Transaction support for HBase

Krishnaprasad Shastry Sandesh Madhyastha Saket Kumar
Hewlett Packard Hewlett Packard Hewlett Packard
India Software operation India Software operation India Software operation
Bangalore-48 Bangalore-48 Bangalore-48
+91-8033866316 +91-8033867304 +91-8033868318
krishnaprasad.shastry@hp.com Sandesh- Saket.kumar3@hp.com
v.madhyastha@hp.com
Kirk M Bresniker Greg Battas
Hewlett Packard Hewlett Packard
1501 Page Mill Road, Palo Alto 11060 Desert Glen Drive, Fishers
California- 94304-1100, U.S Indiana- 46037,U.S
+1-650 583533 +1-3178423618
kirk.bresniker@hp.com greg.battas@hp.com
ABSTRACT lack of transaction support is currently preventing from moving to

NoSQL technologies such as HBase, Cassandra, MongobB these NoSQL technologies.

becoming popular due to their ability to scale and handle large There are many attempts in academia as well as the open source

Management System (RDBMS). However they lack two major this paper we describe a ninrusive approach to provide
functionalities provided by traditonal RDBMS namely transaction support for HBase.

“transactional support” and “SQL interface”. Transactions are

designed to maintain database integrity in a known, consistent state2, OUR SOLUTION

by ensuring that interdependent operations on the system completehe design goal for our solution is to develop a-imtrusive
successfully or all the operations are canceled. This paper describegansaction system for HBase. Another aim is to make this solution
a ronvintrusive approach to provide transaction support for HBase portable across different NoSQéchnologies, thus nfunctional

based on optimistic concurrency model. dependency of HBase.
1. INTRODUCTION Our solution provides transaction supipi HBase by leveraging
NoSQL technologies such asHBasg4], Cassandia], theversioning capability in HBase tmplement snapshatolation.

MongoDH[6] are becoming popular due to their ability to scale and Thetransaction functionality is implemented in a highly available
handle large volumes afata at breakthrough levels of cost and centralized transaction server.

query performance. However transaction support is lacking in these
NoSQL products. Without multiow, multirobject transaction
support in NoSQL products, the application has to implement

transactions as part of ibsisiness logic. This makes development
and maintenance of applications complex. Transaction Client PN

The workloads such as online transaction processing (OLTP), event
processing, regime analytics, etc. are characterized as operational |
workload. These workloads typically have stringent requirements
in terms transactional data integrity, ssdcond response time, | ¥
concurrency and availability. With the growing “Internet Of Things
(I0T)” there is a significant increase in number of data generation Figure 1: Architecture
sources, volume of data and the type of the data that needs to be
captured as part of transactions. These geRreration operational Figure 1, illustrates the architecture of the solution. The transaction
applications need transactional support on nstitictured data client provides transaction management APIs like
types. For example, there are several Web2.0 applications, likebeginTransaction, endTransaction etc. It also extends the generic
“online shopping”, “online gaming”, “online index updates” etc., HBase APIs, like get, put etc. to provide transactional support. The
that require transaction support. transaction client intercepts the HBase APIs from an application to
provide transaction capabilities using the transaction server. It

Seveal of these next generation operational applications will |eyerages the mutiiersioning feature of HBase to writefmocess
benefit from the flexibility in schema, data types and the scalability {ransaction data into HBase tables.

of NoSQL products like HBase, Cassandra and MongoDB. But the

LoALILH
B

|H. A58
S

t

117

mailto:Sandesh-adhyastha@hp.com
mailto:Sandesh-adhyastha@hp.com

The transaction server generates the transaction IDs, maintainsipdates the status as aborted. The transaction server sends abort
begin and commit timestamp and manages the state of transactiongnformation to transaction client. The transaction client aborts the

It implements the logic to resolve the conflicts during the transaction and returns to application. The client will not clean up
transactions. The transaction server also implements the logginghe intermediate records. The transaction server takes care of this

and recovery logic. as explained below.

The transaction server maintains a table to track the status of ¢jient | Trancaction Client] Transaction Server| |HBase

transactions. The transaction state can be in (a) begin (b) commit begm:m Begi '
. . : . egin Trx

ready (c) committed (d) aborted. At the beginning of transaction, .

the transaction server generates globally unique traosdbts that Return Txid, LCT I

will have the value less than the epoch value, Janydr970 The)

transaction ID is used as version number for writes (put operation) tget (rkeyl) Get (rKeyl, LCT)

from in-process transactions. The actual timestamps are used as = g ickeyi, vall) Return (rkey1, vall) I

version number to write the committed records. The committed

records will always have the version numbers greater than epoch. tput(rkeyl, val2) put(rkey1, val2, Txid)

We effectively use this data to control the visibility ofprocess T .

writes, thus provide snapshot isolation. commitTransaction | chkConflict (Txid, M_r)

The transaction server maintains the timestamp value of &s# lat Return (Success, CT) ﬂ

committed transaction, which is called as Last Commit Timestamp '

(LCT). The LCT value is asgned as the start time at theginning PR, Ml cn .

of the transaction and is used to defife tsnapshot for the success Update TrxStatus. +

transaction.)

The transaction server maintains all the rfiedirow keys for a
given transaction in an4imemory table. It uses this information to
detect the conflict among concurrent transactions. The transacti
server uses the transaction start time (TS1) and the modified ro
key set (RS1) to identify whetheany transactionghat are
committed after the time TS1 has modified any of the rows in RS1.
If yes it means the transactions are conflicting. In this case the
transaction server marks the transaction for abort.

Figure 2 illustrates the sequence diagram for a successful
orfransaction. During the begin transaction call from application, the
wfransaction client calls transaction server to geh#vetransaction
ID (Txid) and last commit timestamp (LCT). The transaction client
intercepts thétget’ call from the application client (also called as
client), checks for the correspondingcord in its cache, if not
found uses the LCT as timestamp to make “get” call to HBase.
HBase returns the version of the record (rKeyl, vall) that is visible
On receipt of beginTransaction call, the transaction client contactsat timestamd.CT. The client then executes the business logic and
the transaction server to get transaction ID and LCT. The inserts the updated value (val2). The transaction client inserts this
transaction server generates new transaction 1D and adds it into itsecord using the Txid to ensure this intermediate record is not
status table. The transaction client uses the transaction ID as theisible to other transactions. At the time of commit the transaction
timestamp value for intermediate “put” operations. These “put” client sends the modified records set (M_r, in this case only rkey1)
values are also cached in the transaction client. and the Txid to transaction server for detecting conflicts. In this
example, there is no conflict and server returns success with the

new commit timestamp (CT). The transaction clientsuS& for
Jfinal “put” operation and on completion acknowledges transaction

changgs. If the rows are not in the cache, Fhe get anq SCan server. The transaction server updates the transaction status and
operations read the data from HBase table using LCT as timestamp ~1"1he CT becomes the new LCT

value, which indicates the snapshot of the database at the beginning

of the transaction. The transaction client will not delete the intermediate records
inserted with trarection ID as version. The transaction server
implements a "purger thread" to clean up these residual records in
he HBase table. The intermediate records modified by the

While reading data, in “get” and “scan” operations, the transaction
client first looks for the rows in the cache thus it will read its own

At the time of commit the transaction client sends the modified
records to thdransaction server to determine conflicts by other
concurrent transactlons._Th’e transaction server uses the modifie fansaction has to be removed for both committed and aborted
records and the transaction’s start timestamp to determine whethe

ther t " h dified and itted th ransactions. The cleaup logic is same for both cases. The purger
any othertransactions have modified and committed th€ Same roWSy, o5y s in background at specified frequency and deletes the
If there are no conflicts it generates a transaction commit timestam

and sends it back to transaction client. The transaction serverrGSIdual records of the committed and aborted transactions.

updates the status of the transaction to commaitly. The transaction servers implement a heartbeat mechanism to

determine the client failures. If the client fails during the execution

of transaction the server aborts the transaction. If the client fails

eafter the commiteady state and before commit acknowledgement
fhe server makes the final “put” operation for the records modified
by this transaction.

The transaction client performs the final “put” operations using this
commit timestamp. After completing the final “put” operations, the
transaction client acknowledges transaction server and the serv
updates therénsaction status as committed.

The transaction server updates the LCT value with the commit
timestamp of thistransaction. At this point the records are

committed in HBase table and they are visible to other transactions
If it finds any conflicts then it marks the transaction for abort and

The transaction server will be implemented as process pair to
provide high availability. If the primary server fails the backup will
take over.

118

The transaction server logs the transaction statkidingorder in the balance never gobelow a minimal value etc. The correctness
which they areokayed for commt into persistent space for of the transactions is measureddajculating the total sum of the
recovery. The key of the records modified by the transaction arevalue in all the accounts.

also logged for the commieady transactions. During the recovery L
of transaction server it reads the log to determine the transactionThe appllcatlon is tested W'th tW9 d|ﬁerent mOdes' (i) Transaction
status. For the transactiothat are in commiteady state the server mode — vyhereln the application is Imlged W'th, newly deve!opgd
builds the list of records modified by this transaction from the log Transaction Client andses the transaction API's offered by it, (i)

and inserts them into the HBase table with the transactions commitl:g?, Transactg)l?) m%dBe wher_lt_arllnthe an“f_at'on d'riﬁtlﬁ.zses tthe
time. For the improcess transactions it cleans up the intermediate S €xposed Dy Hbase. The applicalionris) wi meren

recods by using the transaction id. configurations by varying (1) Total number of transacti@)srhe
number of simultaneous transactions (or threads).

Our solution is nofintrusive and modular. It is not tightly coupled L

to HBase implementation. The transactions are supported both forwe have run the appllqatlon withultiple dn"fer.ent \{alues for (i)

the new tables as well as existing tables. The existing Clientnumber ofthreads and (ii) number of transactions in a thread. The

applications must be modifie use the new APIs provided by tablesl and Zhow theesults for multiple threads with each thread

transaction client to support transactions. The solution can be easil)?xecu“ng 100 transactions.
extended to other NoSQL products with minimal changes t0[Ng_ of | Transfers | Complete |Incomplete Total

transaction client. threads | executed | transfers | transfers Balance
3. EVIDENCE THE SOLUTION WORKS L 100 1o o | Do
. . . . 10 1000 1000 0 99999850
We have implemented the transaction server and transaction client:
100 0995 2006 0 29999750

Tested it with a generic transactional application to validate the

functionality. Tahble 1: Without transactions

No. of | Transfers | Complete |Incomplete| Final Total

Listing 1 and 2 shows the code snippet for a sample HBas threadls Exemﬁs mmsrelg mmsrer: Blahm L&
application and the same application with testi&n support.
10 1000 998 2 100000000
100 9998 2642 357 100000000
HBaseOp() { - , -
Table 2: With transactions
get (row_key1,&val)
val = newVal; /* Change val as per business logic */ The first column represents the number of paralietads; the
put (row_key1,val); } second column indicates the total number of transaction that is

tried. As mentioned earlier each thread runs 100 transactions. If the

random number generator generates the same number for both debit
and credit accounts then that transaction is not tried. Hence we see
the value in this column to be less than the expected value for some

cases- example row 3 (with transactions) has the value of 9998

/[Can lead to wrong results in multi-threaded environment

Listing 1: Code sample without transaction support

HBaseOp() { instead of 10000. Third column indicates the number of completed
trxH = new ClientTM(); transfers in case of default HBaaed the number of committed
trxH.beginTransaction(); transactions in the case of HBase The fourth column provides

trxH.tget (row key1 &val) /*t tional get */ the number of failed transfers in the default HBase and number of
FAINESTON_ KOy L oV L |0_na ge i aborted transactions in the case of HBase. The fifth column
val = new_val ; /* Change val as per business logic */ provides the total sum of balancesll the accounts.

trxH.tput (row_key1, val); /* transactional put */ As we can see form the table 1, there are inconsistencies in default

trxH.commitTransaction(); } HBase when run with parallel threads. The final balance is not same
o]) as the original and indicates the data loss/corruption due to failures.
Listing 2: Code sample with transaction support In case of “with transactis” (table 2) the transaction support

The transactional application creates an instance of transactiorguarantees the consistency and we always get the correct balance.
client (TClient) and uses the methods exposed by it to create andVe also see some failed transactions, indicated by “incomplete
commit the transaction. transfers” column, which are due to the conflicts.

Also it uses the “get” and “ptimethods extended by transaction 4. COMPETITIVE APPROACHES

client. Without.transaction support.the sample application producesthere are few tlempts to provide transaction support for HBase.
wrong results in mukthreaded environment. They fall into two main categories. One approach is to implement
To validate this we have developed a sample debit/credit the transaction support on client side. HAEIdand HBaseS|2]
application. Thepplication operates on a singteaunts table that ~ are two examples of this. They rely on additional metadata tables
contains the account identifieand the balance amount. The beingcreated in HBase.

application transaction (a) deducts a fixachount from one yagid [1] is implemented as client library. It modifies the user
randomly selected account and (b) deposits the same aimount aples in HBase to store additional metadata related to transaction

another randomly selected account. The application dose managementConcurrency issues are handled at the client library
basic checks$o ensure the debit and credit accounts are different, by using the metadata information stohediser tables.

119

HBaseSI[2] is a c!ient library _that maintains sp_ecial tables in 5. Conclusion

HBase for supporting transactions. The transaction managemen{ye have presented a reliable and efficient implementation of
logic is implemented in the client side based on the metadata inynsaction support library for HBase which is siotusive in

HBase tables. nature. The approach does not need any changes to HBase schema
The other approach is to implement a centralized transaction serverOr tables. It is implemented as a light weight centralized transacti
Omid [3][7] is an example of this, which is quite similar to our Server which provides the transaction management, conflict
approach. Omid uses “transaction status Oracle” to manage théletection, logging and recoyeservices. A light weight transaction

transactions. Omid caches the transaction metadata onsidierio client library exposes the transaction support to users through
improve the performance. This results in multiple copies of fransactional APIs. We have evaluated the approach for

metadata and increases the data traffic between client and servefOITedness. . o

Also maintaining the metadata adds additional overhead. The OmigAS next steps we will measure the performance implications of the
clients cache the intermediate modification and hence need largeP€Wly introduced transaction server and optimize it for both the
memory for long running transaction. This helps them to reduce thelatency and througput.

number of “put” operations.

HBaseTrx [8] was another open source attempt from Apache 6. References

group to support transactions for HBase, which was later [1] Mederos, A.:HAcid: A lightweight transaction system for

discontinued. HBas&rx is tightly coupled to HBase and hence HBase. Master's Thes Espoo, September 24, 2012, Aalto

leverages the HBase code for transaction management andNiversity, School of Sciemc Degree progranof Computer

recovery. The concurrency is handled by HB&seserver library, Science and Engineering

which is implemented as an.e>.<tension to HBase Regioa table [2] zhang, C., Sterck, H.D..HBaseSl: Muitw distributed

3 summarizes the characteristics of esidne solution. transactions with strong snapshot isolation on clouds, Scalable
Computing: Pactice and Experience, Scientific International

Table 3: Comparison Table Journal for parallel and Distributed computing, Vol 12, No 2, 2011

[3] Ferro, D.G.:Omid:Efficient Transaction Management and
Incremental Processing for HBase, Yahoo.Inc.

[4] HBase: http://hbase.apache.org/
odifications to HBase Schema No Yes No No No
T —— Yo Yes Yes m Yo [5] Cassandra: http://cassandra.apache.org/
odifications to HBase code No No No Yes No [6] MongoDB: http://www.mongodb.org/
ensip\lty{fo other oo seiuti 2 Lo il 12 [7] Junqueira, F., Reed, B., Yabandeh, M.:L-frdle Transactional
alized Serve Yes No No No Yes Support for Largescale Storage Systems:I[EEE/IFIP 41st
on intelligence Server Clent | Clent [Server [Server International Cordrence, Dependable systems and Networks
S o " Server side. " Workshop, Pages 17831, June 2011.
Recove thewALto Lsoection [specied Uses Hse Specfied [8] HBasetrx, https://github.com/hbagex, Git-Hub.
persistent media infrastruture

120

