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New ε-Net Constructions
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Abstract

In this paper, we give simple and intuitive constructions
to obtain linear size ε-nets for α-fat wedges, translations
and rotations of a quadrant and axis-parallel three-sided
rectangles in R

2. We also give new constructions using
elementary geometry to obtain linear size weak ε-net for
d-hypercubes and disks in R

2.

1 Introduction

A set system H , also called hypergraph, is a pair (X,F),
where X is a finite set and F is a non-empty family of
subsets of X . We restrict ourselves to geometric set
systems (X,F), where X is a set of points in R

2 and F
is family of subsets of X induced by geometric objects
like wedges, quadrants, squares and disk.

For these set systems, we define ε-net as follows. A
set N ⊆ X ⊆ R

2 is called ε-net for (X,F) if N ∩ S 6= φ

for all S ∈ F with |S| ≥ ε|X |. If N ⊆ R
2, then it is

called a weak ε-net for (X,F).
Apart from the great theoretical importance they

have in computational and combinatorial geometry, ε-
nets have wide variety of applications in many geomet-
ric problems like hitting set, set cover, geometric par-
titions, range searching, etc. See [8] for a text book
treatment of the topic. A central result in the theory
of ε-nets called Epsilon-net theorem, due to Haussler
and Welzl [6] states that, for set systems with bounded
VC-dimension d, there exists an ε-net of size O(d

ε
log 1

ε
).

Linear size ε-nets exists for geometric objects like half-
spaces in R

2 and R
3 [7, 9, 10], pseudo disks [7, 10].

Aronov et al. [2] show that O(1

ε
log log 1

ε
) size ε-nets ex-

ist for axis-parallel rectangles. Recent result from Noga
Alon [1] shows that there exist simple geometric set sys-
tems with VC-dimension two which do not admit linear
size ε-nets. This result implies a (slightly) superlinear
lower bound on the size of ε-nets for many geometric
objects like lines, wedges and strips in R

2 (or fat lines
as referred in [1]), triangles, etc.

Weak ε-nets for convex objects (which have un-
bounded VC-dimension) have been studied in [3]. ε-nets
have also been considered for the dual problem, where
X is an arrangement of geometric objects like circles,
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squares, etc. and F is subsets of X induced by points.
See [4] for more details.

1.1 Our results

In this paper, we give new constructions to get ε-nets
for the following objects.

1) A simple construction to get an ε-net of size O( π
αε

)
for α-fat wedges in R

2. For the dual problem a linear
size ε-net is shown in [4], using the combinatorial com-
plexity of the union of objects.

2) Linear size ε-nets for quadrants and three-sided
axis-parallel rectangles (unbounded axis-parallel rectan-
gles) in R

2.
3) An alternate construction using elementary ge-

ometry to get weak ε-net of size 2
d

ε
for d-hypercubes

and O(1

ε
) size weak net for disks in R

2. These re-
sults can also be derived from the solution to Hadwiger-
Debrunner (p,q) problem for d-hypercubes and balls.
However, the proofs are more involved. See [5]. For the
case of disks in R

2, O(1

ε
) size (strong) ε-net exist. See

[7, 10].

2 ε-nets for α-fat wedges in R
2

In this section, we present our main result, ε-nets for α-
fat wedges in R

2. Without loss of generality, we assume
that points are in general position with no two points
having the same X or Y coordinate.

Definition 2.1: In R
2, a wedge is defined as the

region of intersection of two non-parallel halfspaces. An
α-fat wedge is a wedge having an angle of intersection
of at least α-radians between the two lines that define
the wedge.

Definition 2.2: An axis-aligned wedge is a wedge
with angle less than π

2
, formed by the intersection of two

halfspaces one of which is either parallel to horizontal
axis or vertical axis.

The intersection of a horizontal halfspace with any
other halfspace creates four different types of axis-
aligned wedges depending upon the direction the open
face extends. Similarly, the intersection of a vertical
halfspace with any other halfspace creates four different
types axis-aligned wedges. Hence we distinguish eight
different types of axis-aligned wedges and call them
Type 1, Type 2 etc.

Definition 2.3: A Type 1 wedge is an axis-aligned
wedge formed by the intersection of a horizontal halfs-
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pace (y ≥ y0) with another halfspace whose defining line
has positive slope (The wedge W in Figure 2 is a Type 1
wedge). We show a simple construction to obtain small
size ε-nets for Type 1 wedges.

Lemma 1 ε-nets of size O(1

ε
) exist for Type 1 wedges.

Proof. Divide the input point set horizontally into 2

ε

partitions, each containing εn
2

points. Let M denote the
set of points we choose as an ε-net. For every partition
i, 1 ≤ i ≤ 2

ε
, let Pi denote the set of points lying on

or above the partition i. Let Hi denote the convex hull
of Pi. Let H ′

i denote the ordered set of points lying on
the boundary of Hi, ordered in anti-clockwise direction
starting with the topmost point of Pi. For every point
p ∈ H ′

i, let N(p) denote the point following p in the
ordered list H ′

i. For the last point of H ′
i, N(p) is defined

as the first element of H ′
i. Let H ′′

i be the subsequence
of H ′

i consisting of points belonging to the ith partition
(the points in H ′′

i appear in the same order as they
appear in H ′

i). Since the point with lowest Y -coordinate
of any point set will be on the convex hull, H ′′

i is not
empty. For every partition i, 1 ≤ i ≤ 2

ε
, let pi denote

the last point in the ordered list H ′′
i . For every partition

i, 1 ≤ i ≤ 2

ε
, include in M , the point pi and N(pi), i.e.,

M =
⋃ 2

ε

i=1
{pi, N(pi)} (Refer Figure 1). Since we are

picking two points for every partition, |M | ≤ 4

ε
. We

now show that, M indeed forms a valid ε-net.
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Figure 1: H ′
i = {1, 2, 3, 4, 5, 6, 7, 8}, H ′′

i = {5, 6, 7}, pi =
7 and N(pi) = 8.

Let W be a Type 1 wedge containing more than εn

points, which means, W has to take points from at least
three partitions. Let i be the partition containing the
horizontal line of W . Let j, k, i < j < k ≤ 2

ε
be the

indices such that W takes at least one point from the
jth and kth partition. We claim that W contains at
least one of pj or N(pj).

W intersects the convex hull Hj as it takes points
from the jth partition (see Figure 2). Since W also takes
points from the kth partition, it has to either contain or

intersect the edge (pj , N(pj)) of Hj . In both the cases,
W contains at least one of pj or N(pj). �

The ε-net construction for the Type 1 wedges can be
suitably modified to get an ε-net of size at most 4

ε
for

all the other types of axis-aligned wedges. This proves
that, ε-nets of size at most 32

ε
exist for the axis-aligned

wedges. Now we are ready to prove the main result.
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Figure 2: A Type 1 wedge anchored at the partition i

and intersecting the edge (pj , N(pj)) of Hj

Theorem 2 ε-nets of size O( π
αε

) exist for α-fat wedges.

Proof. The main idea behind the construction of ε-net
M for α-fat wedges is to find an axis-aligned wedge con-
tained fully in the α-fat wedge and having a good frac-
tion of εn points of the wedge. Then we can use the
construction given in Lemma 1 to stab such a wedge.
To do this, we construct a sequence of ε-nets and in-
clude them in M .

1. Construct an ε
3
-net Mh for halfspaces in R2.

2. Construct an ε
3
-net M ′ for axis-aligned wedges as

described in Lemma 1.
3. If α is less than π

2
, do the following. For ∀i, 1 ≤

i ≤ d π
2α

e rotate the coordinate axes by iα radians in
clockwise direction and construct an ε

2
-net Mi for axis-

aligned wedges.
4. Take M = Mh ∪ M ′ ∪ {

⋃
i Mi}

We show that M is a valid ε-net for α-fat wedges.
Consider any wedge W forming an angle θ, θ ≥ α, and
containing εn points. If θ ≥ π

2
, then W contains either

an axis-aligned wedge having at least εn
3

points or con-
tains a halfspace having at least εn

3
points. In either

case, W contains one of the points of M . If θ < π
2

then at one of the orientations of the coordinate axes as
described in step 3, W contains an axis-aligned wedge
having at least εn

2
points. Therefore M forms a valid

ε-net.
There are many constructions known to get ε-net of

size at most 2

ε
for halfspaces in R

2. Hence, |M | =
O( π

αε
). �
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Corollary 1: ε-nets of size at most 64

ε
exist for trans-

lations and rotations of a quadrant.

Proof. This follows from the observation that every
orientation of a quadrant contains an axis-aligned wedge
containing at least εn

2
points. �

3 ε-nets for axis-parallel three-sided rectangles

In this section, we consider three-sided axis-parallel
rectangles (rectangles with one of the sides open) in R

2

and show by elementary construction that linear size ε-
nets exist for them. However, for arbitrary orientations
of three-sided rectangles, a non-linear lower bound is
shown in [1].

Theorem 3 ε-nets of size O(1

ε
) exist for axis-parallel

three sided rectangles in R
2.

Proof. We assume for simplicity that no two points
have the same X or Y coordinate. This assumption
can be removed by a trivial modification to our proof.
Partition the input point set horizontally and vertically
into 2

ε
blocks such that, each horizontal and each verti-

cal block contains εn
2

points. Let M denote the set of
points we chose as ε-net. From every horizontal block,
include in M , points with the highest and the lowest
value of X coordinate. Similarly, from every vertical
block, include in M , points with the highest and the
lowest value of Y coordinate. Clearly, |M | ≤ 8

ε
. We

show that M forms an ε-net for three sided axis-parallel
rectangles. To see this, without loss of generality, con-
sider any axis-parallel three-sided rectangle R with the
open region extending towards top. Let l,r,b denote the
left, right and bottom sides of R. Assume for contra-
diction that R does not contain any points from M . To
contain more than εn points, R has to include points
from at least three horizontal and three vertical blocks.
Consider the vertical blocks which do not contain the
sides l and r. Since from every vertical block, M con-
tains the point with highest Y coordinate, R cannot
include points from these blocks without containing the
point with highest Y coordinate. Therefore, R is ef-
fectively including points from at most two blocks. A
contradiction. �

Note: The above technique also gives us an ε-net of
size at most 4

ε
for axis-parallel quadrants, by consider-

ing horizontal (or vertical) partitions only, and taking
points as described above.

4 Weak ε-nets

In this section we give simple constructions to get linear
size weak ε-nets for axis-parallel d dimensional hyper-
cubes (d-hypercubes) and disk in R

2.

4.1 Weak ε-nets for axis-parallel d-hypercubes

Theorem 4 Weak ε-nets of size 2
d

ε
exist for axis-

parallel d-hypercubes.

Proof. Let P denote the input point set and M denote
the set of points we choose as ε-net. We consider the
smallest d-hypercube containing εn points, include all
its 2d vertices in M and recurse on the remaining points.
We formally state the construction as follows: For any d-
hypercube C, let P (C) denote the set of points enclosed
by C. Let Ci be the smallest d-hypercube containing εn

points on the point set P \
⋃i−1

j=1
P (Cj). For all i, 1 ≤

i ≤ 1

ε
, include all the vertices of Ci in M . Since at each

iteration we pick 2d points, |M | = 2
d

ε
.

We show that, M is a weak ε-net for axis-parallel d-
hypercubes. Consider any axis-parallel d-hypercube C

which contains more than εn points. Let S ⊆ {Ci|1 ≤
i ≤ 1

ε
} be the set of d-hypercubes that C intersects.

Let Cj be the d-hypercube with the smallest index
in S. Since at each iteration we pick the smallest d-
hypercube containing εn points, Cj cannot be larger
than C. Therefore, C contains one of the vertices of Cj .
Hence, M is a weak ε-net for d-hypercubes. �

4.2 Weak ε-nets for disks

Theorem 5 Weak ε-nets of size 13

ε
exist for disks.

Proof. We use a similar technique as described in
Theorem 4. Let P denote the input point set and M

denote the set of points we choose as ε-net. For any
disk C, let P (C) denote the set of points enclosed by
C. Let Ci be the smallest disk containing εn points on
the point set P \

⋃i−1

j=1
P (Cj). For all i, 1 ≤ i ≤ 1

ε
, let

C′
i denote the concentric circle with radius 3

2
times the

radius of Ci. From the circumference of Ci, 1 ≤ i ≤ 1

ε
,

include in M , five equally spaced points. Similary, from
the circumference of C′

i, 1 ≤ i ≤ 1

ε
, include in M , eight

equally spaced points. Since, at each iteration we pick
exactly thirteen points, |M | = 13

ε
. We shall show that

M is a valid weak ε-net for disks. Towards this end, we
shall make an elementary observation.

Claim: Let C1, C2 be concentric circles of radius r and
3r
2

. Let C′ be circle of radius r which intersects C1.
Then, C′ will either enclose an arc of length at least
1

5
th fraction of circumference of C1 or enclose an arc of

length at least 1

8
th fraction of circumference of C2 .

Refer figure 3. Consider the case when C′ touches the
circle C1. Using the cosine rule, it follows that ∠QPA

is at least 25◦ and ∠BPA is at least 50◦. Therefore C′

encloses an arc of length at least 1

8
th fraction of circum-

ference of C2.
Now consider the case when center of C′ lies on the

circumference of C2. Refer figure 4. In this case, the



22nd Canadian Conference on Computational Geometry, 2010

A

Q
r

r

3r/2

  P

B

C’r/2r/2

C2

C1

Figure 3: Circles C1 and C2 are concentric circles with
radius r and 3r

2
. Circle C′ touches C1.

P Q

A

B

C’r/2 r/2r/2

F

E

3r/2

C2

C1

Figure 4: Circles C1 and C2 are concentric circles with
radius r and 3r

2
. Center of C′ lies on circumference of

C2.

∠QPA is at least 35◦ and ∠BPA is at least 70◦. So,
C′ still encloses an arc of length at least 1

8
th fraction of

circumference of C2. It is easy to see that if the center
of C′ lies in between these two configurations, length of
the arc enclosed by C′ increases monotonically.

It also follows from the cosine rule that, the ∠QPE

is at least 40◦ and ∠EPF is at least 80◦. Hence at this
configuration, C′ will enclose an arc of length at least
1

5
th fraction of circumference of C1. If C′ intersects the

circle C1 more deeply, it will enclose a larger fraction
of circumference of C1. This proves the claim. It is
clear that the above claim holds when the radius of C′

is greater than r.

Now consider any disk C containing more than εn

points. Let S ⊆ {Ci|1 ≤ i ≤ 1

ε
} be the set of disks that

C intersects and let Cj be the disk with the smallest
index in S. Let C′

j denote the concentric disk of ra-

dius 3

2
times radius of Cj . Since at each iteration we

pick the smallest disk containing εn points, Cj cannot
be larger than C. Therefore, from the observation men-
tioned above, C will either enclose an arc of length at
least 1

5
th fraction of circumference of Cj or enclose an

arc of length at least 1

8
th fraction of the circumference

C′
j . Since M contains five equally spaced points from

the circumference of Cj and eight equally spaced points
from the circumference of C′

j , C has to contain at least
one of these points. Hence M is a valid ε-net. �

Conclusion

In this paper, we have shown a simple construction to
get small size ε-nets for α-fat wedges. Since arbitrary
wedges do not admit linear size ε-nets (they do not ad-
mit linear size weak ε-nets as well), it is an interest-
ing open question to get tight bounds on the size of ε-
nets. Another interesting open question is to find tight
bounds on the size of weak ε-nets for axis-parallel rect-
angles.
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