state and
action. The reward distribution is not explicitly considered
because, for the purpose of computing value functions, only
the expected value of the reward matters. However, in order
to analyze state equivalences, we need to consider the entire
distribution, because its higher-order moments (e.g. the vari-
ance) may be important. In what follows, we will assume for
simplicity that the rewards only take values in a finite subset
of R, denoted R. This is done for simplicity of exposition,
and all results can be extended beyond this case.

Bisimulation for MDPs is defined in [Givan et al., 2003]
for the case in which rewards are deterministic; here, we give
the corresponding definition for reward distributions.

Definition 2.2. Given an MDP M = (S,A,P,R), an equiva-
lence relation E : S x S — {0, 1} is defined to be a bisimula-
tion relation if whenever sEt the following properties hold:

1. Yae AVr e R.R(s,a)(r) =R(t,a)(r)
2. Ya € ANc € S/E.P(s,a)(c) = P(t,a)(c),
P(s,a)(c) = Lye P(s,a)(s),
where S/E denotes the partition of S into E-equivalence

classes. Two states s and t are bisimilar, denoted s ~ t, if
there exists a bisimulation relation E such that sEt.

where

We will now define the notion of trajectory equivalence for
MDP states, in a similar vein to the notion of trace equiv-
alence for labelled transition systems [Hoare, 1980]. Intu-
itively, two states are trace equivalent if they produce the
same trajectories. In MDPs, in order to define an analogous
notion, we will need to give a similar, probabilistic definition
conditional on action sequences (since actions can be inde-
pendently determined by a controller or policy).

Definition 2.3. An action sequence is a function 8 : N* — A
mapping a time step to an action. Let © be the set of all action
sequences. Let N : @ — © be a function which returns the tail
of any sequence of actions: ¥i € NT.0(i+1) = N(0)(i).

Consider any finite reward-state trajectory o € (R x §)*
and let Pr(als,0) be the probability of observing o when
starting in state s € S and choosing the actions specified by 6.

Definition 2.4. Given an MDP, the states s,t € S are tra-
jectory equivalent if and only if VO € © and for any finite
reward-state trajectory o,

Pr(as,0) = Pr(aft,0).

We note that conditioning on state-independent (open-
loop) sequences of actions may be considered non-standard
for MDPs, where most behavior is generated by state-
conditional policies (in which the choice of action depends
on the state). We focus here on open-loop sequences because
this is the closest match to trace equivalence. We conjecture
that a very similar analysis can be performed for closed-loop
policies, but we leave this for future work.

We are now ready to present our main results relating tra-
jectory equivalence and bisimulation in MDPs.

Lemma 2.5. Iftwo states are trajectory equivalent, they have
the same model for all actions.
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Figure 1: Example showing that bisimulation does not imply
trajectory equivalence.

The proof is immediate by considering one-step trajec-
tories. The following theorem is a direct consequence of
Lemma 2.5.

Theorem 2.6. [f two states are trajectory equivalent, they are
also bisimilar.

Theorem 2.7. If two states are bisimilar, they need not be
trajectory equivalent.

Proof. Consider the MDP depicted in Figure 1, with 4 states
and only one action. In this, as well as in all subsequent ex-
amples, the annotations on the links represent the rewards re-
ceived (in brackets) and the transition probabilities. In this
MDP, ¢ and ¢’ are bisimilar, and thus, s and s’ are also bisim-
ilar. Note that there is only one possible infinite action se-
quence 6, since there is only one action. Let o = ((1,¢)).
Then Pr(cs,0) = 0.5 # 0= Pr(als’,0). Thus, s and s are
not trajectory equivalent. O

These results show that trajectory equivalence is a suffi-
cient but not necessary condition for bisimulation. This result
seems counterintuitive, as bisimulation is considered perhaps
the strongest equivalence notion in the process algebra litera-
ture. Upon closer inspection, one can notice that this result is
due to the full state observability in an MDP. More precisely,
because the identity of the state is fully observable, and is
included in the trajectory, very fine distinctions are made be-
tween trajectories. This is undesirable if one wants an equiv-
alence notion that is useful, for example, in reducing the state
space of an MDP. With the current definition of trajectory
equivalence, even completely disjoint but otherwise identical
subsets of the MDP would be considered distinct, as long as
their states are numbered differently. Hence, we will now
consider a weaker version of trajectory equivalence, which is
closer in spirit to bisimulation, and has more desirable prop-
erties.

3 A Different Notion of Trajectory
Equivalence

In order to define a more appropriate notion of trajectory
equivalence, we need to allow the exact state identity to not
appear in the trajectory. In bisimulation, the equivalence re-
lation E is used to partition the state space. Afterwards, the
identity of a state is essentially replaced by the partition to
which it belongs (as follows from the second condition in
Def. 2.2). To exploit this idea, we will consider now a notion
of trajectory equivalence when the state space is partitioned,
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and the identity of a state is replaced by the identity of the
partition to which it belongs.

Let \P(S) be a partitioning of the state space into disjoint
subsets and y : § — W(S) be the function mapping each
state to its corresponding partition in W(S). Consider any
finite reward-partition trajectory x € (R x ¥(S))* and let
Pr(x|s,0) be the probability of observing k when starting
in state s € S and choosing the actions specified by 6.

Definition 3.1. Given an MDP M = (S, A, P,R) and a decom-
position Y(S), two states s,t € S are P-trajectory equiva-
lent if and only if y(s) = y(t) and VO € ® and for any finite
reward-partition trajectory x, Pr(k|s,0) = Pr(x|t,0).

If ¥(S) = S and v is the identity function, we have trajec-
tory equivalence as defined in Sec. 2. Note, however, that if
W is defined in an arbitrary way, this notion of equivalence
may not be useful at all.

Given that bisimulation distinguishes states with differ-
ent rewards, it is natural to define a clustering W(S) such
that yg(s) = wg(s’) if and only if Va € A.Vr.R(s,a)(r) =
R(s',a)(r). We will now establish the relationship between
Wr-equivalence and bisimulation.

Theorem 3.2. Tiwo states that are WYg-trajectory equivalent
need not be bisimilar.

Proof. Consider the MDP in Figure 2, in which there is
again only one action. Here, Wg(S) = {co,c1,c2}, where
co = {s,5'}, c1 = {t1,12,t',u1,u}} and ¢, = {up,uy}. Both
s and s’ observe ¢; w.p.1 in the first step. For any trajectories
of length n > 1, (0,¢1)(1,¢1)" ! and (0,c1)(1,c1)(2,¢2)" 2
are observed w.p. 0.5 each. Thus, s and s" are Wg-trajectory
equivalent. However, they are not bisimilar since neither #;
nor t, is bisimilar to ¢'. O

Lemma 3.3. For all bisimulation-equivalence classes ¢ €
S/~ and for all ¥g-trajectory equivalence classes d € Wg(S),
either c Cd orcNd = 0.

Proof. Without loss of generality assume cNd # 0. If ¢ con-
tains only one state s, then ¢ C y(s). Now suppose that ¢ has
at least two states. For any two states s,s’ € ¢, from Def. 2.2,
we have thatVa € A,r e R.R(s,a)(r) =R(s',a)(r) = wr(s) =
Wr(s'), so0s,s" €d. O

Lemma 3.4. For all d € Wg(S) there exists a set C C S/
such that J,ccc =d.

Proof. Immediate from Lemma 3.3 and the fact that
Ueces).. € = Udewg(syd = S. O

Theorem 3.5. If two states are bisimilar, they are also Wg-
trajectory equivalent.

Proof. Assume sy ~ ty. Take any 6 € O and any finite trajec-
tory k. The proof is by induction on the length of k.
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Base case: |k| = 1. Say x = (d). Let a = 6(0). By Lemma
3.4 there exists C C S/ such that . c = d. Therefore:

Pr(k|so,0) Z P(so,a =Y Y P(so.a
s'ed ceCs'ec
= Z P(s0,a) Z P(ty,a)(c), because so ~ to
ceC ceC
= Pr(K‘|l‘0, 9)

Induction step: Assume that the claim holds up to || =
n—1.Let x ={dy, - ,d,) and K’ = (dy,--- ,d,). As before,
let a = 0(0). Again, by Lemma 3.4, there exists C such that
Ucecc = d. We have:

Pr(k|so,0) = Y P(so,a)(s1)Pr(k'|s,N(6))
Sledl
=Y Y P(so,a)(s1)Pr(x'|s1,N(6))
ceCs|€c

)) is the same

From the induction hypothesis, Pr(k’|s,N (0
)), Hence, con-

Vs1 € ¢, so we can denote this by Pr(x’|c, N(6
tinuing from above, we have:

= ZPr(K’|c,N(6)) Z P(so,a)(s1)
ceC s1€C

—ZPS(), c)Pr(x’|c,N(6))
ceC

=Y P(tg,a)(c)Pr(x’|c,N(6)), because s ~ fo
ceC

= Pr(x|to, )

which concludes the proof. O

Theorems 3.2 and 3.5 are closer to what we would nor-
mally expect for these notions. The fact that trajectory equiv-
alence is weaker is not surprising, since bisimulation has
a “recursive” nature that is lacking in Wg-trajectory equiv-
alence. We now proceed by iteratively strengthening Wg-
trajectory equivalence to bring it closer to bisimulation.

Let I' be an operator that takes a partitioning ¥(S) and re-
turns a more refined decomposition as follows. For any subset
deS,deTl'(¥(S)) if and only if, for any two states s, € d,
we have:

1. Forany a € A and r € R, R(s,a)(r)
2. s and r and W-trajectory equivalent.

=R(t,a)(r);

Let I denote the n-th iterate of I. It is clear that
['(Wg(S)) equivalence is Wg-trajectory equivalence. Using
Theorem 3.5, it is easy to prove that bisimulation implies
(") (Pg(S)) equivalence by induction. Similarly, it can be
shown that for every n, T") (Wx(S)) does not imply bisimu-
lation. The counterexamples are similar in spirit to the one
from Theorem 3.2, but they grow linearly in height and expo-
nentially in width with n.

Theorem 3.6. The iterates I'" have a fixed point, T'*.
Proof. Define a binary relation _ on the set of partitionings

of S, where for any D (S) and D,(S), D;(S) 3 D,(S) if and
only if for any d; € D{(S) and d € D,(S), either diNdr =0
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Figure 2: Example showing that Wg-trajectory equivalence does not imply bisimulation

or dy C d;. It is easy to see that the set of all possible par-
titions of S along with J constitute a complete partial order
with bottom, where bottom is simply Wg(S). It then follows
from Theorem 5.11 in [Winskel, 1993] that I'* exists and is
well defined. O

From the results so far, it is easy to see that bisimulation
implies I'* equivalence. We now show that the reverse is also
true.

Theorem 3.7. If two states are I'*-equivalent, they are also
bisimilar.

Proof. Let E be the I'*-equivalence relation. Given s and ¢
with sEt, we will show s ~ t by checking the conditions of
Def 2.2. The first condition follows from the definition of I".
The second condition follows from the definition of I" and the
fact that I'™* is a fixed point. O

Hence, we have obtained a new fixed-point characteriza-
tion of bisimulation in terms of this new notion of trajectory
equivalence.

4 Equivalences in Partially Observable
Markov Decision Processes
We now turn our attention to the case of partial observability.

Definition 4.1. A Partially Observable Markov Decision
Process (POMDP) is a 6-tuple M = (S,A,P,R,Q, O), where
(S,A,P,R) define an MDP; & is a finite set of observations;
and O : S X A — Dist(Q) is the observation distribution func-
tion, with O(s,a)(®) = Pr(o;+1 = ©|s;+1 = s,a; = a).

A belief state b is a distribution over S, quantifying the
uncertainty in the system’s internal state. Let B be the set
of all belief states over S. After performing an action a € A
and witnessing observation @ € Q from belief state b, the
function 7 : B X A X Q — B computes the new belief state
b' = 1(b,a,w) as follows, Vs’ € S:

O(s',a) (@) ¥ses5 P(s, a)(s")b(s)

b (s') = Pr(s'|®,a,b) =

Pr(w|a,b)
where Pr(w|b,a) = Z O(s',a) () Z;P(s7a)(s/)b(s)
s'es s€

Many standard approaches replace the POMDP with a corre-
sponding, continuous-state belief MDP (B A, T,p), where B

is the (continuous) state space; A is the action set; the tran-
sition probability function T : B X A — Dist(B) is defined as
T(b,a)(") =Y peco Pr(b'|b,a,®)Pr(w|a,b), with Pr(w|a,b)
defined above, and Pr(b'|b,a, ) =lly_r( 4,0); and the re-
ward function p : B x A — Dist(R) is defined as: p(b,a)(r) =
Ysesb(s)R(s,a)(r).

Consider any finite reward-observation trajectory 8 € (R x
Q)* and let Pr(B|b, ) be the probability of observing 8 when
starting in belief state b and choosing the actions dictated by
0.

Definition 4.2. Given a POMDP, two belief states b,c are
belief trajectory equivalent if and only if VO € ® and

for any finite reward-observation trajectory 3, Pr(|b,0) =
Pr(Blc,0).

Unlike in MDPs, where open-loop sequences of actions
are rarely used, in partially observable environments, such
sequences have been explored extensively in the work on
predictive state representations (PSRs), where trajectories are
called tests. Litman et al. [2002] show that in a POMDP, the
outcomes of all tests can be computed from a set of core tests
no larger than the number of states in S. Noting that belief
states correspond one-to-one to histories (once an initial be-
lief has been fixed), it becomes apparent that one could check
trajectory equivalence by looking at the PSR model. Lossless
belief compression [Poupart and Boutilier, 2003] is also quite
related to our trajectory equivalence notion, though they are
not identical: losless compression allows for a change of ba-
sis for the belief state space, whereas trajectory equivalence
does not explicitly do so. This relationship deserves further
study in the future.

Lemma 4.3. If two belief states are trajectory equivalent,
they also have the same immediate transitions and rewards
for all actions (i.e., their models are equivalent).

Proof. Assume that b,c € B are belief trajectory equivalent.
Take any a € A and r € R. Take any 6 € ® with 6(0) = a.
From Def. 4.2, we have:

p(b7a)(r) = Z Pr((r,a)>|b,9)

WEQ
= Z PV(<}’7 a)>|c,6) = p(cva)(r)
0eEQ
Similarly, Vo € Q.Pr(w|b,a) = Pr(o|c,a). O
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Figure 3: Example showing that weak belief bisimulation does not imply trajectory equivalence.

Lemma 4.4. Ifb,c € B are belief trajectory equivalent, then
foranya € A and ® € Q, ©(b,a,) and 1(c,a,®) are belief
trajectory equivalent.

Proof. We need to show that for any finite reward-
observation trajectory &, 8 € ®, a € A and ® € Q we have
that Pr(o|t(b,a,),0) = Pr(a|t(c,a,®),0).

Let 6’ be a new action sequence s.t. 8'(0) =aand N(6') =
0. Taking an arbitrary reward r, construct a new reward-
observation trajectory o’ where &’ = {(r, @), ). We know
Pr(a'|b,0") = Pr(a’|c,0’) since b and c are belief trajectory
equivalent. We also know that:

Pr(d/|b,0") = p(b,a)(r)Pr(w|b,a)Pr(a|t(b,a,»),0) and
Pr(d/|c,0") = p(c,a)(r)Pr(o|c,a)Pr(a|t(c,a,®),0)

From Lemma 4.3, p(b,a)(r) = p(c,a)(r) and Pr(w|b,a) =
Pr(o|c,a). So Pr(a|t(b,a,®),0) = Pr(a|t(c,a,®),0), and
since «,a,0,m were all chosen arbitrarily, the proof con-
cludes. O

Previous work on POMDPs defines bisimulation between
internal POMDP states. Instead, we focus on bisimulation
between belief states. However, there are two possible defini-
tions that one could adopt, which we present below.

Definition 4.5. A relation E C B X B is defined to be a weak
belief bisimulation relation' if whenever bEc, the following
properties hold:

1. Yae AVreR.p(b,a)(r) =p(c,a)(r)

2. YVae AVw € Q.Pr(w|b,a) = Pr(®|c,a)

3. For any a € A and d € B/E, Pr(d|b,a) = Pr(d|c,a),

where
Pr(d|b,a)="Y T(b,a)())
bled

Two belief states b,c are weakly belief bisimilar, denoted

b =, c, if there exists a weak belief bisimulation relation E
such that bEc.

Definition 4.6. A relation E C B X B is a strong belief
bisimulation relation if it respects the first two conditions
of Def. 4.5, and the following third condition:

3. VaeAVw € Q, t(b,a,®) and t(c,a,®) are strongly
belief bisimilar.

'We do not use ‘weak’ and ‘strong’ here in the same sense as
[Milner, 1980].

Two belief states b,c are strongly belief bisimilar, denoted
s /= t, if there exists a strong belief bisimulation relation E
such that bEc.

We emphasize that strong belief bisimulation has a recur-
sive definition.

Since both bisimulation definitions are quite similar in
spirit, one would expect them to be equivalent. However, as
we will now show, this is not the case.

Lemma 4.7. If two belief states are strongly bisimilar, they
are also weakly bisimilar.

Proof. Let E be a strong belief bisimulation. Take any two
belief states b and ¢ such that bEc. The first two conditions
in Def. 4.5 and Def. 4.6 are identical, so we only need to
prove that the third condition in Def. 4.5 holds. Consider an
arbitrary d € B/E and a € A. We have:

Pr(d|b,a) = Z T(b,a)(b') = Z Z Pr(b'|b,a,w)Pr(w|b,a)

bed b ed weQ
= Z Pr(®l|b,a) Z Pr(b'|b,a, )
WeEQ b'eB
= Z Pl"(w‘b,a) Z Hb’:r(b,a,a))
weQ b'eB
= Z Pr(olc,a) Z Hb’:r(b,a,w)
weQ b'eB
= Z Pr(m|c,a) Z lly—(c.a,0) (from Def. 4.6)
weQ b'eB '
= Pr(d|c,a)

The last step follows because 7(b,a,®)ET(c,a,®) implies
thatVd € B/E, 1(b,a, ) € Bif and only if 7(c,a,0) € B.

Lemmas 4.3 and 4.4 are sufficient conditions for strong be-
lief bisimilarity. This observation, combined with Lemma 4.7
yields the following corollary.

Corollary 4.8. Two belief states that are trajectory equiva-
lent are both strongly and weakly bisimilar as well.

Theorem 4.9. If two belief states are strongly bisimilar, they
are also trajectory equivalent.

The proof uses the definition of strong belief bisimilarity
and induction on the length of the trajectory. It is very similar
to previous proofs, and we omit it for succinctness.

Theorem 4.10. Two belief states that are weakly bisimilar
need not be trajectory equivalent.
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Proof. Consider the POMDP in Figure 3. There is only one
available action and we assume all transitions yield the same
reward. The observation received upon entering a state is in-
dicated in parentheses next to the state name.

Let 6 be the only available action sequence, and de-
note by O, the belief state concentrated at state s. We
have: Pr(w,;|8;,0) = Pr(w;|dy,0) = 0.5 and Pr(w,|8;,0) =
Pr(an|6y,0) = 0.5. Furthermore, J,, = 5u/1 s Ouy Ry 5u/2,
implying that &, ~,, 5,; and &, ~,, 5,;, and hence & =,, &y .
However, & and 8y are not belief trajectory equivalent since
Pr({o;, @3)|8;,6) = 0.5 # 0 = Pr({w, 3)|5y,6) 0

Note that this result is due mainly to the fact that the obser-
vation is obtained upon entering a state, and past observations
are in some sense not taken into account.

5 Discussion and Future Work

We analyzed the relationship between bisimulation and tra-
jectory equivalence in MDPs and POMDPs. When the state
is fully observable, trajectory equivalence is stronger than
bisimulation, because it distinguishes between differences in
transition probabilities to individual states. Bisimulation, on
the other hand, can only distinguish between differences in
transition probabilities to classes of bisimilar states.

By considering partitions over states, we obtained a new
trajectory equivalence notion. We showed that bisimulation
can be characterized as the fixed point of a sequence of iter-
ates in which states are initially aggregated according to their
immediate reward. K-moment equivalence [Zhioua, 2008],
is somewhat similar to our method, as bisimulation is only
reached in the limit. However, the equivalence computation
is more straightforward in our case.

The I' iterative operator provides an alternative way of
computing bisimulation classes. It would be interesting to
analyze the number of iterations required to reach the fixed
point I'*. This approach could yield an alternative algorithm
for computing bisimulation classes, and could potentially be
extended to a metric, in the spirit of [Ferns er al., 2004]. The
advantage of our method compared to other bisimulation con-
structions is that one can accumulate a set of trajectories from
action sequences and then approximate Wg-trajectory equiv-
alence, and further ") (Wg(S))-equivalence. This would not
require knowing the system model, and performance should
improve as the number of trajectories gathered increases. We
plan to study this idea, as well as algorithms for efficiently
gathering trajectories, in future work.

We gave two definitions of bisimulation over belief states
for POMDPs, which at first sight seem very similar, but they
are not. The fact that strong belief bisimulation is equivalent
to belief trajectory equivalence is not surprising, because the
belief MDP is deterministic: from a belief state b, for a given
action a and observation @, there is exactly one reachable
belief state. It is well known in the process algebra litera-
ture that trace equivalence and bisimulation are identical for
deterministic automata. The strong relationship between be-
lief trajectory equivalence, on one hand, and PSRs and loss-
less compression, on the other hand, opens up the possibility
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of efficient algorithms for computing and approximating this
equivalence, which we will explore in the future.
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