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Abstract

Our team of dance artists, physicists, and machine
learning researchers has collectively developed several
original, configurable machine-learning tools to gener-
ate novel sequences of choreography as well as tun-
able variations on input choreographic sequences. We
use recurrent neural network and autoencoder architec-
tures from a training dataset of movements captured
as 53 three-dimensional points at each timestep. Sam-
ple animations of generated sequences and an inter-
active version of our model can be found at http:
//www.beyondimitation.com.

Introduction
“I didn’t want to imitate anybody. Any movement I knew, I
didn’t want to use.” (Jennings 2009) Eminent postmodern
dance choreographer Pina Bausch felt the same ache that
has pierced artists of all generations – the desire to generate
something truly original from within the constraints of your
own body.

Recent technologies enabling the 3D capture of human
motion as well as the analysis and prediction of timeseries
datasets with machine learning have opened provocative new
possibilities in the domain of movement generation. In this
paper, we introduce a suite of configurable machine learning
tools to augment a choreographer’s workflow.

Many generative movement models from recent publica-
tions use Recurrent Neural Networks (RNNs) (Graves 2013)
as their fundamental architecture (McCormick et al. 2015;
Crnkovic-Friis and Crnkovic-Friis 2016; Alemi, Franoise,
and Pasquier 2017; Li et al. 2017; James 2018; Marković
and Malešević 2018). Others create methods to draw trajec-
tories through a lower-dimensional space of possible human
poses constructed through techniques such as Kernel Princi-
pal Component Analysis (KPCA) (Berman and James 2015;
Schlkopf, Smola, and Mller 1998). We build upon existing
RNN techniques with higher-dimensional datasets and intro-
duce autoencoders (Kingma and Welling 2013) of both poses
and sequences of poses to construct variations on input se-
quences of movement data and novel unprompted sequences
sampled from a lower-dimensional latent space.

Our models not only generate new movements and dance
sequences both with and without a movement prompt, but
can also create infinitely many variations on a given input

phrase. These methods have been developed using a dataset
of improvisational dance from one of the authors herself,
recorded using a state-of-the-art motion capture system with a
rich density of datapoints representing the human form. With
this toolset, we equip artists and movement creators with
strategies to tackle the challenge Bausch faced in her own
work: generating truly novel movements with both structure
and aesthetic meaning.

Context within Dance Scholarship
Dance scholarship, psychology, and philosophy of the
past century has increasingly seen movement as embodied
thought. Prominent proposals including psychologist Jean
Piaget’s sensorimotor stage of psychological development,
the philosopher Maurice Merleau-Ponty’s “phenomenology
of embodiment”, and Edward Warburton’s concept of dance
enaction have guided us today to view the human body as an
essential influencer of cognition and perception (Warburton
2011).

Our team’s vision for the future of creative artificial intelli-
gence necessitates the modeling of not only written, visual,
and musical thought, but also kinesthetic comprehension.
In light of the modern understanding of movement as an
intellectual discipline, the application of machine learning
to movement research serves not as a mere outsourcing of
physical creative expressiveness to machines, but rather as a
tool to spark introspection and exploration of our embodied
knowledge.

Concurrently with this branch of research, choreographers
have wrestled with the problem of constructing a universal
language of movement. Movement writing systems currently
in use today such as Labanotation, Benesh Choreology, and
Eshkol-Wachmann Notation can be effective in limited use
cases, but make culturally-specific assumptions about how
human bodies and types of motion should be abstracted and
codified (Farnell 1996).

It is not our aim to replace existing methods of dance
notation. However, we note the significance of 3D motion-
capture techniques and abstract latent spaces in potentially
reorienting movement notation away from culturally-centered
opinions such as qualities of movement or which segments
of the body get to define movement. Rather than gravitating
in the direction of defining “universal” movement signifiers,
we see this work as more aligned with the expressive figures



Figure 1: Henri Michaux’s notion of envie cinétique, or “ki-
netic desire”, is represented by expressive, personal, and
idiosyncratic gestures in calligraphic ink in his series Mouve-
ments (Noland 2009).

generated by the visual artist Henri Michaux in an attempt
to capture what he called envie cinétique, or “kinetic desire”
– in other words, the pure impulse to move (see Figure 1).
We therefore avoid limiting our generated movement outputs
to only physically-achievable gestures, as this would only
serve to limit the potential imaginative sparks lying dormant
in these sequences.

Ethics in the philosophy of emerging media raise particular
questions about how technology impacts what it means to be
human, especially given the way constraints and resources of
technology affect our embodied dispositions. When we con-
sider the ethical dimensions of choreography in the context
of machine learning, one major benefit is the opportunity to
reflect on habits by observing, interpreting, and evaluating
what is generated technologically. The normative problems
that ensue are manifold: if we ascribe great value to what we
see, we may find ourselves in a position where we envy an
algorithm’s capacity to generate novel choreography. This
may in turn lead us to cast judgement on ourselves and doubt
our own human-created choreographies.

While technology may provide new insights into patterns
within dance sequences, it also inevitably leads to normative
discussion about what it means to choreograph well, or appro-
priately, or even creatively. This opens the door for replacing

our own practice with algorithms that could ostensibly rob us
of the opportunity to get better at choreography, or learn to be
more creative. While this may seem a bit like catastrophizing,
these normative problems can lead to real ethical concerns
related not only to artistic practice, but to education more
broadly.

Several prominent choreographers have sought out both
motion capture and machine learning tools to augment their
practice, from Bill T. Jones and the OpenEndedGroup’s 1999
motion capture piece Ghostcatching to William Forsythe
to Merce Cunningham (Bill T. Jones and Eshkar 1999;
Naugle 2000; Marc Downie and Eshkar 2001). Wayne Mc-
Gregor recently collaborated with Google Arts & Culture
to create Living Archive, a machine learning-based platform
to generate a set of movements given an input sequence
derived from a video, although details of the technical im-
plementation of this project are not yet publicly released
(LePrince-Ringuet 2018).

Our work represents a unique direction in the space of
“AI-generated” choreographies, both computationally and
artistically. Computationally, we combine high-dimensional
and robust 3D motion capture data with existing RNN-based
architectures as well as introducing the use of autoencoders
for 3D pose and movement sequence generation. Artistically,
we deviate from having novel predicted sequences as the
only end goal – in addition to this functionality, we grant
choreographers the power to finely-tune existing movement
sequences to find subtle (or not-so-subtle) variations from
their original ideas.

Methods
Training data was recorded in a studio equipped with 20
Vicon Vantage motion-capture cameras and processed with
Vicon Shogun software. This data consists of the positions
of 53 fixed vertices on a dancer in 3 dimensions through a
series of nearly 60,000 temporal frames recorded at 35 fps,
comprising approximately 30 minutes of real-time movement.
Each frame of the dataset is transformed such that the overall
average (x,y) position per frame is centered at the same point
and scaled such that all of the coordinates fit within the unit
cube. The primary author, who has an extensive background
in contemporary dance, supplied the training data. The data
was then exported to Numpy array format for visualization
and processing in Python, and to JSON format for visualiza-
tion with the interactive 3D Javascript library three.js.
The neural network models were constructed using Keras
with a Tensorflow backend.

In the following subsections, we describe two methods
for generating dance movement in both conditional (where
a prompt sequence of fixed length is provided) and uncon-
ditional (where output is generated without input) modes.
The first method involves a standard approach to supervised
training for sequence generation: an RNN is presented with
a sequence of training inputs, and is trained to predict the
next frame(s) in the sequence. The second method takes ad-
vantage of autoencoders to convert either an arbitrary-length
sequence of dance movement into a trajectory of points in a
low-dimensional latent space, or a fixed-length sequence to a
single point in a higher-dimensional latent space.



LSTM+MDN
The model proposed in chor-rnn (Crnkovic-Friis and
Crnkovic-Friis 2016) uses RNNs to generate dance from
a dataset of 25 vertices captured with a single Kinect device,
which requires the dancer to remain mostly front-facing in
order to capture accurate full-body data. Our RNN model
uses an input layer of size (53 ⇥ 3 ⇥ m) to represent 53
three-dimensional vertices with no rotational restrictions in
a prompt sequence of m frames at a time. These sequences
are then input to a series of LSTM layers, typically three,
followed by a Mixture Density Network (Alemi, Franoise,
and Pasquier 2017) (see Appendix A) which models propos-
als for the vertex coordinates of the subsequent n frames.
The LSTM layers ensure the model is capable of capturing
long-term temporal dependencies in the training data, while
the MDN layer ensures generated sequences are dynamic and
do not stagnate on the conditional average of previous vertex
sequences (Bishop 1994). The network is trained using su-
pervised pairs of sequences by minimizing the negative log
likelihood (NLL) of the proposed mixture model.

We also developed a modification of this structure using
Principal Component Analysis (PCA) to reduce the dimen-
sionality of the input sequences. This reduces the amount of
information that must be represented by each LSTM layer.
We then invert the PCA transformation to convert generated
sequences in the reduced-dimensional space back into the
(53⇥ 3⇥ n)-dimensional space.
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Figure 2: (a) The 2-dimensional latent space of an autoen-
coder trained on a subset of the full dataset. The frame
numbers show the procession of the sequence through time
at a frame rate of 35 fps. (b) An example sequence of real
training data is highlighted in this latent space. Note that
its structure is highly noncontinuous. (c) The 2-dimensional
latent space of an autoencoder trained on the same subset of
data as the previous plots, but with the angular orientation of
the frames subtracted. (d) The same sequence of real train-
ing data is highlighted, showing a much smoother and more
continuous structure.

Autoencoder Methods
Unlike the RNN methods described above, autoencoders can
learn features of the training data with a less directly super-
vised approach. The input and output layers are identical in
dimensionality, while the intermediate layer or layers are of a
reduced dimension, creating a characteristic bottleneck shape
in the network architecture. The full network is then trained
to replicate the training samples as much as possible by min-
imizing the mean-squared error loss between the input and
the generated output. The network therefore learns a reduced
dimensionality representation of “interesting” features in an
unsupervised manner, which can be exploited in the synthesis
of new types of movement.

While a well-trained autoencoder merely mimics any input
data fed into it, the resulting network produces two useful
artifacts: an encoder that maps inputs of dimension (53 ⇥
3 ⇥ m) to a (d ⇥ m)-dimensional space (d < 159) and a
decoder that maps (d⇥m)-dimensional data back into the
original dimensionality of (53⇥ 3⇥m). This allows us to
generate new poses and sequences of poses by tracing paths
throughout the (d⇥m)-dimensional latent space which differ
from those found in the training data.

While there are many other dimensional reduction tech-
niques for data visualization, such as PCA, UMAP, and t-
SNE (Pearson 1901; McInnes, Healy, and Melville 2018;
van der Maaten and Hinton 2008), a significant advantage of
autoencoders is that they learn a nonlinear mapping to the
latent space that is by construction (approximately) invert-
ible. Some differences between these other dimensionality-
reducing techniques are illustrated in Figure 3.

In principle, autoencoders can be used to synthesize new
dance sequences by decoding any arbitrary trajectory through
the latent space. We prioritize continuity and smoothness
of paths in the latent space when possible, as this allows
human-generated abstract trajectories (for example, traced
on a phone or with a computer mouse) a greater likelihood
of creating meaningful choreographies. These qualities of
trajectories in the latent space are most prevalent in PCA and
our autoencoder methods (see Figure 3). However, as PCA
is a linear dimensionality-reduction method, it is far more
limited in ability to conform to the full complexity of the
realistic data manifold compared to autoencoder methods.

The autoencoders’ latent spaces do tend to produce mostly
continuous trajectories for real sequences in the input data.
This continuity can be greatly enhanced by subtracting out
angular and positional orientation of the dancer, as shown
in Figure 2. Removing these dimensions of variation further
reduces the amount of information that must be stored by the
autoencoder and allows it to create less convoluted mappings
of similar poses regardless of the overall spatial orientation
of the dancer.

However, absent a deliberate human-selected trajectory as
an input, it is a priori unclear how to select a meaningful
trajectory, i.e., one that that corresponds to an aesthetically
or artistically interesting synthetic performance.

In order to address this limitation, and to give some in-
sight into the space of “interesting” trajectories in the la-
tent space, we take another approach in which a second au-
toencoder is trained to reconstruct fixed-length sequences of
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Figure 3: A variety of 2D latent spaces are compared across multiple linear and nonlinear dimensionality-reduction techniques
(excluding autoencoders): (a) PCA, (b) t-SNE, (c) t-SNE following PCA, and (d) UMAP. The top row shows full latent spaces
for a subset of the training data, while the bottom row highlights the same example sequence of 50 frames in each space. All but
PCA show a very segmented and discontinuous path for the sequence across the latent space. Our autoencoder techniques (see
Figure 2) are comparable to PCA in terms of continuity of the paths in latent space, but have a much higher capacity to learn
complex, nonlinear relationships than PCA alone.

Figure 4: Unconditionally-sampled sequences from the VAE.

Figure 5: Unconditionally-sampled sequences from
the VAE projected into the latent space of the pose
autoencoder (1 = top-most sequence; 4 = bottom-
most sequence). Trajectories begin at darker colors
and end at lighter colors.



dance poses by mapping each sequence to a single point
in a high-dimensional latent space. Moreover, we train
this network as a Variational Autoencoder (VAE) (Larsen,
Sønderby, and Winther 2015) which attempts to learn a la-
tent space whose distribution is compatible with a (d⇥m)-
dimensional Gaussian. Sampling from this latent space re-
sults in unconditionally-generated sequences that are real-
istic and inventive (see Figure 4). For each sampling, we
look at a single point in the latent space corresponding to a
fixed-length movement sequence. Within the scope of this
paper, we do not attempt to impose any continuity require-
ments from one sampling to the next. Latent space points are
chosen approximately isotropically. This creates a comple-
mentary creative tool to our previously-described traditional
autoencoder for poses. We anticipate that choreographers
and researchers could draw continuous paths through the la-
tent space of poses to generate new movements as well as
sample from the VAE latent space to generate new movement
phrases and/or variations on existing phrases.

With both standard and variational autoencoders trained
to replicate single poses and sequences of poses respectively,
we introduce some techniques for taking a given input phrase
of movement and generating infinitely many variations on
that phrase. We define “variation” to mean that the overall
spirit of the movement be preserved, but implemented with
slightly different timing, intensity, or stylistic quality.

After identifying a desired dance phrase from which to
create variations, we identify the sequence of points in the
latent space representing that sequence of poses. We first
constructed trajectories close to the original sequence by
adding small sinusoidal perturbations to the original sequence.
This created sequences resembling the original phrase, but
with an oscillatory frequency that was apparent in the output.
This frequency could be tuned to the choreographer’s desired
setting, if the oscillatory effect is desired. However, we also
sought out a method that constructed these paths in a less
contrived manner.

For a VAE trained on sequences of poses, each point in the
latent space represents an entire sequence of a fixed length
m. We can construct variations on the input sequence by
adding a small amount of random noise to the latent point
and then applying the decoder to this new point in the latent
space. This creates a new generated variation on the original
sequence, with a level of “originality” that scales with the
amount of noise added. Since the VAE’s latent space has
been constrained to resemble a Gaussian distribution, we
can sample frequently from the latent space within several
standard deviations of the origin without observing highly
unphysical output sequences. Sampling within less than ap-
proximately 0.5� tends to give very subtle variations, usually
in timing or expressiveness in the phrase. Sampling within
approximately 1 to 2� gives more inventive variations that
deviate further from the original while often preserving some
element of the original, e.g. a quick movement upwards of a
limb or an overall rotational motion. Sampling within 3 to
4� and higher can produce myriad results ranging from no
motion at all to extreme warping of the body to completely
destroying the sense of a recognizeable human shape.

The relationship between these two latent spaces – that of

the pose autoencoder and that of the sequence VAE – may
be exploited to gain insight into the variations themselves.
Points in the VAE latent space directly map to trajectories in
the pose autoencoder space. By introducing a slight amount
of noise to the point in the VAE latent space corresponding
to a desired input sequence, we may decode nearby points
to construct trajectories in pose space that are highly related
to the original input sequence. Examples of variations from
reference sequences are shown in Figures 6 - 11.

Results and Discussion
Both the RNN+MDN and autoencoded outputs created
smooth and authentic-looking movements. Animations of
input and output sequences for various combinations of
our model parameters may be viewed here: http://www.
beyondimitation.com.

Training the RNN+MDN with a PCA dimensionality re-
duction tended to improve the quality of the generated out-
puts, at least in terms of the reconstruction of a realistic
human body. We used PCA to transform the input dataset
into a lower-dimensional format that explains 95% of its
variance. This transformation of the training data shortened
the training time for each epoch by up to 15%, though test
accuracy was not significantly affected. The output resulted
in a realistic human form earlier in the training than without
the application of PCA. In the future, we may also investi-
gate nonlinear forms of dimensionality reduction to further
improve this technique.

The architectures used for the RNN+MDN models in-
cluded 3 LSTM layers with sizes varying from 32 to 512
nodes. They took input sequences of length m ranging from
10 to 128 and predicted the following n frames ranging from
1 to 4 with a learning rate of 0.00001 and the Adam optimizer
(Kingma and Ba 2014).

The final architecture for the pose autoencoder comprises
an encoder and a decoder each with two layers of 64 nodes
with LeakyReLU activation functions with ↵ = 0.2 and
compiled with the Adam optimizer. The pose autoencoder
takes inputs of shape (53 ⇥ 3) and maps them into a latent
space of 32 dimensions. Training this over 80% of our full
dataset with a batch size of 128 and a learning rate of 0.0001
produced nearly-identical reconstructions of frames from
the remaining 20% of our data after about 50 epochs. We
also trained a modification of this architecture with a data
augmentation technique that added random offsets between
[0, 1] to the x̂ and ŷ axes. This did not yield a significant
advantage in terms of test accuracy, however, so we did not
use it for our latent space explorations.

The final architecture for the sequence VAE also comprises
an encoder and a decoder, each with 3 LSTM layers with
384 nodes and 1 dense layer with 256 nodes and a ReLU
activation function, where 256 represents the dimensionality
of the latent space. The model was compiled with the Adam
optimizer. The VAE maps inputs of shape (53 ⇥ 3 ⇥ l),
where l is the fixed length of the movement sequence, to the
(256 ⇥ l)-dimensional latent space and then back to their
original dimensionality. We used input sequences of length
l = 128, which corresponds to about 4 seconds of continuous
movement. We augmented our data by rotating the frames



Figure 6: A reference input sequence (above) and a generated variation
sequence (below) with 0.5� noise added to the input’s representation in latent
space, both with lengths of 32 frames (time progressing from left to right).
While the reference sequence includes a rotation, the generated variation
removes the spin, while the movements of the left arm are synchronous in
both cases.

Figure 7: Reference (A) and generated
(B) variation sequences projected into
the pose autoencoder space. Trajectory
colors go from dark to light over time.

Figure 8: A reference input sequence (above) and a generated variation
sequence (below) with 0.5� noise added to the input’s representation in latent
space, both with lengths of 32 frames (time progressing from left to right).
The generated variation preserves the rising motion but adds a rotation.

Figure 9: Reference (A) and generated
(B) variation sequences projected into
the pose autoencoder space. Trajectory
colors go from dark to light over time.

Figure 10: A reference input sequence (above) and a generated variation
sequence (below) with 0.5� noise added to the input’s representation in latent
space, both with lengths of 32 frames (time progressing from left to right).
The reference sequence features a kick, while the variation instead translates
this upward motion into the arms, rather than the feet.

Figure 11: Reference (A) and gener-
ated (B) variation sequences projected
into the pose autoencoder space. Tra-
jectory colors go from dark to light
over time.



in each batch by a randomly-chosen ✓ 2 [0, 2⇡]. The VAE
was trained with a learning rate of 0.001, a Kullback-Leibler
weight = 0.0001, and a Mean Squared Error (MSE) loss
scaled by the approximate resolution of the motion capture
data for about 1 day on a CuDNN-enabled GPU.

Sampling from the latent space of standard and variational
autoencoders for both poses and sequences provided a rich
playground of generative movements. We are particularly
interested in the dynamic range provided by these tools to
create variations on input sequences: by increasing the magni-
tude of the perturbation of the latent sequence to be decoded,
choreographers can decide how ‘creative’ the outputs should
look. By opting for either a standard or variational autoen-
coder, choreographers can sample from latent spaces with a
bit more or a bit less similarity in the movements themselves
to the training data. Adding sinusoidal perturbations as well
as generating stylistically-related variations by exploiting
the relationship between these two latent spaces proved ef-
fective and compelling methods for creating choreographic
variations. The subtlety and smoothness with which we can
vary input sequences using the VAE also underscores that the
model is truly generating new outputs rather than memorizing
the input data.

These methods have already been effective at sparking
choreographic innovation in the studio. They center the chore-
ographer’s embodied knowledge as something to be modeled
and investigated – not just as a compendium of possible bod-
ily positions, but as a complex and high-dimensional land-
scape from which to sample movements both familiar and
foreign. Movements throughout these abstract landscapes
can be constructed in a variety of ways depending on the
application. For example:

• For a choreographer seeking primarily to document their
practice, training these models allows them to save not
only the physical motions captured in the motion capture
data, but also their potential for movement creation as
approximated by a well-trained model. Different models
may be saved from various periods of their practice and
compared or re-explored indefinitely.

• For a choreographer looking to construct a new piece out
of their own typical patterns of movement, sampling from
within 1� in the VAE latent space can generate multiple
natural-looking phrases that can then be stitched together
in the studio to create a cohesive piece. They could also
prompt new sequences of arbitrary length following from
existing choreography via the RNN+MDN model.

• For a choreographer who wants to understand and perhaps
break out of their typical movement patterns, analyzing
the latent space of the pose autoencoder can be instructive.
Visualizing trajectories through the space can inform what
areas lie unexplored. Drawing continuous paths through
the latent space can then construct new phrases that might
otherwise never emerge from an improvisation session.

• A choreographer might also use these methods to support
teaching movements to others. By comparing trajectories
in the same latent space, students can track their mastery
of a given movement sequence.

These creative tools allow a mode of documentation that
opens up valuable reflection in the recursive process of move-
ment creation. Since a significant portion of the choreo-
graphic process can be kinesthetically driven, it is useful to be
able to externalize movement into the visual domain in order
to reflect on the architecture and design of the choreography.
This resource may double as a limitation if dance-makers
rely solely on the visual aspect of choreography. Just as a
mirror can serve as a double-edged sword in dance practice,
these tools make explicit the possibilities of differentiation
between the internal, kinesthetic dimension of movement
research and the external, visual one.

Generating novel movement allows us to see potential
flow of choreographic patterns, which makes negotiating the
aesthetic dimension richer if we take the time to evaluate
why something looks subjectively unnatural. In this way, a
dance-maker has a chance to articulate more clearly their
own aesthetic preferences for choreographic intention and
execution.

As our title suggests, “beyond imitation” also points to
the important distinction between creative expression and
research-based inquiry. While dance-making certainly in-
volves generation that is spontaneous and intuitive, choreog-
raphers may also take years honing and developing sequences
that are deeply textured and multi-faceted. Disrupting any
implicit hierarchies, these tools enable documentation of the
systematic, recursive process of dance-making that is often
so invisible and mysterious.

Future technical work to develop these methods will in-
clude the investigation of nonlinear, invertible data-reduction
techniques as a form of pre-processing our inputs, other neu-
ral network-based models designed to work with timeseries
data such as Temporal Convolutional Networks, and more
sophisticated methods for sampling from latent spaces.

We can also increase the size of our training dataset by
sourcing data not only from motion capture sessions, but also
using OpenPose software to extract pose information from
dance videos or even a laptop camera (Hidalgo and others
2018; Jones 2019). This could open up a provocative path in
machine-augmented choreography: generating movements
in the styles of any number of prominent choreographers.

Feedback from other choreographers who used our inter-
active models also indicated that it would be interesting to
extend our current dataset with additonal data focused on the
isolation of certain regions of the body and/or modalities of
movement. Our next steps in extending this work will also
include exploring latent spaces of multiple dancers. While
only solo dances were captured for the studies in this paper,
the Vicon system can readily accommodate multiple simulta-
neous dancers, which will allow us to explore the generation
of duets and group choreographies.
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Appendix A: Mixture Density Networks
The structure of a Mixture Density Network, as laid out in
detail in (Bishop 1994), allows us to sample our target predic-
tions from a linear combination of m Gaussian distributions,
each multiplied by an overall factor of ↵i, rather than from a
single Gaussian. The probability density is therefore repre-
sented by

p
�
~t | ~x

�
=

mX

i=1

↵i(~x)�i

�
~t | ~x

�

where ~x represents our input data, ~t reprents a given pre-
dicted output, m represents the total number of Gaussian
distributions in the mixture, and c represents the total number
of components to predict (here, 53 ⇥ 3 for each timeslice).
Each of the Gaussian distributions is modeled as:

�i

�
~t | ~x

�
=

1

(2⇡)
c
2�i(~x)c

e
� |~t�~µi(~x)|2

2�i(~x)2

Here, ~µi(~x) and �i(~x) represent the mean values and vari-
ances for each component of the generated output.
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