
On an Improvement of the Numerical Application
for Cardano’s Formula in Mathematica Software
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Abstract—The aim of this paper is to develop a program
for determining, by symbolic description, the roots of each real
cubic polynomial on the basis of the well known Mathematica
software. We have obtained a program completely satisfying our
expectations and even more. For example, for many tested cases
of the cubic polynomials, on the way of comparing the description
of the roots of these polynomials received by using our program
with their trigonometric form obtained as a result of geometric
discussion or respective trigonometric transformations, we have
got some new attractive relations of algebraic and trigonometric
nature.

By applying our elaborated program we can also decide,
symbolically, whether the given cubic polynomial is a Ramanujan
cubic polynomial (one of two kinds). Moreover, in case of
these polynomials we have got many new additional pieces of
information essentially completing the facts discovered by now.
Additionally, we have solved some, posed ad hoc, theoretical
problem.

Index Terms—cubic polynomials, Ramanujan cubic polynomi-
als, Cardano’s formula.

I. INTRODUCTION

While preparing papers [12], [14] a part of computations
has been done with the aid of Mathematica software. To
our surprise, the program did not manage to derive, in the
way as we expected, the symbolic transformations needed for
determining the zeros of polynomials, especially the real cubic
and quartic polynomials. We had to make by hand a part of
the final transformations. For example, for the equation

x3 − 12x+ 13 = 0 (1)

Mathematica program gave us the following set of solutions
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We decided to change this situation which resulted in elaborat-
ing the appropriate computer procedure calculating the roots of
all real cubic polynomials starting from the Cardano’s formula.
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The program, developed by us, gave the following form of the
solutions of equation (1):
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The possibly excessive optimism about the effectiveness of
symbolic computations realized by our program has been
suppressed by other examples. For instance, for the equation

x3 − 12x+ 11 = 0,

Mathematica answer are the following solutions
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.

To the contrast our program produces the following trigono-
metric form of the same solutions
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but only numerically Mathematica verified the equality

1 = 4 sin

(
π

6
− 1

3
arctan

3
√

15

11

)

= 4 cos

(
π

3
+

1

3
arctan

3
√

15

11

)
.

In the third section of this paper we present a number of
such completely unexpected trigonometric relations obtained
by comparing the ”model” decompositions of some cubic
polynomials with the decompositions obtained by us by ap-
plying the introduced Cardano’s type formulae (implemented
for our computer procedure).

It should be also emphasized that the mentioned model
polynomials and their decompositions were usually obtained
in result of some trigonometric transformations of the known
trigonometric relations (see [5], [17], [18], [19], [28], [33],
[34]). In consequence, these two different ways of decom-
posing the cubic polynomials resulted in many interesting
equalities of trigonometric nature shedding a new light on
many quantities, mysterious till now. For example, we dis-
covered that the values of cos 2kπ

7 , k ∈ N, are strictly
connected with the values of arctan(3

√
3), whereas values of(

cos 2kπ
7

)
/
(

cos 2k+2π
7

)
, k ∈ N, are strictly connected with

the values of arctan 1
3√3

– see Section 3.

71



Finally, in the fourth section we describe the recently popu-
lar subject matter concerning the Ramanujan cubic polynomi-
als. Discussion executed for the goal of preparing this paper
resulted in creating a new paper devoted to these polynomials
[2] – the obtained there original result is announced at the end
of Section 4.

As the Authors, we want to emphasize that our aim now is
to initiate the investigations on the continuation of this work
where we intend to concentrate on developing the algorithm
for determining the roots of polynomials belonging to the
selected families of polynomials of higher orders, for which
such description of the roots is known (the examples are
quartic polynomials, the modified Chebyshev polynomials [35]
and the selected quintics [8], [26]).

II. ZEROS OF CUBIC POLYNOMIALS – FINAL FORMULAE

From the Cardano procedure for finding the (complex) zeros
of real cubic polynomial (see for example [11], [16], [20], [28],
[35] – two last papers consider also because of their historical
connotations):

p(z) := z3 + az + b

it follows that p(z) = 0 if and only if z = u + v where
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and where the respective complex roots (of the second and
third order) are kept in mind. Let us discuss three cases with
respect to the sign of discriminant ∆.

First we assume that ∆ < 0 (which implies a < 0). Then
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and p(z) possesses three real roots.
Now let us discuss two cases with respect to the sign of

coefficient b.
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which implies (the formulae below are satisfied by all three
real zeros of p(z)):
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or in the equivalent form
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The other form of zeros of p(z) can be deduced if we introduce
a new parameter ϕ setting

∆∗ = tanϕ ≥ 0.

Then
(
−a3
)3

=
(

b
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)2

. Hence, if we set a = −3α2,
b = 2β3 cosϕ, then α = ±β. Finally we obtain the following
implication: if tanϕ ≥ 0 and 2α cosϕ > 0, then
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For example, we get
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Second case, when b < 0: We get
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and next
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Similarly as in the previous case, if we set ∆∗ = tanϕ ≥ 0,
a = −3α2, b = 2α3 cosϕ < 0, then
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For example, we obtain (below we assume that α > 0,
moreover, the respective values of sine and cosine functions
can be found in [20], [21], [28]):
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We only need to discuss two more (rather trouble-free)
cases.

If ∆ > 0, then we have precisely one real zero and two
conjugate complex roots
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III. UNEXPECTED IDENTITIES

By using the cubic polynomials (and their decompositions)
from papers [17], [18], [28], [30], [33], [34], [35] and by
applying the discussed here Cardano’s formulae for the roots
of cubic polynomials, we obtained the completely unexpected
trigonometric identities (of course we present here just few
selected examples denoted by A – H). Let us explain only that
all the presented equalities are the consequence of the fact that
the decompositions of cubic polynomials, given in the cited
above papers, result, in the first place, from the appropriate
trigonometric transformations (also by geometric discussion)
and not from the application of the Cardano’s formulae.
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As an example we propose to examine the following polynomial
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respectively.
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Moreover, surprisingly the following relation holds
√

13− 4

3
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13
≈ 0.577727

≈ C = 0.57721,

where C is the Eulerian constant called also as the Euler-
Mascheroni constant (see [13]).

H)

z3 − z − 1 = (z − τ−1
0 )(z − i

√
τ0e

iΨ)(z + i
√
τ0e
−iΨ).

The above polynomial is called the Perrin polynomial,
also called as the Siegel’s polynomial (see [7], [34]).
Constant τ−1

0 plays an important role in estimating the
Mahler measure M(f) of polynomials f over C, which
are not reciprocal. This estimation is of the form M(f) ≥
τ−1
0 and is optimal (see [23], [25]). To the contrast let

us note that τ0 is the only positive root of polynomial
τ3 + τ2 − 1 (the same fact holds for the polynomial
τ5 + τ − 1 = (τ3 + τ2 − 1)(τ2 − τ + 1)) and

Ψ := arcsin
1

2
√
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0

.

The number −τ0 is the only real root of polynomial τ3−
τ2 + 1. Furthermore, we get
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3
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√
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√
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Furthermore, from the equality z3 = z+1 for z = τ−1
0 we

obtain the following decomposition of τ−1
0 in the nested

third roots
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We note that the convergence of the above nested radical
from Theorem 3.2 in [15] holds. Moreover, we observe
that the similar equality is fulfilled also for the only
positive root zk of the polynomial zk − z − 1, k ≥ 3,

having the form zk =
k

√
1 + k

√
1 + k
√

1 + . . ..

In order to emphasize the importance of this section let us
introduce two more decompositions of the cubic polynomials,
which we have not found in literature till now and which
essentially complete the decompositions presented in items F)
and G).

So from (10) and (11) we can obtain the decompositions(
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)(
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√
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√
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√
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√
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√
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z − 2 sin

6π

13

)(
z + 2 sin

8π

13

)

= z3 −

√
13− 3

√
13

2
z2 −

√
13z +

√
13 + 3

√
13

2
.

Remark III.1. In this section we have dealt with expressions
of the form cos

(
1
3 arctan ∆∗

)
and sin

(
1
3 arctan ∆∗

)
. Let us

notice that one can find in literature some very interesting
decompositions of such expressions on the nested square roots.
For example, in [3], [4] we can find the following Ramanujan
formula

lim
n→∞

an =
A− 1

6
+

2

3

√
4a+A sin

(
1

3
arctan

2A+ 1

3
√

3

)
,

where A :=
√

4a− 7, a ≥ 2, and

a1 =
√
a, a2 =

√
a−
√
a, a3 =

√
a−

√
a+
√
a,

a4 =

√
a−

√
a+

√
a+
√
a, . . .

and where the sequence of signs −,+,+, . . ., appearing in
this nested radicals, has period 3. In case a = 44 we obtain
(see equalities in examples A, C, F for possible connections):

lim
n→∞

an = 2 + 2
√

21 sin

(
1

3
arctan 3

√
3

)
.
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IV. RAMANUJAN’S CUBIC POLYNOMIALS

V. Shevelev and R. Wituła in papers [1], [24], [29], [31]
have distinguished and discussed the so called Ramanujan’s
cubic polynomials and Ramanujan’s cubic polynomials of
the second kind, denoted for shortness by RCP and RCP2,
respectively. And all this could happen thanks to the great
Indian mathematician Srinivasa Ramanujan who proposed the
proof of the following equalities (see [22]):(

1

9

)1/3

−
(

2

9

)1/3

+

(
4

9

)1/3

= (
3
√

2− 1)1/3,

(
cos

2π

7

)1/3

+

(
cos

4π

7

)1/3

+

(
cos

8π

7

)1/3

=

(
5− 3 3

√
7

2

)1/3

,

(
cos

2π

9

)1/3

+

(
cos

4π

9

)1/3

+

(
cos

8π

9

)1/3

=

(
3 3
√

9− 6

2

)1/3

.

It is easy to connect the above equations with the following
problem: for which cubic polynomials Q(x) (with all real
roots) of the form

Q(x) = (x− ξ1)(x− ξ2)(x− ξ3) = x3 + px2 + qx+ r

there exists a function f(p, q, r) that possesses possibly ”sim-
ple” algebraic form and for which the following equality holds

3
√
ξ1 + 3

√
ξ2 + 3

√
ξ3 = 3

√
f(p, q, r).

Although some attempts to solve this interesting problem have
been undertaken (see for example the respective Ramanujan
Theorem in [4] or in the second Notebook of Ramanujan
[22]), only the mentioned above V. Shevelev and R. Wituła
succeeded in distinguishing the appropriate families of cubic
polynomials and in describing properties of these polynomials
(see also the paper [1]). Let us only recall that if the following
conditions are satisifed

r 6= 0,

p 3
√
r + 3

3
√
r2 + q = 0,(

b
2

)2
+
(
a
3

)3
< 0,

(12)

where
a := q − p2

3
, b :=

2

27
p3 − 1

3
pq + r,

then Q(x) is a RCP and the following identities hold (the last
expressions in all three formulae below are prepared for the
algorithmic applications):

3
√
x1 + 3

√
x2 + 3

√
x3 =

(
−p− 6r1/3 + 3(9r − pq)1/3

)1/3

= sgn
(
−p− 6r1/3 + 3 sgn(9r − pq)|9r − pq|1/3

)
×
∣∣∣−p− 6r1/3 + 3 sgn(9r − pq)|9r − pq|1/3

∣∣∣1/3 ,

3
√
x1x2 + 3

√
x1x3 + 3

√
x2x3 =

3

√
q + 6r2/3 − 3 3

√
9r2 − pqr

= sgn
(
q + 6r2/3 − 3 sgn(9r2 − pqr)|9r2 − pqr|1/3

)
×
∣∣∣q + 6r2/3 − 3 sgn(9r2 − pqr)|9r2 − pqr|1/3

∣∣∣1/3 ,
as well as the so called Shevelev’s formula [24], [31]:

3

√
x1

x2
+ 3

√
x2

x1
+ 3

√
x1

x3
+ 3

√
x3

x1
+ 3

√
x2

x3
+ 3

√
x3

x2

=
1

3
√
x1x2x3

(
3

√
x2

1x3 + 3

√
x1x2

3 + 3

√
x2

1x2 + 3

√
x1x2

2

+ 3

√
x2

2x3 + 3

√
x2x2

3

)
= sgn

(pq
r
− 9
)

3

√∣∣∣pq
r
− 9
∣∣∣.

To the contrast, if instead of conditions (12) the following
conditions are fulfilled

r 6= 0,
p3r + 27r2 + q3 = 0,(
b
a

)2
+
(
a
3

)3
< 0,

(13)

then Q(x) is a RCP2 and the following relations hold

3
√
ξ1 + 3

√
ξ2 + 3

√
ξ3 =

(
− p− 6 3

√
r

−3 3

√
3 3
√
r(q + p 3

√
r)− 3

3

√
(p+ 3 3

√
r)(q + 3

3
√
r2)

)1/3

,

as well as

3

√
ξ1
ξ2

+ 3

√
ξ2
ξ1

+ 3

√
ξ1
ξ3

+ 3

√
ξ3
ξ1

+ 3

√
ξ2
ξ3

+ 3

√
ξ3
ξ2

=
3

√
3

r2/3
(q + p 3

√
r) +

3

√
pq

r
+

3

r2/3
(q + p 3

√
r + 3

3
√
r2).

Let us notice that a cubic polynomial p(x) = x3 + px2 +
qx+ r, which is either RCP or RCP2, is simultaneously RCP
and RCP2 if and only if pq = 0 which implies that either

p(x) = x3 − 3
3
√
r2x+ r =

(
x− 2 3

√
r cos

2π

9

)
×

×
(
x− 2 3

√
r cos

4π

9

)(
x− 2 3

√
r cos

8π

9

)
or

p(x) = x3 − 3 3
√
rx2 + r =

(
x− 1

2
3
√
r sec

2π

9

)
×

×
(
x− 1

2
3
√
r sec

4π

9

)(
x− 1

2
3
√
r sec

8π

9

)
,

where r ∈ R \ {0}. On the other hand we know that the
polynomials belonging to families RCP and RCP2 share many
common analytical-algebraic properties (see [14], [24]).

Let us present now the examples of cubic polynomials with
indicating the Ramanujan classes of polynomials they belong:
1◦ p(x) = x3+3x2−3 3

√
2x+1 is the RCP2 polynomial which

is not the RCP one. It has the following zeros (we apply here
our formulae (5)):

x1 = −1− 2

√
1 +

3
√

2 cos

(
1

3
arccot

3√
4 3
√

2− 5

)
,
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x2 = −1 + 2

√
1 +

3
√

2 cos

(
1

3

(
π + arccot

3√
4 3
√

2− 5

))
,

x3 = −1+2

√
1 +

3
√

2 sin

(
1

6

(
π + 2arccot

3√
4 3
√

2− 5

))
.

Additionally we observe that

3√
4 3
√

2− 5
=

√
3(25 + 20

3
√

2 + 16
3
√

4) =

√
3( 3
√

2 + 1)
3
√

2− 1
,

so by identity arctanx = arccot 1
x for x > 0 we get

arccot
3√

4 3
√

2− 5
= arctan

√
3( 3
√

2 + 1)
3
√

2− 1
.

Using formulae (3)–(5) from [29] (or the respective ones from
[31]) we obtain the following Ramanujan type equalities (for
real roots of third order):

3
√
x1 + 3

√
x2 + 3

√
x3 = 0,

3

√
x1

x2
+ 3

√
x2

x1
+ 3

√
x1

x3
+ 3

√
x3

x1
+ 3

√
x2

x3
+ 3

√
x3

x2
= −3. (14)

We also have x1 + x2 + x3 = −3 and

3
√
x1x2 + 3

√
x1x3 + 3

√
x2x3 = − 3

√
3(

3
√

2 + 1).

Hence we deduce the relation
P (x) = (x− 3

√
x1)(x− 3

√
x2)(x− 3

√
x3)

= x3 − 3

√
3(

3
√

2 + 1)x+ 1
(15)

and next, by applying the Cardano’s formulae (5) we get

3
√
x1 = − 2

3
√

3

6

√
1 +

3
√

2 cos

(
1

3
arctan

1

3

√
4

3
√

2− 5

)
,

3
√
x2 =

2
3
√

3

6

√
1 +

3
√

2 cos

(
1

3

(
π + arctan

1

3

√
4

3
√

2− 5

))
,

3
√
x3 =

2
3
√

3

6

√
1 +

3
√

2 sin

(
1

6

(
π + 2 arctan

1

3

√
4

3
√

2− 5

))
.

By comparing these relations with the formulae for values of
x1, x2, x3 we obtain the identity

xk + 1
3
√
xk

=
3

√
3(

3
√

2 + 1), k = 1, 2, 3,

It is well known that each polynomial q(x) from RCP2 class has the from
(see [31]):

q(x) = x3 + 3
3
√
krx2 − 3 3

√
(k + 1)r2x+ r,

where k, r ∈ R, r 6= 0. Then for the roots x1, x2, x3 of q(x) the following
Shevelev’s identity holds

3

√
x1

x2
+ 3

√
x2

x1
+ 3

√
x1

x3
+ 3

√
x3

x1
+ 3

√
x2

x3
+ 3

√
x3

x2

=
3
√
9

(
3
√

3
√
k − 3
√
k + 1 +

3
√

(
3
√
k + 1)(1− 3

√
k + 1)

)
.

Hence and from (14) we deduce the equality

3
√
3 =

(
3
√
2 + 1

)
3
√

3
√
2− 1.

(this identity results directly from formula (15)). It means that
the following ”unexpected” polynomial identity holds

p

(
3

√
3(

3
√

2 + 1)x− 1

)
= 3(

3
√

2 + 1)P (x). (16)

Moreover, by ”numerical experiment” we find that

3
√
x1x2 + 3

√
x1x3 + 3

√
x2x3 +

3
√

2 +
3

√
3
√

2− 1

=
3
√

2 +
3

√
3
√

2− 1− 3

√
3(

3
√

2 + 1) ≈ 0.00545.

2◦ q(x) = x3 +x2−2x−1 = (x−2 cos 2π
7 )(x−2 cos 4π

7 )(x−
2 cos 8π

7 ) – an example of the RCP polynomial which is not
the RCP2 one.

3◦ The polynomials from examples B) – H) presented
in Section 3 are neither RCP polynomials nor RCP2 ones.

Announcement

While preparing this section we have solved unexpectedly
one more problem. We have proven that the polynomials

R(x; p) := x3 + 9px2 + 23

(
6

1±
√

93

)3

p2x

−
(

6

1±
√

93

)3

p3 = (x− x1)(x− x2)(x− x3),

(17)

where p ∈ R \ {0} and (for the upper signs):

x1

p
= −3−

6
√

6(
√

93− 1)

23
cos

arccot
√

31

3
,

x2

p
= −3 +

6
√

6(
√

93− 1)

23
cos

π + arccot
√

31

3
, (18)

x3

p
= −3 +

6
√

6(
√

93− 1)

23
sin

π + 2arccot
√

31

6

are the only RCP such that polynomial

(x− 3
√
x1)(x− 3

√
x2)(x− 3

√
x3)

belongs to the RCP2 family (see [2]). By applying ”our”
Cardano’s formulae and a bit of Mathematica ”magic sim-
plifications” we obtain the following relations

3

√
x1

p
= −

1 +
√

93 + 4
√

106− 9
√

93 cos
(

1
3ϕ
)

2
3
√

182
√

93− 1497
,

3

√
x2

p
=
−1−

√
93 + 4

√
106− 9

√
93 cos

(
1
3 (π+ϕ)

)
2

3
√

182
√

93− 1497
,

3

√
x3

p
=
−1−

√
93 + 4

√
106− 9

√
93 sin

(
1
6 (π+2ϕ)

)
2

3
√

182
√

93− 1497
,

where ϕ = arctan
(

1
2

√
3
(
9 +
√

93
))

x1, x2, x3 are defined
by formulae (18).
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V. CONCLUSION

In this paper we have presented the algorithms for
determining the roots of cubic complex polynomials. The
proposed algorithms generate the descriptions of these roots
with the aid of radicals of trigonometric functions. The
examples of testing polynomials, presented in this paper, have
been originally generated by using the direct methods different
than the given here algorithms. In consequence, by applying
the algorithms presented here we received, the most often, the
new and different symbolic descriptions of the sought roots
of the given cubic polynomials. It gave us the possibility,
by comparing the obtained and the testing descriptions, to
reveal many new identities and relations. Additionally some
conjecture arose about the possible existence of description of
the values of functions cos

(
1
3 arctanα

)
, sin

(
1
3 arctanα

)
in

the form of radicals of variable α, where α is also a radical
defined on the set of rational numbers. We intend to discuss
this problem in a separate paper. Moreover, let us notice that
our algorithm verifies whether the given cubic polynomial
belongs to the RCP or RCP2 class.

Also in a separate paper (see [36]) we intend, as we
declared at the end of Introduction, to extend the discussion
of the symbolic description of the roots of cubic polynomials,
undertaken in this paper, for the roots of quartic polynomials
and the selected polynomials of higher order. Next, we plan to
adapt them numerically since we count on some better results
then the ones obtained with the aid of Mathematica software.
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