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Optimal schedules for 2-guard room search
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Abstract

We consider the problem of searching a polygonal room
with two guards starting at a specified door point.
While maintaining mutual visibility and without cross-
ing the door, the guards must move along the boundary
of the room and eventually meet again. We give polyno-
mial time algorithms for finding a search schedule that
minimizes the total distance travelled by the guards and
for minimizing the time required for the search by solv-
ing L1 shortest path problems among curved obstacles
in a polygon.

1 Introduction

The two-guard room search problem is a variation on
the problem of searching for a mobile intruder inside
a polygon, introduced in [14]. The present variation
was first proposed by Park et al. [13] and involves two
guards walking along the boundary of a polygonal re-
gion. Given a room (P, d) the guards start at point
d (the door) on the boundary of polygon P , and they
are allowed to walk along the boundary of the room, ini-
tially going in opposite directions, without ever crossing
the door point. The goal is for the guards to maintain
mutual visibility at all times and meet again somewhere
else on the boundary of the room, at which point the
whole room has been searched for a mobile intruder.
We consider the problem of finding a shortest or fastest
search schedule dictating the motion of the guards sub-
ject to these conditions.

The first paper on this problem [13] gave anO(n log n)
time algorithm to determine if a room can be searched.
This was improved to O(n) by Bhattacharya et al. [1].
Neither paper considers the time or distance required to
search the room.

In an earlier variant of the problem called “search-
ing a corridor” the final meeting point of the guards
is specified as well as the initial point, and the guards
may not cross either of these points. Our room search
problem is not solvable by testing all possible final meet-
ing points, since there are rooms that can be searched
only by allowing the guards to cross the final meeting
point [13]. For searching a corridor, Icking and Klein [7]
find a search schedule of minimum total length in time
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O(n log n+k) where k ∈ O(n2) is the size of the output.
Our optimization approach is quite different.

There is also a wealth of research on versions of the
problem with different numbers of guards and differ-
ent types of visibility—see [8] and [10] for the case of
one guard; Lavalle et al. [6] for “visibility-based pursuit-
evasion” with multiple guards; and Efrat et al. [5] for a
chain of k guards.

In this paper, we present an algorithm that will find
optimal search schedules, if they exist, using two differ-
ent notions of optimality: the shortest distance travelled
and the shortest length of time required to search the
room. The shortest distance schedule is found in O(n2)
time and the fastest schedule is found in O(n4) time.
This algorithm makes use of a search space that is a
visibility diagram describing the valid positions for the
two guards to maintain mutual visibility. The concept
was first discussed in [8] and later modified by Zhang
[15]. To maintain relevance to the current problem, we
use the latter version, which assumes that two points on
a single polygon edge are mutually visible. Our main
lemma is that minimizing the distance (resp. time) of
the room search schedule corresponds to minimizing the
length of a path in the search space under the L1 (resp.
L∞) metric.

The rest of the paper is presented as follows. In sec-
tion 2 we give the background information describing
the visibility diagram, its relationship to the problem,
and how to create it. In section 3, we relate paths in
the visibility diagram to search schedules of the room
and discuss optimality of search schedules. In section
4, we examine what types of curves can appear on the
visibility diagram and we discuss how the visibility dia-
gram can be constructed. In section 5, we discuss how
to solve the shortest paths problems in the visibility
diagram, giving the optimal schedules. Section 6 is a
summary of the work presented here.

2 Preliminaries

For any room (P, d), the visibility diagram [8] encodes,
for any pair of points on the boundary of P , whether
or not the points are mutually visible. We will consider
a reduced visibility diagram from [1] as the V-diagram,
containing the minimum amount of relevant information
for the room search problem. The diagram’s boundary
is a right triangle with the left and top sides equal in
length to the perimeter of P . With the top left corner
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Figure 1: Room and its V-diagram from [1]

(0, 0) representing d, the x (resp. y) coordinate repre-
sents the distance along the border of P from the door in
the clockwise (resp. counterclockwise) direction. Then
we can associate any point (x, y) in the diagram with
positions of the two guards on the border of P . To
represent the mutual visibility of pairs of points, any
point (x, y) in the V-diagram is shaded iff the corre-
sponding positions are not mutually visible in the poly-
gon. Figure 1 shows an example of this, where 0 is the
door point. Any point on the diagonal corresponds to
a meeting point of the two guards. Then any path π
in the V-diagram from the top-left corner (the door) to
the diagonal (the goal) that does not cross any shaded
areas (obstacles) corresponds to a valid search schedule
s of P ; we say that s = S(π).

We will assume that each guard can travel indepen-
dently at varying speeds in the range [0, 1] both for-
wards and backwards (without crossing the door point).
For any search schedule s, let D(s) denote the distance
travelled by the guards during s, and let T (s) denote the
time required for s. It should be noted that minimiz-
ing each of these may result in different search sched-
ules. Figure 2 shows an example of a room, with a door
at 0, where the two notions of optimal schedule give
two different search schedules. The shortest distance
is achieved if one guard travels from 0 to 2, while the
other guard waits at 5, resulting in a total distance trav-
elled equal to 24 (the perimeter of the polygon). This
schedule takes over 19 time units. The quickest search
schedule involves one guard travelling along 0, 5, 4, 3,
and 2 while the other guard must go from 0 to b and
back to a to maintain mutual visibility. This requires
backtracking from b to a, which results in a total dis-
tance travelled that is greater than 24, but it takes less
than 15 time units to complete the entire search.
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Figure 2: Optimal schedules are different

3 Correspondence Between Paths in the V-diagram
and Search Schedules

The V-diagram can be used to construct optimal sched-
ules for searching the room. We first describe a rela-
tionship between the length of a path in the V-diagram
and the distance/time of the corresponding room search
schedule.

Lemma 1 Let π be a path in the V-diagram for a room
and s = S(π) be the corresponding search schedule of
the room. Then |π|1 = D(s) and |π|∞ = T (s).

In order to prove this lemma we must define D(s) and
T (s) more precisely. Let us first recall how the length
of a curve is defined. A distance metric d(a, b) defines
the distance between a pair of points a and b. This is
the length of the line segment from a to b. The length
of a general curve π = π(t), t ∈ [0, T ] is defined to be
sup(

∑k
i=1 d(π(ti), π(ti−1))) where the sup is taken over

partitions t0, . . . , tk of [0, T ]. We only consider rectifi-
able curves, which are defined as curves where the sup
exists.

We define T (s) and D(s) in a similar fashion, first for
straight line segments and then using a sup.

Proof. [Proof of Lemma 1] By the above clarification
of the definition of D(s) and T (s) it suffices to prove
the result for a path π that is a straight line segment.

In the L1 metric |π|1 = |a−b|1 = |(a−b)x|+|(a−b)y|.
This represents the sum of the distances travelled by the
two guards, so π1 = D(s).

In the L∞ metric |π|∞ = |a − b|∞ = max(|(a −
b)x|, |(a− b)y|). Since both guards have the same max-
imum speed of 1, assume that the guard travelling the
greatest distance travels at speed 1 to minimize the time
spent, which is then that guard’s distance. We then
have |π|∞ = T (s).

�

Corollary 2 The search schedule requiring the short-
est amount of distance to travel along the room bound-
ary corresponds to the shortest path in the L1 metric
from the door to the goal in the V-diagram. The quick-
est search schedule for a room (P, d) corresponds to the
shortest path in the L∞ metric from the door to the goal
in the V-diagram.
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4 V-diagram Construction

We now discuss the nature of the V-diagram and how
it is created.

Theorem 3 The border of each obstacle in the V-
diagram is piecewise hyperbolic.

Proof. The proof is in the electronic version of the pro-
ceedings. �

To construct the V-diagram we need to accurately
describe all of the obstacles. To do this, we must, for
each of the reflex vertices:

1. Find the two points at which the projections of the
adjacent edges through the vertex first intersect the
polygon again. This takes O(n) time.

2. Starting at one of these points and working along
the polygon towards the reflex vertex, for each edge
of the polygon that is encountered, find the curve of
the V-diagram representing the pairs of points on
the polygon that have a line of visibility through
the reflex vertex. This takes O(n) time.

Therefore, with O(n) reflex vertices, the exact visibil-
ity diagram can be described in O(n2) time.

5 Finding Shortest Paths in V-diagram

We have now reduced the problem of finding optimal
search schedules with respect to distance and time to
the problem of finding shortest paths in the L1 and L∞
metrics among curved obstacles in the plane that are
piecewise hyperbolic.

We note the following two properties of L1 and L∞
shortest paths:

1. Between any two points there is a shortest L1 path
that is rectilinear. This remains true in the pres-
ence of curved obstacles, except in the situation –
that doesn’t arise for us – where the shortest path
travels between two abutting curved objects.

2. The L1 and L∞ norms are related by a linear map-
ping; in particular we can find shortest L∞ paths
by rotating the plane and its obstacles by 45◦ and
scaling, and then finding shortest L1 paths. This is
justified in [9].

Thus it suffices to find shortest L1 paths, either
among the original obstacles, or among the obstacles
rotated by 45◦.

There is considerable work on finding shortest L1

paths among polygonal obstacles in the plane [2, 12].
There is also work on “curvilinear” computational ge-
ometry [4] which has led to shortest path algorithms

among “splinegons” [11]. However, there appears to
be no solution in the literature to finding shortest L1

paths among curved obstacles. There are two basic ap-
proaches to solving this problem. The continuous Di-
jkstra approach is used by Mitchell [12] for polygonal
obstacles. Alternatively, the problem may be modelled
as a graph shortest path problem [3]. The former ap-
proach will likely lead to a more efficient solution, but
we will simply claim a polynomial time algorithm via
modelling the problem on a graph.

Lemma 4 Between any two points there exists a short-
est path among obstacles in the L1 metric such that the
path intersects obstacle boundaries only at local x or y
extreme points of the obstacles, and such that the por-
tion of the path between two consecutive such points is
monotone in x and y.

Proof. The proof is in the electronic version of the pro-
ceedings. �

This lemma justifies creating a graph whose vertices
are the extreme points of obstacles and whose edges cor-
respond to monotone paths between pairs of points. We
will in fact use a subset of these edges, not because it
reduces the quadratic number of edges, but because it
simplifies finding the edges. If there is a monotone path
between two points then there is a lowest monotone
path, the lower envelope of all monotone paths. A low-
est monotone path is minimal if it does not go through
an extreme point of an obstacle except at its endpoints.
Observe that a non-minimal path is a concatenation of
minimal paths.

This justifies restricting the edges of the graph to min-
imal lowest monotone paths between pairs of points.
The weight of an edge is the L1 distance between the
endpoints.

We add an additional vertex g to represent the goal
line in the V-diagram, and the edges and edge weights
are defined similarly with respect to any point on the
goal line.

Let N be the number of vertices. Since there are
O(n) barriers each with O(n) extreme points, thus N
is O(n2). In the case where the obstacles are not ro-
tated by 45◦ (the original L1 case) we obtain a tighter
bound of N ∈ O(n) (see the electronic version of the
proceedings). The graph has O(N2) edges.

We now show how to construct the graph. Find the
extreme points of the obstacles, and the pieces of obsta-
cle boundaries between extreme points. Note that these
pieces are monotone. For each extreme point shoot rays
downward and to the left and the right until we hit the
first obstacle boundary piece encountered. We claim
that this can all be done in O(N logN) time using plane
sweeps in the x and y directions.

Consider two extreme points ρ and ψ, with ρ higher.
Suppose ψ is to the right of ρ.
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Claim 1 There is a minimal lowest monotone path be-
tween ρ and ψ iff (1) the ray down from ρ meets the ray
left from ψ, or (2) the two rays meet the same piece of
obstacle boundary.

Proof. The proof is included in the electronic version
of the proceedings. �

An analogous result holds in case ψ is to the left of ρ.
We can test intersection of rays during the plane sweep.
It remains to identify edges arising from condition (2).
For any piece of obstacle boundary b let U be the set of
extreme points whose downward ray hits b, let R be the
set of extreme points whose leftward ray hits b, and let
L be the set of extreme points whose rightward ray hits
b. Note that R or L is empty. We add an edge between
any pair ρ ∈ U and ψ ∈ R if ρ is above and to the left of
ψ. We add an edge between any pair ρ ∈ U and ψ ∈ L
if ρ is above and to the right of ψ. The number of edges
is O(N2) and we can output them in that time.

On the constructed graph, Dijkstra’s algorithm finds
a shortest path from the door vertex to g in O(N2)
time. From this we can recover a shortest path in the
V-diagram and hence an optimal room search schedule.

6 Conclusion

We have shown how to use a visibility diagram of a
room to create an optimal schedule to search the room
with two guards. By solving a shortest L1 path problem
among curved obstacles, a shortest distance schedule
can be found in O(n2) time and a fastest route sched-
ule can be found in O(n4) time. While this technique
has not yielded remarkably fast running times, it is a
novel approach that may be applicable to finding opti-
mal schedules for other mobile guard problems.
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