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Abstract 

This paper presents an action selection framework 
based on an assemblage of self-organizing neu­
ral networks called Cooperative Extended Kohonen 
Maps. This framework encapsulates two features 
that significantly enhance a robot's action selection 
capability: self-organization in the continuous state 
and action spaces to provide smooth, efficient and 
fine motion control; action selection via the cooper­
ation and competition of Extended Kohonen Maps 
to achieve more complex motion tasks. Qualitative 
and quantitative comparisons for single- and multi-
robot tasks show our framework can provide better 
action selection than do potential fields method. 

1 Introduction 
A central issue in the design of behavior-based control archi­
tectures for autonomous agents is the formulation of effective 
action selection mechanisms (ASMs) to coordinate the be­
haviors. This paper describes a neural network-based ASM 
for autonomous non-holonomic mobile robots. Our motiva­
tion is to develop a motion control strategy that can perform 
distributed multi-robot surveillance in unknown, dynamic, 
and unpredictable environments. By implementing the ASM 
using an assemblage of self-organizing neural networks, it in­
duces the following key features that significantly enhance 
the agent's action selection capability: self-organization of 
continuous state and action spaces to provide smooth, effi­
cient and fine motion control, and action selection via the 
cooperation and competition of Extended Kohonen Maps to 
achieve more complex motion tasks. 

2 Action Selection Framework 
Our proposed ASM, termed Cooperative Extended Kohonen 
Maps (EKMs), is implemented by connecting an ensemble of 
EKMs. An EKM extends the Kohonen Self-Organizing Map. 
Besides encoding a set of input weights that self-organize in 
the sensory input space, the neurons also produce outputs that 
vary with the incoming sensed inputs. Our implementation 
extends the work of [Low et al., 2002] by connecting several 
EKMs to form cooperative EKMs. These neural networks co-
operate and compete to produce an appropriate motor action 

for the robot to approach targets, negotiate unforeseen, possi­
bly concave, obstacles, and keep away from robot kins when 
it is tracking moving targets (Fig. 1). 

Our ASM framework consists of four types of EKMs: tar­
get localization, obstacle localization, robot kin localization, 
and motor control EKMs. In the presence of a target, neurons 
in the target localization EKM, which encodes target location 
in the local sensory input space U\ are activated (Fig. la). A 
target field with the shape of an elongated Gaussian is pro­
duced (Fig. lb) such that the neurons at and near the target 
location have the strongest activities. The elongated target 
field is crucial to the robot's avoidance of concave obstacles. 

Similarly, the presence of an obstacle activates neurons in 
the obstacle localization EKMs. The neurons in these EKMs 
at and near the obstacle locations wil l be activated to produce 
obstacle fields (Fig. lc). These obstacle fields are stretched 
along the obstacle directions such that neurons beyond the 
obstacle locations are also inhibited to indicate inaccessibil­
ity. Robot kin fields are activated in a similar way in the robot 
EKMs in the presense of robot kins. 

In activating the motor control EKM, the obstacle fields 
are subtracted from the target field (Fig. Id). If the target lies 
within the obstacle fields, the activation of the motor con­
trol EKM neurons close to the target location will be sup­
pressed. Consequently, another neuron at a location that is 
not inhibited by the obstacle fields becomes most highly ac­
tivated (Fig. Id). This neuron produces a control parameter 
that moves the robot away from the obstacle. While the robot 
moves around the obstacle, the target and obstacle localiza­
tion EKMs are continuously updated with the current loca­
tions and directions of the target and obstacles. Their interac­
tions with the motor control EKM produce fine and smooth 
motion control of the robot to negotiate the obstacle and reach 
the target. In the case of multi-robot tracking of multiple tar­
gets, multiple target fields and robot kins fields are activated. 
The robots act like highly repulsive obstacles to other robots, 
thus separating them from each other. 

3 Experiments and Discussions 
Two qualitative tests were conducted to demonstrate the ca­
pabilities of cooperative EKMs in performing complex mo­
tion tasks. The experiments were performed using Webots, 
an embodied simulator for Khepera mobile robots, which in­
corporated 10% noise in its sensors and actuators. 
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Figure 1: Cooperative EKMs. (a) In response to the target 0, the nearest neuron (black dot) in the target localization EKM 
(ellipse) of the robot (gray circle) is activated, (b) The activated neuron produces a target field (dotted ellipse) in the motor 
control EKM. (c) Three of the robot's sensors detect obstacles and activate three neurons (crosses) in the obstacle localization 
EKMs, which produce the obstacle fields (dashed ellipses), (d) Subtraction of the obstacle fields from the target field results in 
the neuron at to become the winner in the motor control EKM, which moves the robot away from the obstacle. 

Figure 3: Cooperative tracking of moving targets. When the 
targets were moving out of the robots' sensory range, the 
robot below decided to track the targets moving to the bottom 
left while the robot above responded by tracking the targets 
moving to the top right. In this way, all targets could still be 
observed by the robots. 

(a) (b) 
Figure 4: Comparison of observation coverage for (a) robots 
using different tracking strategies in varying arena size, and 
(b) varying number of robots with different sensing ranges. 

robots, each with target and robot sensing radius of 0.3 m, 
were deployed in this task. The fixed deployment approach 
distributed stationary robots uniformly over the arena. The 
random deployment approach allowed the robots to move 
randomly in a manner similar to the moving targets. Test re­
sults in Fig. 4(a) reveal that, in very large arenas, tracking 
strategies that respond dynamically to targets' motion (co­
operative EKMs and potential fields) are significantly better 
than those that do not (fixed and random). In particular, co-
operative EKMs offered the highest observation coverage as 
it could overcome local minimas posed by targets and robots. 

The second test compared the mean observation coverage 
of the cooperative-EKM robots with different sensing ranges 
and number of robots. The size of the arena was 6.4 m2 , 
which corresponded to the largest arena used for the first test. 
Test results in Fig. 4(b) show that observation coverage in­
creases with increasing number of robots and sensing range. 
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Figure 2: Motion of robot (dark gray) in an environment with 
unforeseen static obstacles (light gray). The robot success­
fully navigated through the checkpoints (small black dots) 
located at the doorways to reach the goal. 

The environment for the first test consisted of three rooms 
connected by two doorways with unforeseen static obsta­
cles (Fig. 2). The robot began in the top corner of the left­
most room and was tasked to move into the narrow corner 
of the right-most room via checkpoints plotted by a planner. 
The robot with cooperative EKMs was able to move through 
the checkpoints to the goal by traversing between narrowly 
spaced convex obstacles in the first and the last room, and 
overcoming an concave obstacle in the middle room. A robot 
with potential fields would be trapped by these local minimas. 

The second test (Fig. 3) illustrates how two robots endowed 
with cooperative EKMs cooperate to track four moving tar­
gets. When the targets were moving out of the robots' sensory 
range, the robot below chose to track the two targets moving 
to the bottom left while the robot above responded by track­
ing the two targets moving to the top right. In this manner, all 
targets could be observed by the robots. This test shows that 
the two robots can cooperate to track multiple moving targets 
without communicating with each other. 

Two quantitative tests were conducted to determine the 
overall tracking performance of the robot team based on the 
following performance index: 

(1) 

where N is total number of targets, n is number of targets 
being tracked at time t, and the experiment lasts T amount of 
time. For both tests, N and T were fixed respectively as 10 
targets and 1000 time steps at intervals of 128 ms. 

The first test compared the mean observation coverage of 
robots adopting four different tracking strategies: coopera­
tive EKMs, potential fields, fixed deployment, and random 
deployment. The environment or arena was an enclosed 
obstacle-free region that varied in size. The mobile tar­
gets were forward-moving, obstacle-avoidance vehicles that 
changed their direction and speed with 5% probability. Five 


