MANAGEMENT, PROCESSING AND ANALYSIS OF
CRYPTOGRAPHIC NETWORK PROTOCOLS

1 INTRODUCTION

This paper describes research in the field of cryptographic protocols, cur-
rently being performed in the REMOVED. While this research is not entirely
novel, as it makes use of elements from existing research in the detection of
encrypted applications 2], we consider a generic solution to the given prob-
lem of analysing encrypted traffic with the intention of later extension to
provide support for multiple protocols and performing further analysis than
application detection. This paper provides a starting point for further re-
search into the evaluation and analysis of supposedly secure applications and
suggests an outline for the development of a framework which could perform
this.

Cryptographic protocols are a vital component of information security [9] as
a means of securing modern networks against would-be attackers by provid-
ing data integrity, encryption and authentication to network traffic at the
transport layer [12]. Sensitive information, such as banking details, that
transverses networks will most likely do so through an encrypted tunnel pro-
vided by the cryptographic protocol; it is thus imperative that both the pro-
tocol itself is secure and the applications use of the protocol is correct and
sensible. A recent paper by Lee et al. shows that in a study of over 19000
web servers, 98.36% of the servers provided support for TLS and 97.92%
provided support for SSLv3.0 and 85.37% provided support for SSLv2.0 [4].
These statistics serve to show the prevelance of SSL/TLS and the need to
support these protocols.

We now present cases for the need for such research and the development of
a framework that allows for the decryption of encrypted traffic.

HTTPS has become prevalent as a means to communicate with a web server
securely; however if an attacker were to use HIT'TPS as a means to per-
form an attack, it becomes difficult to detect such an attack due to the
encrypted nature of the traffic. Tt would be useful if a system existed to

decrypt this traffic and then perform analysis. This is highlighted by work
done by Marklinspike [5] in developing a tool, SSLStripper, that removes the
secure components of a connection allowing for a new form of MITM (man
in the middle) attack where the user believes that his connection is secured
(using HTTPS) but in reality messages are passed through HTTP, and are
intercepted by a third-party. Furthermore the SANS institute announced
“Increasingly Sophisticated Web Site Attacks That Exploit Browser Vulnera-
bilities - Especially On Trusted Web Sites” as the top security menace in the
“Top Ten Cyber Security Menaces for 2008” with “Web Application Security
Exploits” in 8th position [7].

Wang et al. [14] comment that in the long term, software development can-
not afford to consider implementing security only after the application has
been developed or late in the development cycle as irreparable security com-
promises may already exist and that attempts to correct them would require
significant resources. Further we consider that security is one of the core
metrics in McCall’s Software Quality Checklist [1]. However, software de-
velopment is notorious for being over budget and far exceeding its expected
completion date; as a result we often find that security is left until late in the
development cycle and sometimes even after the application has been built
[14]. Often this causes poorly implemented security and this only serves to
degrade the quality of the system built as it provides the user with a false
sense of security; further an insecure application that passes and receives sen-
sitive information is as equally unusable as an application that fails to meet
its specifications in terms of correctness [14]. We could argue that the reason
why security is not part of many development cycles in earlier stages is due to
the difficulty and tedium of checking the correctness of security [10, 11|. To
put this in context, if we consider that between January 2004 and December
2008, there have been 26139 reported security vunerablities [6]. It would be
useful if there existed a framework that decrypted data and then provided
some analysis on issues pertaining to the implemented security.

The remainder of this paper will consider the construction of such a frame-
work, with the following sections. Section 2 contains related work, while
Section 3 provides a brief of overhead of the architecture involved for SSL.
Section 5 details the approach to be taken and Section 4 highlights the ex-
pected goals on completion.

2 RELATED WORK

The analysis of cryptographic protocols is a subject that has been exten-
sively researched with algebraic models to provide descriptions of protocols
and techniques such as, BAN Logic and Running Mode Analysis, to provide
formalizations to determine whether a protocol is correct in terms of achiev-
ing its goals of authentication and data integrity. Research into security and
software development is also widely available for discussion of implementa-
tions of security into development lifecycles and evaluation of implemented
security mechanisms. Furthermore there are a number of systems which, to
some degree, provide some of the features already discussed. In this section
of the paper we discuss some of the related work around existing software
that could possibly be used to perform the functionality outlined in Section
1. We will consider some research that may be beneficial when considering
such a framework.

2.1 Running Mode Analysis

Running Mode Analysis is a technique for the formal analysis of crypto-
graphic protocols. It makes use of conclusions derived from model checking.
The central component of Running Mode Analysis involves creating a system
including an attacker, a protocol and two parties attempting communication
and then discovering all of the possible modes the system can enter. For ex-
ample, in a three-principal security system there are seven running modes; if
we can show that these seven modes do not exist then the protocol is deemed
to be safe within the system. When working with complex protocols, such as
SSL, it is a matter of decomposing the more complex protocol into a number
of smaller protocols and then performing Running Mode Analysis on each of
the simpler protocols. This sort of analysis is often done by hand and pro-
vides an interesting means of the verification of the correctness of a protocol.
In a by paper Zhang and Liu [15], running mode analysis is performed on the
SSL Handshake protocol. While it may not be important to perform such an
analysis, as such research already exisits; it’s important to understand that
many protocols are fundamentally flawed and identification of such flaws
when providing analysis of application security would be a useful addition.

2.2 Practices in SSL/TLS

It has already been mentioned that cryptographic protocols are a popular
method of securing web servers. We need to consider that simply providing
support for cryptographic protocols is not sufficient to provide adequate se-
curity. Lee et al. [4]produce a tool, the PSST (probing SSL Security Tool), to
perform analysis of over 19000 web servers employing SSL/TLS. They con-
clude from their results that in 2006, 85.37% of the over 19000 web servers
still provided support for SSLv2.0, a fundamentally flawed protocol due to
weakness to Man in the Middle (MITM) attacks, while 66.55% of servers
still supported DES-40 encryption even though the US export laws limiting
the key length of DES to 40 bits is no longer in effect. It is unwise to still
provide support for SSLv.2.0 as its well documented that MITM attacks can
force the adoption of a weak encryption protocol like DES-40 creating a large
and exploitable vulnerability for brute force attacks. While adaption of new
algorithms such as AES, is prevalent, the rate at which old standards are
no longer being supported is not sufficiently rapid; it is, therefore, impor-
tant that these issues are highlighted when performing analysis of a systems
security.

2.3 Detection of encrypted applications

The use of libraries such as openSSL provides a means to add encryption to
generic traffic; this creates a problem for the analysis of network traffic as the
traffic is now encrypted. For example, most common torrent clients provide
a means to encrypt traffic or by means of using an encrypted tunnel provided
through SSH as a means to avoid the content blocking of p2p applications.
This makes it difficult to block or limit certain types of traffic which may
be the goal of a network administrator. Bernaille and Teixeira [2] suggest
a system for the early recognition of encrypted applications is outlined and
developed with a high degree of success in terms of identification of appli-
cations within an SSL connection. They take the approach of using specific
parts of the TCP payload to identify the SSL connection by studying said
traffic in detail and then producing patterns to be used in detection methods.
A similar methodology of analysing the TCP payloads could be incorporated
into the research topic.

2.4 Related tools

A number of tools exist that provide means to analyse SSL; these include
SSLDump and SSLSniffer. SSLdump [8] is an SSL/TLS network protocol an-
alyzer which identifies TCP connections on the chosen network interface and
attempts to interpret them as SSL/TLS traffic. When it identifies SSL/TLS
traffic it decodes the records and displays them in a textual form to stdout.
If given the cryptographic keys involved it can be used to decrypt the traffic
passing through. SSLSniffer [3] provides similar functionality as SSLDump
with the exception that it can act as a SSLv3/TLS and SSLv2 proxy server.
The issue with these sorts of tools is two-fold, they don’t provide any security
analysis and further they are protocol specific.

3 ARCHITECTURE OF SSL/TLS

It is important to understand the underlying architecture for each of cryp-
tographic protocols for implementation is intended. We will consider the
architecture of TLS focusing solely on the Handshake Phase, as it is the
most significant to the development of the framework. Extension to other
protocols would require similar understanding. Firstly, we consider some
of the goals of SSL/TLS as these goals dictate the structure of TLS [12].
TLS aims to provide a secure connection between two parties with interop-
erability, extensibility, allowing for incorporation of encryption algorithms or
hashing functions and efficiency provided by caching. We will consider the
basic architecture of TLS as it is very similar to the architecture of SSLv3.0.
For our purposes, we need only to consider the Handshake phase of SSL.

3.1 The Handshake

During this phase decisions are made as to what cryptographic parameters
are to be used for the actual TLS connection. This include deciding on the
protocol version, selecting a cipher suite and performing some secret key
exchange.

The client sends a client hello message to the server. The server then possibly
responds with a server hello message. If there is no response then a fatal er-

ror occurs and the connection is closed. These hello messages establish: the
protocol version to be used, session ID, cipher suite to be used, compression
algorithm to use, clientHello.random and ServerHello.random. The actual
key exchange may consist of up to four messages containing: the Server Cer-
tificate, the Client Certificate, the Server Key Exchange and the Client Key
Exchange. If the Server Certificate is to be authenticated it is sent after the
hello messages phase. Following that the Server Key Exchange message may
be sent if necessary. If the server passes the authentication, it may request
the Client Certificate (if the client has one and if it is required by the cipher
suite). The server then sends a Hello Done message back to the client indi-
cating the end of the Hello Message part of the handshake is complete. The
server then waits for a for a client response. If the certificate request mes-
sage was sent then the client needs to respond with a certificate. The client
will then send its Client Key Exchange message with the contents dependant
on the public key encryption algorithm chosen. After the exchanges have
taken place a Change Cipher Suite Message is sent from the client to server.
The client then sends new messages containing the new algorithms and keys.
The server responds by sending a Change Cipher Suite Message back with
the new keys and algorithms. The handshake is then complete [12].

4 RESEARCH OUTCOMES

The authors intend to develop a framework that could be used to evaluate the
correct implementation of security protocols in software and other analysis
of encrypted network traffic. In this regard the framework needs to be able
to decrypt traffic that has been encrypted by a specific algorithm, further it
needs to be able to determine which algorithm has been selected to provide
encryption; in the case of SSL/TLS this is a case of inspecting packets sent
during the SSL handshake. Once plain-text has been obtained the developer
can inspect the payload of the messages being sent was and can use this
to perform a form of manual debugging. Seeing as a number of security
related parameters can be derived from examining the SSL handshake , it
would be useful to alert the user to possible security issues such as the use of
keys generated on the Debian platform during the Debian/OpenSSL security
breach [13] or suggesting that certain cryptographic algorithm be removed
from the cryptographic algorithms supported during negotiation in the case

of SSL/TLS. For example 40-bit DES is considered to be extremely insecure
as it is weak to brute-force attacks or even suggesting that support of SSLv2.0
is a security risk as SSLv2.0 is well-documented as a flawed protocol. It would
also be useful to check the entropy of the cryptographic keys used. Once the
system has been developed some form of assessment needs to be performed
on the usefulness of such a system; this could be performed by distributing
the system to a number of users and collecting feedback or by developing a
number of test applications with glaring security flaws and then evaluating
the output produced. In this way we can further determine if the system is
of any practical use to developers.

5 APPROACH TO RESEARCH

Firstly, we assume legitimate access to the data or network connection and
that the private keys used are available. As this system would be used in a le-
gitimate context, there is no reason for the private keys to not be available for
use; attempting to recover private keys is outside of the scope of the research
context of this paper. The objective is to produce a suitable application
framework that permits easy recovery and secure storage of cryptographic
keys; including appropriate tools to decapsulate traffic and to decrypt live
packet streams or precaptured traffic contained in PCAP files. The authors
propose the development of a system to capture packets, filtering for TCP
packets only (or to parse a dump files for TCP packets only) mostly likely
written as a simple C++ application and making use of libpcap or WinPcap
(implementation dependant). This application then removes the headers of
the packet and considers the SSL/TLS handshake that has occurred, so as
to recover the public key and cipher suites used. The resultant processing
will then be able to provide a clear-text stream which can be used for further
analysis. The framework should be implemented for protocols that use the
standardized hybrid cryptographic protection system such as IPSec, TLS,
SSL 3.0 and SSHv2. An issue of concern is the recovery of the nonce, which
could either be retrieved by changing the server applications or more practi-
cally by having another trusted system holding a second copy of the private
key. An investigation as to how to sensibly store cryptographic keys is also
required as they form a central component of this system. Figure 1 illustrates
this in diagramatic form.

| Obtain crypto suite

used

Load peap file or
stream

Figure 1: Diagram of Proposed System Design

hd

Gat session/
temporal key

6 CONCLUSION

This paper has discussed the need for a framework to provide a means to
decrypt encrypted traffic for debugging needs within software development
and also as a means to provide analysis of encrypted traffic and has outlined
the system to be developed. At this stage, the research is still in its formative
stage. We expect that if the system is developed correctly, and is adopted as a
component in system development, that it may provide a standard to ensure
correctly implemented security systems and that it would also be useful to
network analysts. The system could later be extended for development with
other protocols, possibly including IPSec and SSH.

hd

Remave header so
only payload
remains on
packets

h 4

—

Analysis

ACKNOWLEDGEMENT

The authors would like to acknowledge the support of REMOVED.

References

[1] Reesa E. Abrams. A checklist for developing software quality metrics.
In ACM 82: Proceedings of the ACM 82 conference, pages 56, New

York, NY, USA, 1982. ACM.

[2] Laurent Bernaille and Renata Teixeira. Early recognition of encrypted
applications. pages 165-175. 2007.

[3] Eu-Jin Goh. Sslsniffer. Ounline: http://crypto.stanford.edu/
“eujin/sslsniffer/index.html.

[4] Homin K. Lee, Tal Malkin, and Erich Nahum. Cryptographic strength
of ssl/tls servers: current and recent practices. In IMC "07: Proceedings
of the Tth ACM SIGCOMM conference on Internet measurement, pages
83-92, New York, NY, USA, 2007. ACM.

[5] Marlinkspike. New tricks for defeating ssl inpractice. 2009.
[6] NIST. National vunerability database. Online: http://nvd.nist.gov/.
[7] Alan Paller. Top ten cyber security menaces for 2008. 2008.

[8] Eric Rescorla. Ssldump. Online: http://www.rtfm.com/ssldump/,
2005.

[9] Schneier. Applied Cryptography. Wiley and Sons, 1996.

[10] B. Schneier. Security in the real world: How to evaluate security. Com-
puter Security Journal, v 15, pages 1-14, 1999.

[11] Bruce Schneier. Why cryptography is harder than it looks. Online:
http://www.schneier.com/essay-037.html, 1997.

[12] C. Allen T. Dierks. The tls protocol version 1.0. RFC Editor, 1999.

[13] Debian Secuity Team. Debian security advisory:dsa-1571-1 openssl —
predictable random number generator. Online: http://www.debian.
org/security/2008/dsa-1571.

[14] Huaiqing Wang and Chen Wang. Taxonomy of security considerations
and software quality. Commun. ACM, 46(6):75-78, 2003.

[15] Yuqing Zhang and Xiuying Liu. Running-mode analysis of the security
socket layer protocol. SIGOPS Oper. Syst. Rev., 38(2):34-40, 2004.

