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Abstract

A tournament is a binary dominance relation on
a set of alternatives. Tournaments arise in many
contexts that are relevant to AI, most notably in
voting (as a method to aggregate the preferences
of agents). There are many works that deal with
choice rules that select a desirable alternative from
a tournament, but very few of them deal directly
with incentive issues, despite the fact that game-
theoretic considerations are crucial with respect to
systems populated by selfish agents.
We deal with the problem of the manipulation of
choice rules by considering two types of manipula-
tion. We say that a choice rule is monotonic if an
alternative cannot get itself selected by losing on
purpose, and pairwise nonmanipulable if a pair of
alternatives cannot make one of them the winner by
reversing the outcome of the match between them.
Our main result is a combinatorial construction of
a choice rule that is monotonic, pairwise nonma-
nipulable, and onto the set of alternatives, for any
number of alternatives besides three.

1 Introduction

A tournament is a binary dominance relation on a set of al-
ternatives A, i.e., for every two alternatives x, y ∈ A ei-
ther x dominates y or y dominates x, but not both. Tour-
naments are of course ubiquitous in sports but arise in a
wide variety of settings, many of them highly relevant to
AI and, in particular, to multiagent systems. For example,
tournaments can be used to model a defeat relation between
different arguments in argumentation theory [Dung, 1995;
Dunne, 2007], and have also been used in multi-criteria deci-
sion making (see, e.g., [Bouyssou et al., 2006]).

In addition, tournaments are often used to model the major-
ity dominance relation in an election. In this context, a voter
has a ranking over the set of alternatives; alternative x is said
to dominate y if the majority of voters prefer x to y. As early
as the eighteenth century, the Marquis de Condorcet noticed
that the majority relation may contain cycles [de Condorcet,
1785]. Almost two centuries later, Condorcet’s observation
was generalized by McGarvey [1953], who established that

any tournament can be obtained as the dominance relation
of an election. The connection between social choice theory
and multiagent systems is by now very well-established (see,
e.g., [Conitzer et al., 2007; Procaccia and Rosenschein, 2007;
Hemaspaandra et al., 2007] and the many references therein).

A recurring theme in the literature is how to select the
“most desirable” element given a tournament. This desirable
element is then deemed the winner of the sports competition,
the winner of the election, etc. Due to the fact that these win-
ner determination problems are so central, they have become
an important subject of study in multiagent systems and com-
putational social choice (see, e.g., [Brandt et al., 2008] and
the references therein).

In settings where multiple heterogeneous, selfish agents
must agree on a common choice, incentive issues naturally
become prevalent. Therefore, it is not surprising that recent
years have seen a fast growing interest in game theory and
mechanism design within the AI community. Game-theoretic
considerations are very common, for instance, in computa-
tional social choice, but are now also being investigated in
other areas that are relevant to the study of tournaments, such
as argumentation theory [Procaccia and Rosenschein, 2005;
Rahwan and Larson, 2008].

Despite the discussion above, the direct study of incentives
in the context of selecting a winner from a tournament has so
far been very limited. This is our focus in this paper.

Our Results. We consider choice rules that select an alter-
native given a tournament, that is, functions from the set of all
tournaments over A to A. The players in our game are the al-
ternatives. In our model, an alternative cannot announce that
it dominates an alternative that it loses to. However, an al-
ternative can lose on purpose to another alternative. In other
words, if x ∈ A dominates y ∈ A, x can cheat by reversing
the outcome of the match between itself and y, but y cannot
reverse the outcome of this match unless x agrees. Specifi-
cally, we consider two basic types of manipulation:

1. An alternative loses a match, with the purpose making
itself the winner.

2. Two alternatives reverse the result of their match in order
to make one of them the winner.

Of course, the question of whether manipulation is possible
depends on the choice rule used to select a winner. A choice
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rule that is immune to the former type of manipulation is said
to be monotonic, whereas a rule that is immune to the latter is
called pairwise nonmanipulable (PNM).

In addition to nonmanipulability, we wish to consider
choice rules that satisfy minimal notions of fairness. One no-
tion is known as Condorcet-consistency: the rule must select
an alternative that dominates every other alternative, if such
an alternative exists in the given tournament. Non-imposition
is a strictly weaker notion of fairness: the rule must be onto
the set of alternatives, that is, any alternative can be selected.

Our first result is an impossibility result: we prove that
there are no choice rules that are both PNM and Condorcet-
consistent. We therefore relax our fairness criterion by re-
quiring non-imposition. Even then, we establish that when
|A| = 3 there are no choice rules that are both PNM and non-
imposing. However, we complement this impossibility by a
surprising possibility theorem, which is also the main result
(conceptually and technically) of the paper: for any |A| �= 3,
there is a choice rule that is PNM, non-imposing, and also
monotonic. Thus, if the number of alternatives is not three,
there exists a non-imposing choice rule that is immune to both
types of manipulation discussed above.

Related Work. There is a rich literature on axiomatic char-
acterizations of tournament choice rules and choice sets (the
latter select a set of desirable alternatives). Over the years,
many tournament solutions have been suggested, and their
properties have been studied in detail. The goal is usually
to design tournament solutions that satisfy a set of axioms (as
we do here, with respect to our manipulation-related axioms).
A comprehensive review of this literature is given in the book
by Laslier [1997].

As mentioned above, a tournament choice rule can be in-
terpreted as a voting rule, which maps a preference profile (a
vector of rankings of the alternatives) to a winning alterna-
tive. In this context there are many impossibility theorems in
the social choice literature regarding rules that are immune to
manipulation, albeit when the players are the voters. In par-
ticular, the Gibbard-Satterthwaite Theorem [Gibbard, 1973;
Satterthwaite, 1975] asserts that if there are at least three al-
ternatives, any nonmanipulable voting rule must be a dicta-
torship, that is, there is one voter that decides the outcome
of the election. However, we discuss an inherently different
setting where the potential manipulators are the alternatives
themselves.

A rare example of a paper that directly studies manipu-
lation of tournament choice rules is the work of Dutta et
al. [2002]. They examined a specific class of choice rules,
in the context of voting. Specifically, Dutta et al. investigated
a setting where alternatives can decide whether or not to enter
the election; they characterize the set of alternatives that can
be outcomes of the election in equilibrium.

Finally, there are some mathematical, if not conceptual,
connections between our results and the work of Altman and
Tennenholtz [2008]. In that work, selection functions based
on aribtrary input from the agents were discussed, while
in our work an agent’s influence is limited to manipulating
games that involve it. That said, in the case of three agents

the mathematical representations of both results converge.

Structure of the paper. In Section 2, we introduce existing
concepts and definitions. Our contribution appears in Sec-
tions 3 and 4: Section 3 deals with monotonic choice rules,
while Section 4 deals with pairwise nonmanipulable choice
rules and contains our main results. We then discuss our re-
sults in Section 5.

2 Preliminaries

Let A be a set of alternatives. A tournament T over A is a
complete asymmetric binary relation over A. In other words,
for every two distinct alternatives x, y ∈ A, exactly one of
the following holds: xTy (read: x dominates y), or yTx. We
denote the set of tournaments over A by T (A).

A common visual way to represent tournaments is via
graphs. A tournament T ∈ T (A) corresponds to a directed
graph G = (V,E), where V = A, and the directed edge from
x to y is in E if and only if xTy. In other words, G is an
orientation of the complete graph on A.

A second (uncommon) way to represent a tournament,
which will prove very helpful in the sequel, is via a string
of bits. Let |A| = n; a tournament T over A has

(
n
2

)
edges,

and each edge has two possible directions. Therefore, we can
represent T by a string of

(
n
2

)
bits. In order for this repre-

sentation to be meaningful, we must specify the correspon-
dence between edges and bits. For example, if A = {a, b, c},
we have three edges; in this case, we can specify that the
leftmost, middle, and rightmost bits correspond to the edges
(a, b), (a, c), and (b, c), respectively. Now, for every bit, we
have to specify which edge direction corresponds to 0; we can
do this, e.g., by fixing some tournament as the all-zeros string
(000 in our example). This gives us a unique one-to-one and
onto correspondence between tournaments and strings of bits.
We use the three representations of tournaments (as a binary
relation, a graph, and a string of bits) interchangeably.

Given the representation of tournaments as strings of bits,
we can talk about the Hamming distance between T ∈ T (A)
and T ′ ∈ T (A), that is, the number of edges that must be
flipped in T in order to obtain T ′. For two tournaments T
and T ′ with Hamming distance one, we say that T and T ′ are
(x, y)-adjacent if and only if the two tournaments disagree
exactly on the edge (x, y), that is, xTy ⇔ yT ′x, and for all
edges (z, w) �= (x, y), zTw ⇔ zT ′w.

Let C ⊆ A, and T ∈ T (A). We say that C is a component
of T if for all x, y ∈ C and z ∈ A \ C, xTz ⇔ yTz. Infor-
mally, an alternative outside the component either dominates
all the alternatives in the component or is dominated by all
the alternatives in the component.

We are interested in choice rules r : T (A) → A that se-
lect a winning alternative given a tournament. We would like
these rules to satisfy one of two basic desiderata. Alterna-
tive x is a Condorcet winner in T ∈ T (A) if xTy for all
y ∈ A \ {x}; note that most tournaments do not have a Con-
dorcet winner. A choice rule r is Condorcet-consistent if r
always selects a Condorcet winner in a given tournament, if
one exists. A choice rule r is non-imposing if it is onto A, i.e.,
for every x ∈ A there exists T ∈ T (A) such that r(T ) = x.
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Clearly Condorcet-consistency implies non-imposition. In-
deed, given any alternative x ∈ A, consider a tournament
T where x is a Condorcet winner; then if r is Condorcet-
consistent, r(T ) = x.

3 Monotonic Choice Rules

We begin our analysis of incentives in tournaments with a
crucial observation. Given a tournament T and x, y ∈ A such
that xTy, it is plausible to assume that x can lose on pur-
pose to y. On the other hand, if yTx, x cannot unilaterally
reverse this situation. In other words, we focus on manipu-
lations where an alternative reverses an edge that is outgoing
from itself in the tournament, but assume an alternative can-
not reverse an edge that is incoming to itself.

In this section we briefly discuss a setting where an alterna-
tive only cares about whether it is selected by the choice rule
r. In other words, a successful manipulation is one where an
alternative is not elected by a rule, but is elected after revers-
ing an outgoing edge. We wish to examine choice rules that
are immune to this type of manipulation.
Definition 3.1. A choice rule r : T (A) → A is monotonic
if and only if for all T ∈ T (A), for all x ∈ A such that
r(T ) �= x, and for all y ∈ A such that xTy, if T and T ′ are
(x, y)-adjacent then r(T ′) �= x.

This definition was formulated thus to make the connection
to manipulation obvious. A more intuitive interpretation of
monotonicity might be the following: r is monotonic if for
all T where r(T ) = x, and for all y ∈ A such that yTx, if
T and T ′ are (x, y)-adjacent then r(T ′) = x. However, it is
easy to see that the two definitions are equivalent, hence we
stand by the former definition.

The definition of monotonicity exists in the literature, al-
beit in the context of choice sets (which select a set of win-
ning alternatives) rather than choice rules (see, e.g., [Laslier,
1997, page 38]). Nevertheless, to the best of our knowledge,
it has never been interpreted in the context of manipulation
by an alternative, but rather as an axiom of “social justice”.

We also remark that the definition of monotonicity directly
implies that an alternative cannot make itself a winner by re-
versing multiple edges instead of just a single edge.

Monotonicity is quite easy to achieve; below we give two
examples of monotonic choice rules. A first example is
known as the Copeland rule: simply select an alternative
with maximum outdegree in the tournament, i.e., an alterna-
tive that dominates a maximum number of other alternatives.
Since there may be multiple such alternatives, we need some
tie-breaking rule, so choose the alternative with lexicographi-
cally smallest name. If an alternative loses on purpose it only
decreases its outdegree, hence this choice rule is monotonic.

Another example of a monotonic choice rule is any voting
tree where each alternative appears in the leaves at most once.
Voting trees are sequential procedures for choosing from a
tournament. A voting tree is given by a binary tree whose
leaves are labeled by alternatives. When the tree is applied
to a tournament T , in every stage two sibling leaves x and y
compete according to T ; the father of the two leaves is labeled
by the winner (that is, by x if xTy and by y if yTx), and
the two leaves are pruned. The label of the root of the tree

is the selected alternative. If an alternative reverses an edge
against itself, it can only lose in a competition that it could
have won. However, if each alternative appears only once
in the leaves, an alternative that is eliminated at some stage
cannot be ultimately selected, hence the tree is monotonic as
a choice rule. Further, notice that the monotonic rules that we
mentioned are also Condorcet-consistent.

So, monotonicity is an easy desirable property to satisfy.
We will return to monotonicity in the sequel, when we will
require it in conjunction with other, less easily satisfied, prop-
erties.

4 Pairwise Nonmanipulable Choice Rules

We now turn to a second, natural type of manipulation. Con-
sider a pair of alternatives with shared interests or goals.
Given that neither of the alternatives is elected, the pair may
conspire to make one of them a winner by flipping the edge
between them. A pairwise manipulation is then given by a
pair {x, y} and a tournament T such that r(T ) /∈ {x, y}, but
r(T ′) ∈ {x, y}, where T and T ′ are (x, y)-adjacent. For-
mally:
Definition 4.1. A choice rule r : T (A) → A is pairwise
nonmanipulable (PNM) if and only if for all T ∈ T (A) and
all x, y ∈ A, if T and T ′ are (x, y)-adjacent then r(T ) ∈
{x, y} ⇔ r(T ′) ∈ {x, y}.

PNM, which is introduced here for the first time, is some-
what reminiscent of a choice set property called indepen-
dence of non-winners, or INW for short (see, e.g, [Laslier,
1997, page 38]). Under INW, a reversal of an edge that is
incident upon a non-winning alternative cannot change the
outcome. In the context of choice rules (which select a sin-
gle winner), any INW rule must be constant. PNM is much
weaker, as the outcome can change, but not in a way that ben-
efits the manipulating pair.

Note that PNM is incomparable with monotonicity. In-
deed, monotonicity clearly does not imply PNM. In the other
direction, we construct a simple function that is PNM and not
monotonic. Let A = {a, b}. We have that aTb and bT ′a in
the two possible tournaments T and T ′. Set r(T ) = b and
r(T ′) = a; then r is vacuously PNM, but is not monotonic,
since a can gain by moving from T to T ′, and b can gain by
moving from T ′ to T . It is also easy to construct an example
for more than two alternatives.

Our first result is an impossibility: we show that PNM and
Condorcet-consistency are mutually exclusive.
Theorem 4.2. Let A such that |A| ≥ 3. Any PNM choice
rule r : T (A) → A is not Condorcet-consistent.

Proof. Let A = {a, b, c, . . . , }, and assume for contradiction
that r is both PNM and Condorcet-consistent; we define a
tournament T ∈ T (A) as follows. We let C = {a, b, c} be a
component in T , where CTx for all x ∈ A \ C. Moreover,
inside C we have that aTb, bTc, and cTa. See Figure 1 for
an illustration of T .

Now, there must be at least two alternatives (there might
be three) from C that are different from r(T ); without loss
of generality r(T ) /∈ {a, b}. Let T ′ be an adjacent tourna-
ment such that bT ′a. Crucially, b is a Condorcet winner in T ′.
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Figure 1: The tournament T constructed in the proof of The-
orem 4.2, for A = {a, b, c, d, e, f, g}. The subset of alterna-
tives {a, b, c} is a component of T ; these alternatives domi-
nate all the alternatives outside the component.

Since r is Condorcet-consistent, it must hold that r(T ′) = b,
in contradiction to PNM.

Theorem 4.2 can be seen as a strong impossibility result.
Its implications are especially striking in the context of sports,
where it common practice to use Condorcet-consistent solu-
tions, e.g., select the Copeland winner (defined in Section 3).
Hence, the theorem implies that sports tournaments are prone
to simple manipulation by pairs of alternatives. Put another
way, any “reasonable” selection of a winner from a sports
tournament is susceptible to match fixing!

However, in social choice theory Condorcet-consistency
is far from being universally accepted since, especially in
voting-related interpretations of tournaments, it precludes
other very basic properties (e.g., participation: voters might
be hurt by participating in the election). It is therefore quite
natural to ask whether we can obtain PNM by relaxing the
notion of Condorcet-consistency. Indeed, in the sequel we
ask whether there is a choice rule that is both PNM and non-
imposing. Notice that if there is one alternative or two alter-
natives, there clearly exists such a rule. However, it turns out
that there is no such rule when there are exactly three alterna-
tives.
Theorem 4.3. Let A such that |A| = 3. Any PNM choice
rule r : T (A) → A is not non-imposing.

Proof. Let A = {a, b, c}, and assume for contradiction that r
is PNM and non-imposing. We represent tournaments over A
by a string of three bits, where the leftmost, middle, and right-
most bits represent the direction of the edges (a, b), (a, c),
and (b, c), respectively. Fix an arbitrary tournament as 000.

Assume without loss of generality that r(000) = a. By
PNM r(001) = a, otherwise the coalition {b, c} gains
from flipping the edge (b, c). We also have from PNM that
r(100) ∈ {a, b}, since otherwise the coalition a, b can gain
by switching from 100 to 000; finally, r(010) ∈ {a, c}, oth-
erwise {a, c} can gain by switching from 010 to 000. We
differentiate two cases:

Case 1: r(111) ∈ {b, c}. By symmetry we can as-
sume without loss of generality that r(111) = b. By PNM,
r(101) = b, r(110) ∈ {b, c}, r(011) ∈ {a, b}. By non-
imposition, we must have a tournament where c wins under
r. By the above, we only have two options, 010 and 110. By
PNM, since the two tournaments are (a, b)-adjacent, if the
winner in one of these two tournaments is c, the winner in the
other is c as well, hence it holds that r(010) = c, r(110) = c.

From r(110) = c and PNM it follows that r(100) ∈ {a, c}.
We already know that r(100) ∈ {a, b}, hence r(100) = a.
Now by PNM r(101) = a, in contradiction to our previous
conclusion that r(101) = b.

Case 2: r(111) = a. By PNM we conclude that r(110) =
a, r(101) ∈ {a, c}, and r(011) ∈ {a, b}. By non-imposition,
we must have a tournament where b wins. We have only two
options, 100 and 011. If r(100) = b, by PNM r(110) = b,
in contradiction to r(110) = a. Symmetrically, if r(011) =
b, we must have r(001) = b, in contradiction to r(001) =
a.

One might expect the above impossibility result to also
hold when |A| > 3. In other words, given Theorem 4.3,
the intuition is that any choice rule r : T (A) → A when
|A| > 3 cannot be both PNM and non-imposing. Surpris-
ingly, this turns out to be false. In fact, we establish that
for any number of alternatives except three there is a choice
rule that satisfies both properties. Moreover, the choice rule
we construct is also monotonic. So, if one relaxes the re-
quirement of Condorcet-consistency and only asks for non-
imposition, and the number of alternatives is not three, then
there are rules that are immune to both types of manipulation
discussed above. This is, conceptually and technically, the
main result of this paper.

Theorem 4.4. Let A such that |A| �= 3. There exists a
choice rule r : T (A) → A that is monotonic, PNM, and
non-imposing.

Before turning to the proof of the theorem, let us give some
general intuitions. Our construction is inductive; we design
a function that switches between the outcomes in {a, b, c}
based only on the direction of the edges (a, b) and (a, c). In
order to achieve non-imposition, one of the four configura-
tions of the two edges gives us outcomes in A \ {a, b, c}; in
order to decide between alternatives in this set, we use the
function for |A| − 3 alternatives whose existence is guaran-
teed by the induction assumption. This technique does not
work for three alternatives as the set A \ {a, b, c} is empty.
The main obstacle is using the same technique to obtain a
monotonic, PNM, non-imposing rule for six alternatives (de-
spite the impossibility result for three); we are able to do this
using a tailor-made construction for choosing between three
alternatives when six alternatives are available.

Proof (sketch) of Theorem 4.4. We first prove the theorem
for any |A| = n ≡ 1 (mod 3). The proof is by induction.
For n = 1, the claim holds trivially.

Now, let n > 1 such that n ≡ 1 (mod 3), and denote
A = {a, b, c, . . .}. Let A′ = A \ {a, b, c}. By the induction
assumption, since |A′| = n − 3 ≡ 1 (mod 3), there exists a
function r′ : T (A′) → A′ that is monotonic, PNM, and onto
A′. Given a tournament T , let T ↓A′ be the restriction of T
to A′. The construction of r is given by

r(T ) =

⎧⎪⎪⎨
⎪⎪⎩

a aTb and aTc

b bTa and aTc

c aTb and cTa

r′(T ↓A′) bTa and cTa

(1)
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In other words, the transitions between a, b, c, and A′ depend
only on the direction of the edges (a, b) and (a, c).

It is quite straightforward to see that r is onto A. Indeed, it
is possible to obtain a, b and c as values of r by configuring
the edges (a, b) and (a, c). Now, by the non-imposition of r′,
for any x ∈ A′, there is T ′ ∈ T (A′) such that r′(T ′) = x.
We then have that r(T ) = x for any tournament T where
bTa, cTa, and T ↓A′= T ′.

We claim that r is monotonic. Let T, T ′ ∈ T (A) be two
adjacent tournaments such that r(T ) �= a, r(T ′) = a. Then,
by the construction of r, either bTa and aT ′b, or cTa and
aT ′c, hence monotonicity is not violated. Similarly, let T
and T ′ be two adjacent tournaments where r(T ) �= b and
r(T ′) = b, then either aTb and bT ′a, or cTa and aT ′c. In
both cases, monotonicity is not violated. A symmetric argu-
ment holds for adjacent tournaments such that r(T ) �= c and
r(T ′) = c. Finally, let x ∈ A′, and consider two (x, y)-
adjacent tournaments T and T ′. Assume for contradiction
that r(T ) �= x, r(T ′) = x. Since x /∈ {a, b, c} but the out-
come changes as a result of flipping the edge (x, y), it follows
from the construction of r that y ∈ A′ and the outcomes r(T )
and r(T ′) are both determined by r′. Therefore, we have ob-
tained a contradiction to the monotonicity of r′.

It is left to verify that r is PNM. This is easy to verify
with respect to the transitions between a, b, and c. Con-
sider two adjacent tournaments T and T ′ such that r(T ) = b,
r(T ′) = x ∈ A′. The two tournaments must differ in the edge
(a, c). PNM is preserved since b /∈ {a, c} and x /∈ {a, c}. A
symmetric argument holds when r(T ) = c, r(T ′) ∈ A′. Fi-
nally, if r(T ) = x ∈ A′, r(T ′) = x′ ∈ A′, then PNM holds
by the PNM of r′ using arguments that are similar to the ones
given for monotonicity.

Let us now prove the theorem for any n ≡ 2 (mod 3). The
proof is almost identical, except for a small difference in the
base of the induction. Indeed, we must prove that if A =
{a, b}, there is a function r : T (A) → A that is monotonic,
PNM, and non-imposing. Let r(T ) = a if aTb and r(T ) = b
if bTa. This function trivially satisfies all three properties.

It remains to prove the theorem for n ≡ 0 (mod 3); this
part of the proof is the most involved one. The trouble is
that, by Theorem 4.3, there is no PNM and non-imposing
choice rule when n = 3. Hence, the base of our induc-
tion is n = 6. In other words, we can use the induction as
before given that we can explicitly construct a monotonic,
PNM, and non-imposing choice rule r : T (A) → A when
A = {a, b, c, d, e, f}; this is the task we presently turn to.

Define r as in Equation (1), with one exception: if bTa
and cTa then r(T ) = r′(T ), where r′ : T (A) → {d, e, f}
is defined in the sequel. Crucially, r′ takes into account the
entire tournament and not its restriction to {d, e, f}, but only
returns outcomes in {d, e, f}. This is required in order to
avoid the implications of Theorem 4.3.

We construct r′ as follows. First, the value of r′ depends
only on the direction of the edges (a, d), (a, e), and (b, c).
This choice of (b, c) as one of the edges is crucial, as it greatly
increases our degrees of freedom in the construction of r′.

Let us represent the direction of the three critical edges by a
string of three bits, where the left bit represents the direction
of (a, d), the middle bit represents (a, e), and the right bit

000(e)

100(f) 010(e) 001(d)

110(f) 101(d) 011(d)

111(d)

Figure 2: A visual representation of the construction of r′ in
the proof of Theorem 4.4. A vertex contains a string of three
bits that represents the direction of the edges (a, d), (a, e),
and (b, c). The letter in parentheses is the value of r′ given the
corresponding tournament. Every two adjacent tournaments
are connected by an edge.

represents (b, c). Fix arbitrary directions as 000. In other
words, although the input of r′ has

(
6
2

)
= 15 edges (and so,

strictly speaking, should be represented by a string of 15 bits),
r′ disregards all but three, so for simplicity we can represent
the input of r′ as a string of three bits.

We define: r′(000) = e, r′(100) = f , r′(010) = e,
r′(001) = d, r′(110) = f , r′(101) = d, r′(011) = d,
r′(111) = d. See Figure 2 for an illustration. Clearly r′
is non-imposing. Moreover, by checking all pairs of adja-
cent tournaments, one can verify that r′ is also monotonic
and PNM. Now, the fact that r itself is monotonic, PNM, and
non-imposing is implied by essentially the same arguments as
before (with minor changes that are required due to the fact
that r′ depends on (a, d), (a, e) and (b, c) rather than (d, e),
(d, f) and (e, f)).

Theorem 4.4 asserts that when the number of alternatives
is not three, there is a choice rule that is monotonic, PNM,
and non-imposing. In fact, by symmetry, the theorem implies
that there are multiple rules that satisfy the three desiderata.
These rules may differ in the additional properties that they
satisfy. It is therefore interesting to ask whether it is possi-
ble to obtain a list of all choice rules satisfying the foregoing
three properties, or, in other words, whether it is possible to
obtain a list of all monotonic, PNM, and non-imposing choice
rules, for a given number of alternatives.

The answer to this question is obviously positive when the
number of alternatives is one or two, and when it is three
there are no such choice rules (by Theorem 4.3). What about
four alternatives? Notice that in this case, each tournament
has

(
4
2

)
= 6 edges, therefore there are 64 possible tourna-

ments, and the number of possible choice rules is already
464 ≈ 1039. It is therefore impossible (with current tech-
nology) to check all possible choice rules. However, observe
that, using PNM, fixing the values of specific tournaments
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uniquely fixes the values of adjacent tournaments. Using
this observation, we can reduce the number of choice rules
to be checked to 2048 rules (we omit the nontrivial details
due to lack of space). By enumerating these choice rules, we
have found that when there are four alternatives, the number
of monotonic, PNM, and non-imposing choice rules is 146.
It seems possible to apply the same ideas to enumerate all
monotonic, PNM, and non-imposing choice rules when there
are five alternatives. When |A| > 5, new combinatorial tech-
niques are required.

5 Discussion

We have succeeded in obtaining a surprising positive result
(Theorem 4.4) with respect to two types of manipulations: an
individual alternative trying to make itself a winner (mono-
tonicity), and a pair of alternatives conspiring to make one of
them a winner (PNM—pairwise nonmanipulability).

The reader might be concerned, however, that the voting
rule constructed in Theorem 4.4 does not satisfy additional
social choice desiderata, and hence might be “unreasonable”
as a choice rule. Indeed, now that we know that monotonic,
PNM, non-imposing rules exist, it is worthwhile to explore
the existence of rules that satisfy additional properties. Note
that, given a specific additional property, this can be done
directly by enumeration with respect to a small number of
alternatives.

Another (related) concern might be regarding different
types of manipulations. For instance, one can think of a type
of pairwise “external” manipulation where x loses on purpose
to y in order to get z to win. More generally, it is possible to
think of a scenario where each alternative has a ranking of
the alternatives, and is trying to obtain a more preferred out-
come according to its ranking. Intuitively, immunity to these
types of manipulations is a very strong property, hence it is
not surprising that, under both definitions, any nonmanipula-
ble choice rule must be constant (the proof is by induction on
the Hamming distance from some initial tournament, and is
omitted due to lack of space).

On the other hand, the definition of PNM can be strength-
ened by requiring immunity to manipulation by triplets. In
other words, it is possible to look at coalitions of size three
that reverse the edges between them in order to get one of
them elected. Is there a choice rule that is non-imposing and
immune to manipulations by triplets? If there exists such a
choice rule, is there one that is immune to similar manipu-
lations by larger coalitions? We leave these questions as in-
triguing directions for future research.
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