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Abstract

Linear Discriminant Analysis (LDA) is a popu-
lar feature extraction technique in statistical pat-
tern recognition. However, it often suffers from
the small sample size problem when dealing with
the high dimensional data. Moreover, while LDA
is guaranteed to find the best directions when each
class has a Gaussian density with a common co-
variance matrix, it can fail if the class densities
are more general. In this paper, a new nonpara-
metric feature extraction method, stepwise nearest
neighbor discriminant analysis(SNNDA), is pro-
posed from the point of view of the nearest neigh-
bor classification. SNNDA finds the important
discriminant directions without assuming the class
densities belong to any particular parametric fam-
ily. It does not depend on the nonsingularity of the
within-class scatter matrix either. Our experimental
results demonstrate that SNNDA outperforms the
existing variant LDA methods and the other state-
of-art face recognition approaches on three datasets
from ATT and FERET face databases.

Introduction

A major drawback of LDA is that it often suffers from the
small sample size problem when dealing with the high dimen-
sional data. When there are not enough training samglgs,
may become singular, and it is difficult to compute the LDA
vectors. For example, 800 x 100 image in a face recog-
nition system had 0000 dimensions, which requires more
than 10000 training data to ensure that, is nonsingular.
Several approachisu et al, 1992; Belhumeuet al., 1997;
Chenet al., 2000; Yu and Yang, 20Q1have been proposed
to address this problem. A common problem with all these
proposed variant LDA approaches is that they all lose some
discriminative information in the high dimensional space.

Another disadvantage of LDA is that it assumes each class
has a Gaussian density with a common covariance matrix.
LDA guaranteed to find the best directions when the distri-
butions are unimodal and separated by the scatter of class
means. However, if the class distributions are multimodal
and share the same mean, it fails to find the discriminant
directiof Fukunaga, 1990 Besides, the rank of; is ¢ — 1,
wherec is the number of classes. So the number of extracted
features is, at most,— 1. However, unless a posteriori prob-
ability function are selected,— 1 features are suboptimal in
Bayes sense, although they are optimal with regard to Fisher
criterion[Fukunaga, 1990

In this paper, a new feature extraction method, step-

The curse of high-dimensionality is a major cause of the/iS€ nearest neighbor discriminant analysis(SNNDA), is pro-
practical limitations of many pattern recognition technolo-P0S€d. SNNDA is a linear feature exiraction method in or-
gies, such as text classification and object recognition. I§lér to optimize nearest neighbor classification (NN). Near-
the past several decades, many dimensionality reduction techSt neighbor classificatidibudaet al, 2007 is an efficient
niques have been proposed. Linear discriminant analysid!€thod for performing nonparametric classification and of-
(LDA) [Fukunaga, 1990is one of the most popular super- ten used in the pattern classification field, especially in ob-
vised methods for linear dimensionality reduction. In manyl®Ct recognition.  Moreover, the NN classifier has a close
applications, LDA has been proven to be very powerful. relation with the Bayes classifier. However, when nearest
The purpo’se of LDA is to maximize the between-class scatP€ighbor classification is carried out in a high-dimensional

ter while simultaneously minimizing the within-class scatter./€aturé space, the nearest neighbors of a point can be very
It can be formulated by Fisher Criterion: far away, causing bias and degrading the performance of the

rule [Hastieet al., 2001. Hastie and Tibshirar{Hastie and
_ WS Tibshirani, 1996 proposed a discriminant adaptive nearest
 WTS, W’

(1) neighbor (DANN) metric to stretch the neighborhood in the
wherelV is a linear transformation matri¥,, is the between-

directions in which the class probabilities don’t change much,
: ! S .~ buttheir method also suffers from the small sample size prob-
class scatter matrix ans, is the within-class scatter matrix.

lem.
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doesn’t depend on the nonsingularity of the within-class scatis obviously suboptimal due to discarding much discrimina-

ter matrix. Moreover, SNNDA finds the important discrimi- tive information.

nant directions without assuming the class densities belong to Liu et al. [Liu et al., 1994 modified Fisher’s criterion by

any particular parametric family. using the total scatter matri% = S, + S,, as the denom-
The rest of the paper is organized as follows: Section 2nator instead ofS,,. It has been proven that the modified

gives the review and analysis of the current existing variantriterion is exactly equivalent to Fisher criterion. However,

LDA methods. Then we describe stepwise nearest neighbavhenS,, is singular, the modified criterion reaches the max-

discriminant analysis in Section 3. Experimental evaluationsmum value, namelyt, for any transformatiod?” in the null

of our method, existing variant LDA methods and the otherspace of5,,. Thus the transformatioi cannot guarantee the

state-of-art face recognition approaches are presented in Sewaximum class separabilityt’” S, 1| is maximized. Be-

tion 4. Finally, we give the conclusions in Section 5. sides, this method still needs to calculate an inverse matrix,
which is time consuming. Cheet al. [Chenet al, 2004
2 Review and Analysis of Variant LDA sugg_ested tha_t the null space s_panned by th_e ei_ge_nve_cto_rs of
Methods Sw With zero eigenvalues contains the most discriminative in-

formation. A LDA method (called NLDA)in the null space of
The purpose of LDA is to maximize the between-class scattef,, was proposed. It chooses the projection vectors maximiz-
while simultaneously minimizing the within-class scatter.  ing .S, with the constraint tha$,, is zero. But this approach
The between-class scatter matfix and the within-class discards the discriminative information outside the null space

scatter matrixS,, are defined as of S,,. Figure 1(a) shows that the null space%f probably
. contains no discriminant information. Thus, it is obviously
g - Z (s —m)(mi —m)T ) suboptimal because it maximizes the between-class scatter in
b - bi ! the null space of,, instead of the original input space. Be-

. sides, the performance of the NLDA drops significantly when
ZP'S' 3) N — cis close to the dimensiof), whereN is the number
v of samples and is the number of classes. The reason is that
=1 the dimensionality of the null space is too small in this situ-
wherec is the number of classesy; andp; are the mean ation and too much information is lokti et al, 2003. Yu

Sw

vector and a priori probability of class respectively;n = et al. [Yu and Yang, 200fproposed a direct LDA (DLDA)
>-._, pim; is the total mean vectos; is the covariance ma-  algorithm, which first removes the null space$f They as-
trix of classi. sume that no discriminative information exists in this space.
LDA method tries to find a set of projection vectdis ¢ Unfortunately, it be shown that this assumption is incorrect.
RP>4 maximizing the ratio of determinant &, to S,,,, Fig.1(b) demonstrates that the optimal discriminant vectors
do not necessarily lie in the subspace spanned by the class
(WTS,W| centers.

(4)

W = argm‘/%x W,

ENLDA o LDA

whereD andd are the dimensionalities of the data before and

after the transformation respectively. |
From Eq.(4), the transformation matriX must be consti- Col  gmr | )

tuted by thel eigenvectors of, 1 S, corresponding to its first C

,DLDA

Class1

d largest eigenvalud$ukunaga, 1990 >
However, when the small sample size problem occsis, ’ :
becomes singular an§l;! does not exist. Moreover, if the N O )
class distributions are multimodal or share the same mean (for
example, the samples in (b),(c) and (d) of Figure 2), it canFigure 1: (a) shows that the discriminant vector (dashed line)
fail to find the discriminant directidifukunaga, 1990 Many  of NLDA contains no discriminant information. (b) shows
methods have been proposed for solving the above problemthat the discriminant vector (dashed line) of DLDA is con-
In following subsections, we give more detailed review andstrained to pass through the two class centersand ms.
analysis of these methods. But according to the Fisher criteria, the optimal discriminant
projection should be solid line (both in (a) and (b)).

2.1 Methods Aimed at Singularity of S,,

In recent years, many researchers have noticed the problem

?gr?gltji#i?:ﬂ:ta;/n\%t?ﬁ%?d tried to overcome the computa 2.2 Methods Aimed at Limitations of S,
To avoid the singularity of,,, a two-stage PCA+LDA ap- When the class conditional densities are multimodal, the class

proach is used ifBelhumeuret al, 1997. PCA is first used  separability represented I8} is poor. Especially in the case

to project the high dimensional face data into a low dimen-that each class shares the same mean, it fails to find the dis-

sional feature space. Then LDA is performed in the reducedriminant direction because there is no scatter of the class

PCA subspace, in which,, is non-singular. But this method mean§Fukunaga, 1990



Notice the rank ofS, is ¢ — 1, so the number of extracted wherew,, is the sample weight defined as

features is, at most,— 1. However, unless a posteriori prob- Al

ability function are selected,— 1 features are suboptimal in wy, = [14s]] , (11)
Bayes sense, although they are optimal with regard to Fisher AL> + [[AF]]

criterion[Fukunaga, 1990 whereq is a control parameter between zero and infinity. This

In fact, if classification is the ultimate goal, we need sample weight is introduced to deemphasize the samples in
only estimate the class density well near the decisionhe class center and give emphases to the samples near to the
boundaryHastieet al,, 2001. other class. The sample that has a larger ratio between the

Fukunaga and MantockFukunaga and Mantock, 19B3 nonparametric extra-class and intra-class differences is given
presented a nonparametric discriminant analysis (NDA) in amn undesirable influence on the scatter matrix. The sample
attempt to overcome these limitations presented in LDA. Inweights in Eq.(11) take values close to 0.5 near the classifica-
nonparametric discriminant analysis the between-class scafion boundaries and drop to zero as we move to class center.
ter S is of nonparametric nature. This scatter matrix is gen-The control parameter adjusts how fast this happens. In this
erally full rank, thus loosening the bound on extracted feapaper, we set = 6.
ture dimensionality. Also, the nonparametric structure of this  From the Eq.(7) and (8), we can see that?|| represents
matrix inherently leads to the extracted features that preserve distance between the samplgand its nearest neighbor
relevant structures for classification. Bressaml.[Bressan in the different classes, anti\’ || represents the distance be-
and Vitria, 2003 explored the nexus between nonparametrictween the sample;,, and its nearest neighbor in the same
discriminant analysis (NDA) and the nearest neighbors (NNXlass. Given a training samplg,, the accuracy of the nearest
classifier and gave a slight modification of NDA which ex- neighbor classification can be directly computed by examin-
tends the two-class NDA to a multi-class version. ing the difference

Although these nonparametric methods overcomes the lim-

itations of Sy, they sti i i O, = |[AFI* = 1AL, (12)
b, they still depend on the singularity &f,(or n n
§w). The rank ofS,, must be no more thai — c. where A” and A’ are nonparametric extra-class and intra-
class differences and defined in Eq.(7) and (8).
3 Stepwise Nearest Neighbor Discriminant If the difference®,, is more than zerag,, will be correctly

classified. Otherwisey,, will be classified to the false class.

Analysis : .
i y_ , The larger the differenc®,, is, the more accurately the sam-
In this section, we propose a new feature extraction methocﬂex” is classified.

stepwise nearest neighbor disgriminant analysis(SNNDA). Assuming that we extract features by thex d linear pro-
SNNDA also uses nonparametric between-class and withingction matrixii’ with a constraint thatV’Z W is an identity
class scatter matrix. But it does not depend on singularity cr’]fnatrix the projected sample®*® = WTz. The projected
within-class scatter matrix and improves the performance ofonparametric extra-class and intra-class differences can be
NN classifier. written asé® = WTAF andé’ = WTAL. So we expect to

3.1 Nearest Neighbor Discriminant Analysis find the optimall¥” to make the differencd,, || — |, |* in
the projected subspace as large as possible.

Criterion
Assuming a multi-class problem with classes(i = - N
1,...,¢), we define the extra-class nearest neighbor for a W = argmax »_wy([67]]° = ||04]1%).  (13)
sampler € w; as W
2 = {2 ¢ w| |2’ — || < ||z — 2|, V2 ¢ wi}.  (B) ~ This optimization problem can be interpreted as: find the
inth fashi h £i | iahb linear transform that maximizes the distance between classes,
ndt fe_:sa(tjme ashion, the set of intra-class nearest neighbofgyjje minimizing the expected distance among the samples
are denned as of a single class.
o = {2’ cwi| ||z’ — || < ||z —2||,Vz €wi}. (6) Considering that,
The nonparametric extra-class and intra-class differences N oy .
are defined as > wa (162117 = 116411%)
AF = z—2aP, 7) . N
Al = z-al. (8) = Y wWTADTWTAY) = Y wa (WAL (WAL
n=1 n=1

The nonparametric between-class and within-class scatter

N
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matrix are defined as tr(>_wa (WA WTAD)T)
n=1

N

Syo= D wa (AR AN, 9) _tr(iwn(WTAfL)(WTAfL)T)
n=1 =1

A N . al

Su = Y waADADT, 10) = (W wnATAD W)
n=1 n=1



and intra-class differences in its current dimensionality. Thus,
we keep the consistency of the nonparametric extra-class and
intra-class differences in the process of dimensionality reduc-
tion.

. Figure 3 gives the algorithm of stepwise nearest neighbor
o o discriminant analysis.

T T T T ey e Give D dimensional samplegzy,---,xy}, we expect
to find d dimensional discriminant subspace.

v e Suppose that we find the projection matiiX via T
steps, we reduce the dimensionality of sampledg; tm

stept, andd; meet the conditionsd;—; > d: > di41,

: do = D anddr = d.

1o e B e Fort=1,---,T

i ! ¥
— NNDA ' ---LDA
H — NNDA

| - Class1

1 : 1. Calculate the nonparametric between-clssand

© 7 @ within-class scatter matri§?, in the currentd,_,
dimensionality,

2. Calculate the projection matri//k/\t, Wt isd;_1xd;
matrix.

3. Project the samples by the projection maﬂ/ri\x,
=W x .

e The final transformation matri¥’ = []/_, W.

Figure 2: First projected directions of NNDA (solid) and
LDA (dashed) projections, for four artificial datasets.

—tr(WT (D wa (A7) W)

= tr(WTS,W) — tr(WT S, W)
= tr(WT(S, — S, )W), (14)  Figure 3: Stepwise Nearest Neighbor Discriminant Analysis

wheretr(-) is the trace of matrix5, and S, are the non-

parametric between-class and within-class scatter matrix, a§3 Discussions
defined in Eq.(9) and (10). : .
So Eq.(13) is equivalent to SNNDA has an advantage that there is no need to calculate
- R R the inverse matrix, so it is a more efficient and stable method.
W = arg max tr(WT(Sy, — Syu)W). (15)  Moreover, though SNNDA optimizes the 1-NN classification,

. o _ itis easy to extend it to the case/oNN.

We call Eq.(15) theearest neighbor discriminant analysis ~ However, a drawback of SNNDA is the computational in-
criterion(NNDA) - efficiency in finding the neighbors when the original data

The projection matrix¥ must be constituted by thé  space is high dimensionalit_y. Aimproved method is that PCA
eigenvectors of S, — S,,) corresponding to its first largest IS first used to reduce the dimension of da_ttﬁ]te 1 (the rank
eigenvalues. of the total scatter matrix) through removing the null space of

Figure 2 gives Comparisons between NNDA and LDA. the total scatter matrix. Then, SNNDA is performed in the
When the class density is unimodal ((a)), NNDA is approxi-transformed space. Yarg al.[Yang and Yang, 20q%hows
mately equivalent to LDA. But in the cases that the class denthat no discriminant information is lost in this transformed
sity is multimodal or that all the classes share the same medpace.
((b),(c) and (d)), NNDA outperforms LDA greatly. )

4 Experiments

3.2 Stepw!se DlmenS|onaI|t¥ Reduct_|on_ ) In this section, we apply our method to face recognition
In the analysis of the nearest neighbor discriminant analysignd compare it with the existing variant LDA methods and
criterion, notice that we calculate nonparametric extra-clasghe other state-of-art face recognition approaches, such as
and intra-class differences\” and A”) in original high di-  pCA [Turk and Pentland, 1991PCA+LDA [Belhumeuret
mensional space, then project them to the low dimensional|, 1997, NLDA [Chenet al, 2004, NDA [Bressan and
space §” = WTA” andé’ = W' A'), which does not ex- vjtria, 2003 and BayesiailMoghaddamet al, 2004 ap-

actly agree with the nonparametric extra-class and intra-classroaches. All the experiments are repeated 5 times indepen-
differences in projection subspace except for the orthonorgently and the average results are calculated.

mal transformation case, so we have no warranty on distance
preservation. A solution for this problem is to find the projec-4.1 Datasets

tion matrix W by stepwise dimensionality reduction method. To evaluate the robustness of SNNDA, we perform the ex-
In each step, we re-calculate the nonparametric extra-claggeriments on three datasets from the popular ATT face



database[Samaria and Harter, 19p4and FERET face The recognition rate of SNNDA have reacha% on two

databaséPhillips et al,, 1999. The descriptions of the three FERET dataset surprisedly when the dimensionality of sam-

datasets are below: ples is abou®0, while the other methods have poor perfor-

ATT Dataset This dataset is the ATT face database (for-Mances in the same dimensionality. Moreover, SNNDA does
merly ‘The ORL Database of Faces’), which con- not suffer from.overflttlng. Except SNNDA and PCA, the
tains 400 images1(2 x 92) of 40 persons, 10 im- rank-1 recognition rates pf the other mgthods have a descent
ages per person. The images are taken at differhen the dimensionality increases continuously. .
ent times, varying lighting slightly, facial expres- Fig. 6 shows cumula_tlve recognition rates on the three dif-

sions (open/closed eyes, smiling/non-smiling) and fa_fgrent data_sets. From it, we can see that none of the cumula-

yve recognition rates can reatb0% except SNNDA.

cial details (glasses/no-glasses). Each image is linearl ) e .
stretched to the full range of pixel values of [0,255]. When dataset contains the changes of lighting condition

Fig.4 shows some face examples in this database. THEUCh as FERET Dataset 1), SNNDA also has obviously bet-

set of the 10 images for each person is randomly parti{€r Performance than the others.
tioned into a training subset of 5 images and a test set of Different from ATT dataset and FERET dataset 1, where

the other 5. The training set is then used to learn basithe class labels involved in training and testing are the same,

components, and the test set for evaluate. the FERER dataset 2 has no overlap between the training
set and the galley/probe set according to the FERET proto-
5 W X col [Phillips et al,, 1999. The ability of generalization from
‘;‘i = l’j‘ 4 known subjects in the training set to unknown subjects in the
: ' gallery/probe set is needed for each method. Thus, the result
| - f jr j{ ‘&J on FERET dataset 2 is more convincing to evaluate the robust
k,n — n Al = of each method. We can see that SNNDA also gives the best

performance than the other methods on FERET dataset 2.
Figure 4: Face examples from ATT database A major character, displayed by the experimental results,
is that SNNDA always has a stable and high recognition rates

. ] on the three different datasets, while the other methods have
FERET Dataset 1 This dataset is a subset of the FERET ynstable performances.

database with 194 subjects only. Each subject has 3

i_mage_s: (a) one taken und_er .controlled lighting condi-5 Conclusion

tion with a neutral expression; (b) one taken under the

same lighting condition as above but with different fa- In this paper, we proposed a new feature extraction method,
cial expressions (mostly smiling); and (c) one taken un-Stepwise nearest neighbor discriminant analysis(SNNDA),
der different lighting condition and mostly with a neutral Which finds the important discriminant directions without as-
expression. All images are pre-processed using zercssuming the class densities belong to any particular paramet-
mean-unit-variance operation and manually registeredic family. It does not depend on the nonsingularity of the
using the eye positions. All the images are normal-within-class scatter matrix either. Our experimental results
ized by the eye locations and are cropped to the size 0®n the three datasets from ATT and FERET face databases
75 x 65. A mask template is used to remove the back-demonstrate that SNNDA outperforms the existing variant
ground and the hair. Histogram equalization is applied-DA methods and the other state-of-art face recognition ap-
to the face images for photometric normalization. Twoproaches greatly. Moreover, SNNDA is very efficient, accu-
images for each person is randomly selected for trainingate and robust. In the further works, we will extend SNNDA
and the rest one is used for test. to non-linear discriminant analysis with the kernel method.

FERET Dataset 2 This dataset is a different subset of the Another attempt is to extend SNNDA to theNN case.
FERET database. All the 1195 people from the FERET
Fa/Fb data set are used in the experiment. There ar@eferences

two face images for each person. This dataset has nBelhumeuret al, 1997 P.N. Belhumeur, J. Hespanda, and
overlap between the training set and the galley/probe set p. Kiregeman. Eigenfaces vs. Fisherfaces: Recognition
according to the FERET protocfPhillips et al,, 1994. using class specific linear projectiotEEE Transactions
500 people are randomly selected for training, and the on Pattern Analysis and Machine Intelligend®(7):711—
remaining 695 people are used for testing. For each test- 720, 1997.

ing people, one face image is in the gallery and the othe

is for probe. All images are pre-processed by using thJBrl\elssan and Vitd, 2803 M. Bressanl and Ja Vitgi
same method in FERET Dataset 1. onparametric  discriminant analysis and nearest

neighbor classification. Pattern Recognition Letters
4.2 Experimental Results 24:2743C2749, 2003.

Fig. 5 shows the rank-1 recognition rates with the differen{Chenet al, 2004 L. Chen, H. Liao, M. Ko, J. Lin, and
number of features on the three different datasets. Itis shown G. Yu. A new LDA-based face recognition system which
that SNNDA outperforms the other methods. The recogni- can solve the small sample size probleRattern Recog-
tion rate of SNNDA can reach almoBi0% on ATT dataset. nition, 33(10):1713-1726, 2000.
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Figure 5: Rank-1 recognition rates with the different number of features on the three different datasets. (Left: ATT datase
Middle: FERET dataset 1; Right: FERET dataset 2)

©
\
i
1
0
i
i
\ i
‘ H x
'
i
[y
L L L Hl
S
e o <

2
\
Recognition rate:

>

Recogpnition rates

- —— PCA ,
sk /,’ PCA+LDA 1 —— PCA

0af 1
- g;}'?:s L PCA+LDA | . o8t

/, - ’
ol 1 ol —— NLDA | o
4 - QSQDA ~- Bayes ML %
oaf 1 02k - -- NDA | 075)
,

— SNNDA

Recognition rates
\

PCA+LDA
—— NLDA
-=- Bayes ML
--- NDA

— SNNDA

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Rank Rank Rank

Figure 6: Cumulative recognition rates on the three different datasets. Left:ATT dataset(the number of feafurbtds
dle:FERET dataset 1 (the number of featureglis Right: FERET dataset 2 (the number of featuresOis

[Dudaet al, 2001 R. O. Duda, P. E. Hart, and D. G. Stork. [Liu etal, 1993 K. Liu, Y. Cheng, and J. Yang. A general-
Pattern classification Wiley, New York, 2nd edition, ized optimal set of discriminant vectorBattern Recogni-
2001. tion, 25(7):731C739, 1992.

[Moghaddanet al, 2000 B. Moghaddam, T. Jebara, and
A. Pentland. Bayesian face recognitioRattern Recog-
nition, 33:1771-1782, 2000.

[Fukunaga and Mantock, 19BX. Fukunaga and J. Man-
tock. Nonparametric discriminant analysidEE Trans-
actions on Pattern Analysis and Machine Intelligence

5:671C678, 1983. [Phillipsetal, 1994 P.J. Phillips, H. Wechsler, J. Huang,
and P. Rauss. The feret database and evaluation proce-
[Fukunaga, 1990K. Fukunaga. Introduction to statistical dure for face recognition algorithmslmage and Vision
pattern recognition Academic Press, Boston, 2nd edition, ~Computing 16(5):295-306, 1998.
1990. [Samaria and Harter, 19p&erdinando Samaria and Andy

. L ) o Harter. Parameterisation of a stochastic model for human
[Hastie and Tibshirani, 1996T. Hastie and R. Tibshirani. face identification. IfProc. of 2nd IEEE Workshop on Ap-
Discriminant adaptive nearest neighbor classification. plications of Computer Visiqri 994.

IEEE Transactions on Pattern Analysis and Machine In- .
telligence 18'6(|)7C616 1996 ysl ! [Turk and Pentland, 1991M. Turk and A. Pentland. Eigen-
' ’ ’ faces for recognitionJournal of Cognitive Neuroscience

[Hastieet al, 2001 T. Hastie, R. Tibshirani, and J. Fried- ~ 3(1):71-86, 1991.
man. The Elements of Statistical Learningpringer, New [Yang and Yang, 2043J. Yang and J.Y. Yang. Why can
York, 2001. LDA be performed in PCA transformed spaceRattern
Recognition36:563-566, 2003.

L ot 2003, 145 LT, Jang, and K 8 20010 ST v and ang, 2001 .Y and 3 Yang. A et LOA
y 9 gorithm for high-dimensional data with application to face

288'3 In Proc. of Neural Information Processing Systems o nition. Pattern Recognition34:2067-2070, 2001.



