
Planning for Weakly-Coupled Partially Observable Stochastic Games

AnYuan Guo Victor Lesser
University of Massachusetts Amherst

Department of Computer Science
140 Governor’s Drive, Amherst, MA 01003

{anyuan, lesser}@cs.umass.edu

1 Introduction
Partially observable stochastic games (POSGs) provide a
powerful framework for modeling multi-agent interactions.
While elegant and expressive, the framework has been shown
to be computationally intractable [Bernstein et al., 2002]. An
exact dynamic programming algorithm for POSGs has been
developed recently, but due to high computational demands,
it has only been demonstrated to work on extremely small
problems. Several approximate approaches have been devel-
oped [Emery-Montemerlo et al., 2004; Nair et al., 2003], but
they lack strong theoretical guarantees. In light of these the-
oretical and practical limitations, there is a need to identify
special classes of POSGs that can be solved tractably.

One dimension along which computational gain can be
leveraged is by exploiting the independence present in the
problem dynamics. In this paper, we examine a class of
POSGs where the agents only interact loosely by restricting
one another’s available actions. Specifically, rather than hav-
ing fixed action sets, each agent’s action set is a function of
the global state. The agents are independent from one another
otherwise, i.e. they have separate transition and reward func-
tions that do not interact. This class of problems arises fre-
quently in practice. Many real world domains are inhabited
by self-interested agents that act to achieve their individual
goals. They may not affect each other in any way, except for
occasionally putting restrictions on what each other can do.

The best-known solution concepts in game theory are that
of computing Nash equilibrium and performing strategy elim-
ination. Our work addresses both of these solution concepts.
First, we show that finding a Nash equilibrium where each
agent achieves reward at least k is NP-hard. Another contri-
bution of this work is that we present an exact algorithm for
performing iterated elimination of dominated strategies. It is
able to solve much larger problems than exact algorithms for
the general class by exploiting problem structure.

2 POSGs with State-Dependent Action Sets
In this section, we will present a formal definition of our
model. An n-agent POSG with state-dependent action
sets can be defined as 〈{Si}, {s0

i }, {Ai}, {Bi}, {Pi}, {Ri}〉,
where,

• Si is the state space of agent i. S = S1 × S2 × . . .× Sn

denotes the joint state set.

• s0
i ∈ ∆(Si) is the initial state distribution of agent i.

• Ai is the action set of agent i. A = A1 ×A2 × . . .×An

denotes the joint action set.

• Bi : S → 2Ai is the available action function that maps
a joint state to the set of available actions for agent i.
Bi(s) ⊂ Ai for all s ∈ Si.

• Pi : Si × Ai × Si → [0, 1] is the transition function
of agent i. The joint transition function is completely
factored, where P ((s′1 . . . s′n) | (s1 . . . sn), (a1 . . . an))
=

∏n
i=1 Pi(s′i|si, ai).

• Ri : Si × Ai → < is the reward function for agent i.
This states that the rewards of the agents depend only on
the local state and the action taken by agent i.

In our model, each agent has a complete view of its own
local state. A local policy for each agent is a mapping from
the local state and the available action set to an action in that
set. A joint policy is a tuple of local policies, one for each
agent.

Definition 1 A local policy πi, for agent i of an n-agent
POSG with state-dependent action sets, is a mapping from
pairs of local states and local action sets 〈si, Ai(s)〉 to
actions in the current local action set Ai(s), where s =
〈s1, . . . , si, . . . , sn〉.

Here is an example of a POSG with state-dependent ac-
tion sets. Two autonomous rovers are exploring an unknown
terrain and collecting rock samples. There is a river with a
narrow bridge on it that only allows one rover to pass at a
time. To simplify the illustration, we will assume the rovers
have two states {on land, on bridge}, and three actions each
{move, get on bridge, pick up rock}. The rovers receive re-
ward for the number of rocks picked up. The state-dependent
action set is used to constrain the rover’s actions such that
only one is allowed on the bridge at a time. For exam-
ple, the available actions for rover 1 are specified as follows,
B1(〈s1 = on land, s2 = on land〉) = {move, get on bridge,
pick up rock}, B1(〈s1 = on land, s2 = on bridge〉) = {move,
pick up rock}, and analogously for rover 2.

3 Complexity
We state our decision problem, denoted as POSG-NE, as
follows: given a POSG with state-dependent action sets,

G = 〈{Si}, {s0
i }, {Ai}, {Bi}, {Pi}, {Ri}〉, does there exist

a Nash equilibrium where all agents have expected utility at
least k?

Theorem 1 POSG-NE is NP-hard even in problems involv-
ing 2 agents and a horizon of 2.

4 Iterated Action Elimination Algorithm
We present an algorithm that performs iterated elimination of
dominated strategies. The algorithm is able to work directly
with the compact representation of a POSG without first con-
verting it to the double exponentially large normal form rep-
resentation. In this algorithm, first, we first fix the action sets
of each agent at each state to the optimistic and pessimistic
action sets. The idea behind this is that although an agent
cannot predict exactly what actions will be available at each
state, it can find out what actions would be available in the
best and worst case scenario. In the best case, none of the ac-
tions that can be restricted by the state of the other agents are,
and in the worst case, all of the actions that can be restricted
are in fact unavailable.

For each agent i:

1. For each state sk, compute the optimistic and pes-
simistic action sets. Here s = 〈s1, s2, . . . , sn〉 and
si = si

k.
Aopt(si

k) =
⋃
s

Bi(s)

Apes(si
k) =

⋂
s

Bi(s)

2. Compute the value functions of the 2 MDPs that cor-
respond to alternately fixing the available action sets
to the Aopt and Apes.

U(s) = max
a∈Aopt(s)

[
R(s, a) +

∑
s′

P (s′|s, a)U(s′)

]

L(s) = max
a∈Apes(s)

[
R(s, a) +

∑
s′

P (s′|s, a)L(s′)

]
3. For each action in each state, derive upper and lower

bounds on the action value from the value function
bounds U(s) and L(s).

QU (s, a) = R(s, a) +
∑
s′

P (s′|s, a)U(s)

QL(s, a) = R(s, a) +
∑
s′

P (s′|s, a)L(s)

4. At each state, eliminate all actions a′ whose action
value is dominated by another action a, QL(s, a) ≥
QU (s, a′).

5. Repeat steps 1 to 4 until no more actions can be
eliminated at any state.

Table 1: The iterated action elimination algorithm.

before after
states pruning pruning

6 972,000 13
8 34,992,000 168
9 2.1 ×108 69

12 4.5 ×1010 774
16 5.9 ×1013 2,198

Table 2: Average size of the policy space before and after
action elimination for problems with 3 constrained states.

Once we fix the available action sets of each agent at all the
states, the agents no longer depend on each other in any way.
Our model decomposes to a set of MDPs. For each agent, we
solve two MDPs, one using the optimistic action sets and the
other using the pessimistic action sets. The solutions will pro-
vide us with an upper and a lower bound on the actual value
function of each agent. With these upper and lower bounds on
the expected values of each state, we can now derive bounds
on the expected action values. At each state, dominated ac-
tions are pruned. We iterate the action elimination procedure
until no more actions can be pruned. Since the number of
actions at each state is finite, the procedure will eventually
converge.
Theorem 2 The iterated action elimination algorithm corre-
sponds to the iterated elimination of very weakly dominated
strategies.

5 Experiments
We tested the algorithm on a simplified 2-agent autonomous
rover exploration scenario. The size of each agent’s local
state space varies from 6 to 16. We introduced up to three
constrained states in each agent’s state space. 100 trials were
run for each size of state space and number of constraints.
Table 2 shows detailed results for problems with three con-
strained states. For problems with one and two constrained
states, the final policy space ranges from 3 to 106 and 8 to
252 respectively. In all three cases, the iterated action elimi-
nation algorithm is able to reduce the size of the policy space
by several orders of magnitude.

References
[Bernstein et al., 2002] D. S. Bernstein, R. Givan, N. Immer-

man, and S. Zilberstein. The complexity of decentralized
control of Markov decision processes. Mathematics of Op-
erations Research, 27:4, November 2002.

[Emery-Montemerlo et al., 2004] R. Emery-Montemerlo,
G. Gordon, J. Schneider, and S. Thrun. Approximate
solutions for partially observable stochastic games with
common payoffs. In Proceedings of the Third Joint Con-
ference on Autonomous Agents and Multiagent Systems,
2004.

[Nair et al., 2003] R. Nair, M. Tambe, M. Yokoo, D. Pyna-
dath, and S. Marsella. Taming decentralized POMDPs:
Towards efficient policy computation for multiagent set-
tings. In Proceedings of the Eighteenth International Joint
Conference on Artificial Intelligence, 2003.

