
Abstract
Testing embedded software systems on the control
units of vehicles is a safety-relevant task, and de-
veloping the test suites for performing the tests on
test benches is time-consuming. We present the
foundations and results of a case study to automate
the generation of tests for control software of vehi-
cle control units based on a specification of re-
quirements in terms of finite state machines. This
case study builds upon our previous work on gen-
eration of tests for physical systems based on rela-
tional behavior models. In order to apply the re-
spective algorithms, the finite state machine repre-
sentation is transformed into a relational model.
We present the transformation, the application of
the test generation algorithm to a real example, and
discuss the results and some specific challenges re-
garding software testing.

1 Introduction
Over the last decade, cars have become a kind of mobile
software platform. There are tens of processors (Electronic
Control Units, ECU) on board of a vehicle; they are com-
municating with each other via several bus systems, and
software has a major influence on the performance and safe-
ty of a vehicle. The software embedded in the car subsys-
tems becomes increasingly complex, and it comes in many
variants, reflecting the context of different types of vehicles,
the manufacturer-specific physical realization, versions over
time etc. Testing such embedded software becomes increas-
ingly challenging and has been moving away from test
drives under various conditions to automated tests per-
formed on test benches which can partly or totally simulated
the car as a physical system.
But for the reasons stated above, namely complexity of the

software and its variation, generating the test suites becomes
demanding and time consuming and demands for computer
support. Automating the generation of such tests based on a
specification of the desired behavior of the software togeth-
er with the physical system promises benefits regarding both
the required efforts and the completeness of the result.
In [Struss 94], we presented the theoretical and technical
foundations for automated test generation for physical sys-

tems based on (relational) models of their (nominal and
faulty) behavior.
An extension of this approach to cover also software would
be highly beneficial, because it would provide a coherent
solution to testing both physical systems and their embed-
ded software. More concretely, the software test could start
from a specification of the intended behavior of the entire
system (including physical components and software), and
also the tests could reflect the particular nature of the em-
bedded software, namely using stimuli and observations of
the physical system rather than directly of the software sys-
tem.
The case study described in this paper concerns a real-life
example (the measurement and computation of the fuel level
in a vehicle tank) based on the requirement specification
document of a car manufacturer.
We continue by summarizing the basis for our relation-
based implementation of test generation. In order to extend
it to software, the requirement specification has to be turned
into a relational representation. In the respective document,
the skeleton of this specification is provided in a state-chart
manner. Therefore, section 3 of this paper proposes a behav-
ior specification as a special finite state machine, and sec-
tion 4 presents the transformation into a relational represen-
tation.
A major challenge in the application of the test generation
algorithm to software is to provide relevant and appropriate
fault models against which the software should be tested
(section 5). The final sections present results of the case
study and discuss problems and insights.

2 The Background: Model-based Test Gener-
ation

The goal of this work is not to develop a new test generation
algorithm, but apply it to (devices with embedded) software
systems. Therefore, we only briefly summarize the theoreti-
cal and technical foundations and refer to [Struss 94, 07] for
more details.
Testing attempts to influence a system in a way that reveals
information for discriminating between different hypotheses
about the system (e.g. about the kind of fault that is present).
Definition (Discriminating Test Input)

Let TI = {ti} be the set of possible test inputs (stimuli),

Fault-model-based Test Generation for Embedded Software

M. Esser1, P.Struss1,2

1Technische Universität München, Boltzmannstr. 3 D-85748 Garching, Germany
2 OCC’M Software, Gleissentalstr. 22, D-82041 Deisenhofen, Germany

{esser, struss}@ in.tum.de, struss@ occm.de

IJCAI-07
342

OBS = {obs} the set of possible observations (system re-
sponses), and H = {hi} a set of hypotheses.
ti ∈ TI is called a definitely discriminating test input for
H if
(i) ∀ hi ∈∈∈∈ H ∃ obs ∈ OBS ti ∧ hi ∧ obs ⊥ , and
(ii) ∀ hi ∈∈∈∈ H ∀ obs ∈ OBS

if ti ∧ hi ∧ obs ⊥
then ∀ hj ≠ hi ti ∧ hj ∧ obs ⊥.

ti is a possibly discriminating test input if
(ii´) ∀ hi ∈∈∈∈ H ∃ obs ∈ OBS such that

ti ∧ hi ∧ obs ⊥ and ∀ hj ≠ hi ti ∧ hj ∧ obs ⊥.
Testing for confirming (or refuting) a particular hypothesis
h0 out of the set H requires only discrimination between h0

and any other hypothesis.

Definition (Confirming Test Input Set)
{tik} = TI´ ⊂ TI is called a discriminating test input set
for H = {hi} and h0 ∈ H if

∀ hj with h0 ≠ hj ∃ tik ∈ TI´ such that
tik is a (definitely or possibly) discriminating test input
for {h0, hj}.

It is called definitely confirming if all tik are definitely
discriminating, and possibly confirming otherwise. It is
called minimal if it has no proper subset TI´´⊂ TI´ which
is discriminating.

Remark
Refutation of all hypotheses hj ≠ h0 implies h0 only, if we
assume that the set H is complete, i.e. ∨i hi

[Struss 94] treats test generation for physical systems, with
hypotheses concerning their (correct or possible faulty) be-
havior, which is assumed to be characterized by a vector
vS = (v1, v2, v3, … , vn) of system variables with domains

DOM(vS) = DOM(v1) × DOM(v2) × … × DOM(vn).
Then a hypothesis hi ∈∈∈∈ H is given as a relation

Ri ⊆ DOM(vS).
For conformity testing, h0 is given by R0 = ROK, the model of
correct behavior. Observations are value assignments to a
subvector of the variables, vobs, and also the stimuli are de-
scribed by assigning values to a vector vcause of susceptible
(“causal” or input) variables. We make the reasonable as-
sumption that we always know the applied stimulus which
means the causal variables are a subvector of the observable
ones: vcause ⊆ vobs.

The basic idea underlying model-based test generation
([Struss 94]) is that the construction of test inputs is done by
computing them from the observable differences of the rela-
tions that represent the various hypotheses. Figure 1 illus-
trates this. Firstly, for testing, only the observables matter.
Accordingly, Fig. 1 presents only the projections, pobs(Ri),
pobs(Rj), of two relations, R1 and R2, (possibly defined over a
large set of variables) to the observable variables. The verti-
cal axis represents the causal variables, whereas the hori-
zontal axis shows the other observable variables (represent-
ing the observable system response).

To construct a (definitely) discriminating test input, we
have to avoid stimuli that can lead to the same observable

system response for both relations (the shaded region in Fig.
1). This provides the intuition behind

Lemma 1
If hi=Ri, hj=Rj, TI=DOM(vcause), and OBS=DOM(vobs),
then

DTIij = DOM(vcause) \ pcause(pobs(Ri) pobs(Rj))
is the set of definitely discriminating test inputs for {hi,
hj}.

Please, note that we assume that the projections of Ri and Rj

cover the entire domain of the causal variables which corre-
sponds to condition (i) in the definition of the test input.

The sets DTIij for all pairs {hi, hj} provide the space for
constructing (minimal) discriminating test input sets.

Lemma 2
The (minimal) hitting sets of the set {DTI0j} are the (mini-
mal) definitely confirming test input sets for H, h0.

A hitting set of a set of sets {Ai} is defined by having a non-
empty intersection with each Ai. (Please, note that Lemma 2
has only the purpose to characterize all discriminating test
input sets. Since we need only one test input to perform the
test, we are not bothered by the complexity of computing all
hitting sets.)

This way, the number of tests constructed can be less than
the number of hypotheses different from h0. If the tests have
a fixed cost associated, then the cheapest test set can be
found among the minimal sets.

3 State Charts for Specification of Software
Requirements

Extending the solution sketched above to software testing
raises some fundamental issues. Firstly, it assumes a behav-
ior description in terms of relations. (Embedded) software,
however, is usually specified and described in terms of its
(discrete) dynamic features. Secondly, and even more fun-
damentally, in this case testing is not concerned with faults
in a physical device, but bugs in the design of an artifact. In
the work described here, we address the second problem by
• starting from the specification and model faults as

(classes of) deviations from this specification, and the
first one by

Figure 1 Determining the inputs that do not, possibly
and definitely discriminate between R1 and R2

vcause

vobs\cause

Not discriminable
(NTI)

Definitely Discriminable
(DTI)

Possibly discriminable
(PTI)

R1
R2

vcausevcause

vobs\causevobs\cause

Not discriminable
(NTI)

Definitely Discriminable
(DTI)

Possibly discriminable
(PTI)

R1
R2

IJCAI-07
343

• transforming a widely used representation of such
specifications into a relational representation.

State charts and finite state machines (FSM) are frequently
used in specifications of software requirements. Figure 2
shows a FSM extracted from a requirement specification
produced by an automotive manufacturer. The machine de-
scribes a process to detect refueling of a passenger car: if
the car stops for more than 8 seconds and if a remarkably
higher tank filling is detected then the software sets the out-
put flag RFD (ReFilling Detected) to true. Otherwise RFD
is always false.
Let us define the used type of FSM in a more formal way:
an automata ma = (E,(I,O,L),(S,A),T,s0,l0) is described by

the set E of events e1, …, enE,

the ordered set I of input variables i1,… ,inI,

the ordered set O of output variables o1, …, onO,

the ordered set L of local variables l1, …, lnL,

the set S of control states s1, …, snS,

the set A of state expressions a1, …, anS defining a
relation δa,i ⊂ dom(I) x dom(L) x dom(O) x dom(L)
for each state si,

the set T of transitions T1, …, TnT with
Ti ⊂ S x P(dom(E) x dom(I) x dom(L)) x S where
P(X) denotes to the power set of X,

the initial control state s0 and

the vector l0 with the initial values of L.

Each machine has a special local variable l1 called stime in-
dicating the time elapsed since the machine has entered the
actual control state. It is special because each time the con-
trol state is switched, the variable is reset automatically. Ev-
ery variable v in I, O or L has a finite domain dom(v).

With the inputs (i1, …, in) and the events (e1, …, en) the
machine produces the outputs (o1, …, on) according to the
following operating sequence:

1. Set t = 0.

2. Evaluate the state expression ai of the current state
st=si to calculate the new values of the output and
local variables : (it+1, lt, ot+1, lt+1) ∈ δa,i

3. If T contains a transition Ti=(ssrc, IF, sdst) with
ssrc=st and (et+1,it+1,lt+1)∈IF then set st+1=sdst, other-
wise set st+1=st.

4. If st+1≠ st then reset stime.

5. Set t=t+1

1. Jump to Step 2.

In our example, the FSM has two input variables car moves
and time, one output variable RFD, stime as a the only lo-
cal variable and the events nothing, car starts moving, car
stops and increased tank filling. The variable time is set
according to the time elapsed since the previous event oc-
curred. Its value is always added to the stime variable,
which could be used in a precondition of a transition.

Dependent on the chosen set of input variables I and the
events E, the test generation system needs more information
in order to produce meaningful tests, because the values of
some variables might depend on the occurrence of an event.
E.g. if car movest=true then the event car starts moving can
not occur next. In our example, the following rules are nec-
essary:

car movest = false ∧ car movest+1 = true ⇔
et = car starts moving

car movest=true ∧ car movest+1=false ⇔ et=car stops

In the next section, we describe how the FSM is trans-
formed into a relational representation.

4 Transformation of a FSM into a Composi-
tional, Relational Representation

The conversion of a FSM of the described type produces a
compositional model, i.e. a model that preserves the struc-
ture and the elements of the FSM. As a consequence, a
modification of one part of the FSM results in the modifica-
tion of only one part of the compositional model (As it will
turn out this is not fully accomplished for fundamental rea-
sons). The compositional model also provides the possibility
of relating “defects” to the various elements (and also to
record and trace their effects e.g. in diagnosis).

The basic step is the transformation of the entire FSM
into a component C1Step and its internal structure (Figure
3). C1Step takes the state st, values of local variables lt, the
input vector it+1, and the event et+1 and generates the subse-
quent state st+1, the new values of local variables lt+1, and the
output vector ot+1, reproducing the calculations of the FSM
in one step (one iteration in the listed operation sequence).
C1Step consists of the two components CState and CTrans.
The former encodes the state expressions δa,i, while CTrans
represents the transitions Ti.

CState constrains st, lt, lt+1, ot+1 and it+1 independently
from the next event et+1. It contains nS atomic components
Cai, one for each state expression ai, which are placed in
parallel (Figure 4). The expressions are conditioned by their

Figure 2: FSM describing a refilling detection in a
personal car

IJCAI-07
344

respective state and, hence, exactly one component Cai de-
fines the proper values of the variables. Hence, a change in
one ai results in the modification of only one component and
a maximum of locality is achieved.

Cai determines lt+1 and ot+1 depending on st, lt and it+1 ac-
cording to ai. The relational model RCai of such an atomic
component is:

CTrans correlates all the variables except the output ot+1 and
consists of nT parallel atomic components CTi, one for each
transition, and a component CTDefault (Figure 5). Exactly one
component CTi determines st+1 depending on st, lt+1, it+1 and
et+1 according to Ti. The relational model RCTi of these atom-
ic components are:

In all cases where no transition is executed, the atomic com-
ponent CTDefault defines the values according to the automata
definition: the state does not change, st+1 = st. Therefore its
relation is

Now one iteration of the operating sequence can be simu-
lated. To simulate n iterations, C1Step is copied n times and
placed in series. But this shows also a limitation: the model
can simulate only a fixed number of steps, and the more
C1Step components are interconnected the bigger the model
(the relation of the entire model) grows.
The number of steps needed for test generation depends on
the respective FSM and the failure. In order to discriminate
the ok-model from the failure model, n has to be at least as
long as the shortest path in which effects of the fault be-
comes observable. One solution to this problem could be to
start with a small number of steps and increase it until the
system produces some tests.

Each vector (s0,l0,i1,e1,...,in,en) represents a possible test
input ti of a n-step-model. Thus, ti comprises n parts, one
for each time step and, hence, expresses a temporal se-
quence of stimuli. The same holds for every observation:
obs = (o1,...,on).

A violation of locality becomes evident when the set of
transitions is changed, e.g. by deleting, adding, or modify-
ing one. In such cases, not only the respective CTi compo-
nent has to be removed, added, or changed, but also the de-
fault behavior in CTDefault has to be updated.

5 Fault Models
As described in section 2, our approach to testing is based
on trying to confirm the correct behavior by refuting the
models of possible faulty behaviors. When testing systems
that are composed of physical components only, these mod-
els are obtained in a natural way from the fault models of el-
ementary components, which usually have a small set of
(qualitatively different) foreseeable misbehaviors due to the
underlying physics. Faults due to additional interactions
among components are either neglected or have to be antici-
pated and manifested in the model. In summary, for physi-
cal systems, the specific realization of the system deter-
mines the possible kinds of misbehavior, and testing com-
pares them to a situation where all components work prop-
erly.

In software testing (but also in debugging designs of
hardware), this does not apply. First, the space of possible
faults is not restricted by physical laws, but only by the cre-
ativity of the software developer when making mistakes.
This space is infinite, and the occurrence of structural faults
is the rule rather than an exception. Second, the assumption
that correct functioning of all (software) components as-
sures the achievement of the intended overall behavior does
not hold. This marks an important difference between test-
ing physical artifacts and software (and also hardware de-
sign). For the former, we can usually assume it was de-
signed correctly (which is why correct components together
will perform correctly), but for the latter we cannot. It is just
the opposite: testing aims at revealing design faults.

In our application, the situation is complicated by the fact
that it starts from the functional requirements rather than a

()()
()1

1 1 1

1 1

(, ,)

, , , , |

(, ,)
Default

t t
i

t t t t t

CT t t t t t

T s IF s

s e i l s
R

s s e i l IF+

+ + +

+ +
=

=
∀ ≠ ∨ ∉

()()
() ()()
() ()()

1 1 1

1 1 1

1 1 1 1

: , , , ,

, , (, ,)

, , (, ,)

|{

}

i

i

t t t t t
CT

t t t t t
T T i

t t t t t t t t
i

R s e i l s

T s IF s e i l IF

T s IF s s s e i l IF s S

+ + +

+ + +
∈

+ + + +

= ∧ ∈ ∨

= ∧ ≠ ∨ ∉ ∈

∃

() ()() ()
()

1 1 1 1 1 1

1 1

, , , , | (, , ,)
j

j

t t t t t t t t t t
j a

Ca
t t t

j

s i l l o s s i l o l
R

s s l L o O

δ+ + + + + +

+ +

= ∧ ∈ ∨
=

≠ ∧ ∈ ∧ ∈

CTrans

CState

et+1
it+1

t

st

ot+1

lt+1

st+1

et+1 it+1

(lt+1,st) st+1
CT1

CT2

CTn

...

et+1
i
t+1

CTDefault

ot+1

it+1

(lt,st) lt+1
Ca1

Ca2

Can

...

o
t+1

it+1

Figure 3: C1Step and its internal
structure

Figure 5: CTrans and its internal
structure

Figure 4: CState and its internal

IJCAI-07
345

detailed software design or even the code which might sug-
gest certain types of bugs to check for (e.g. no termination
of a while loop). On the positive side, this may lead to a
smaller, qualitatively characterized set of possible misbe-
haviors.

In our example about the detection of fuel refilling, a fail-
ure one might think of is that the software does not poll the
car’s movement during driving and therefore does not detect
a stop. This means the machine stays in its current control
state instead of performing T3. The Transition T3 could be
seen as deleted. The construction of such a failure model
could be achieved by applying the following operator on the
ok-model:

remove-if-condition: (ma, Ti) (ma’)
where ma’ = ma[IFi ∅] and Ti=(st,IFi,st+1).
Operation ma[A B] results in a FSM ma’ which is equal to
ma except that element A is substituted with B.

Another faulty behavior would occur, if the software
treats an increased tank level after 8sec in standstill exactly
as if the car starts moving. W.r.t. the FSM, this means ex-
ecuting T6 instead of T7. The proper failure model can be
constructed by the operator
move-if-condition-to: (ma,Ti, Tj) (ma’)
where ma’ = ma[IFi IFi∪ IFj, IFj ∅] and
Ti=(st,IFi,st+1).

Similarly, other faults can be specified, which for in-
stance, change the source or destination state, or modify the
state expression.

6 Results
In this section, the discrimination of the failure models

mdelT3 = remove-if-condition(mok,T3)

mdelT5 = remove-if-condition(mok,T5)

from the ok model is discussed. A relational model that sim-
ulates 7 steps of the FSM is used here.

To discriminate the two models mok and mdelT5, 36 dif-
ferent types of tests are generated. Figure 6 lists them,
where ‘*’ stands for any value in the domain of the respec-

tive variable. The input sequence of the first test
could be formulated more naturally as following:

1. starting from the initial state one waits 4s
long,

2. then the car starts moving and

3. directly after this, it stops again and

4. one waits again 4s.

5. After waiting a third time 4s,

6. a significant increase of the tank filling is
detected.

In test 2, the second and the third event occurring
are “increased tank filling”. These events are un-
necessary. Without these two steps the test input
still discriminates the fault from the ok model. The
reason that the system generates these is the fixed
number of steps of the relational model. So some

steps have to be filled with events having no effects but
serving as placeholders. This explains why so many differ-
ent tests are generated. Eliminating unnecessary stimuli is
addressed in [Struss 07].

Only two types of tests are generated to discriminate the
two models mok and mdelT3. They are also among the tests
of the previous discrimination: one is the first test discussed
above, the other causes the trajectory shown in Figure 7.

Tests discriminating between both pairs (mok from
mdelT3 as well from mdelT5) are the two from the second dis-
crimination, because these are also in the generated set of
the second one. In our example, this is not surprising. To
distinguish between an ok automata and a fault automata
where any transition is deleted, one of these both has always
to reach S6, because this is the only state where the output is
different to the one of the others.

7 Related Work
Classical approaches generates tests optimized in respect to
a certain coverage criteria like state, transition or MCDC
coverage [Beizer 95]. In our approach, with carefully cho-
sen sets of failure models tests will be generated that
achieve also classical coverage criteria.

To obtain a state coverage, for example, a set of failure
models Mfail could be constructed as follows. For each state
si, there exists one failure model mfail,i in Mfail which differs
from the ok-model in the output of state expression ai only.
The outputs of these two models are complementary. For
the case that mok is a deterministic automaton, the equiva-
lence is proven in [Esser 05].

Also the diagnoser of [Sampath 96] could be used for test
generation (although the authors are not aware of any publi-
cation describing this): In this approach a diagnoser is gen-
erated from the system model, both FSMs, for calculating
diagnosis and diagnosability. The transitions of a diagnoser
are labeled with observable events, whereas the states are la-
beled with the behavior modes consistent with the events
that occurred so far. For test generation, the set of observ-
able events could be split into causal and non-causal observ-

Figure 6: tests discriminating mok from mdelT5

IJCAI-07
346

able events. Then, the task is to find a causal event sequence
where each diagnoser path consistent with these causal
events and any possible non-causal observables have either
only a ok-label or no ok-label at all. Each sequence of
causal and observable events is a valid test for the modeled
failures. We expect that the two approaches can be trans-
formed into each other. An analysis and comparison of the
efficiency would be interesting.

8 Discussion
The problem which is central to our approach is finding ap-
propriate fault models representing realistic and relevant
faults. On the one hand, they are difficult to obtain for soft-
ware and even more so, when one starts from a functional
specification, as we do. This may seem to be a disadvantage
in comparison with the other testing heuristics, like cover-
age criteria. However, it is not true that they do not involve
fault models. In fact, they are based on assumptions about
possible faults, but these are implicit. The fact that our ap-
proach makes them explicit is a major advantage and the ba-
sis for more progress. It also bears the potential to generate
tests whose power and coverage grows together with the re-
finement of the specification during the development pro-
cess.

We consider the results of this experiment as encouraging
and will continue this work in a project with Audi AG. It
has raised a number of issues that need to be addressed in
this project.

A basic one concerns the question whether the current
modeling formalism, a specific type of finite state machine,
is appropriate. This has several aspects: First, it has to be
checked whether it is expressive enough to capture the re-
quirements on embedded software. Second, the impact of
the representation on the complexity of the algorithm has to
be analyzed (Handling absolute time is an important issue,
as stated below). These aspects have to be confronted with
the most important guideline: appropriateness for current
practice.

Our project is not an academic exercise, but aims at tools
that can be easily used in the actual work process. Current
requirement specifications at the development stage that
matters in our context comprise mainly natural language
text together with a few formal or semi-formal elements,
such as state charts (provided they are written at all!). As-
suming the existence of formal, executable specifications is
unrealistic. Any formal representation of the requirements
as we need them as an input to our tools needs to take into
account whether they can be produced in the current pro-
cess, by the staff given its education and background, and
the limited efforts that can be spent in a real project where
meeting deadlines and reducing development time has top
priority. Whenever the use of new tools and additional work
is required, this needs a rigorous justification by a signifi-
cant pay-off (in our case in the time spent on testing and the
quality of its results).

On the technical side, an adequate handling of time is
needed. In our example, time elapsing in a particular state
(e.g. “8s with no motion”) seems to be local. However, the
respective event has to be stated in a way that can be inter-
preted properly in other states as well, which may have been
reached due to a fault. Introducing global absolute time
tends to enforce using the smallest time increments required
for some state and event, which appears prohibitive.

Acknowledgements
Thanks to Torsten Strobel who implemented the algorithm,
Oskar Dressler for discussions and support of this work, the
Model-based Systems and Qualitative Modeling Group at
the Technical University of Munich and the reviewers for
their helpful comments. We also thank Audi AG, Ingolstadt,
and, in particular, Reinhard Schieber for support of this
work.

References
[Esser 05] Esser, M: Modellbasierte Generierung von Tests

für eingebettete Systeme am Beispiel der Tankanzeige in
einem Kraftwagen, Technical University of Munich,
2005

[Beizer95] Beizer, B.: Black-Box Testing, John Wiley and
Sons, New York, NY, 1995

[Sampath 96] Sampath, M., Senupta, R., Lafortune, S., Sin-
namohideen, K., Teneketzis, D.: Failure Diagnosis us-
ing Discrete Event Models. In: IEEE Transactions on
Control Systems Technology, 4(2) 1996, pp. 105-124

[Struss 94] Struss, P.: Testing Physical Systems. In: Pro-
ceedings of AAAI-94, Seattle, USA, 1994.

[Struss 07] Struss, P.: Model-based Optimization of Testing
through Reduction of Stimuli. 20th International Joint
Conference on Artificial Intelligence IJCAI07, Hyder-
abad, India, 2007

Figure 7: trajectory of the FSM for
a test input discriminating mok from mdelT3

S 1

VORM
S2

VB1

S 3

VB2

S 4

NTB1/2

S 5

NTB 3

T2 nothing ∧ stime=4sec ∧ car moves = false

T5 nothing ∧ stime=8sec

T7 increased tank fillingT8 car start moving

T6 car starts moving

T4 car starts moving

T3 car stops

T 1 nothing ∧ stime=4sec ∧ car moves=true

car starts
moving

nothing

1

2

3

4

5

6

IJCAI-07
347

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

