Optimal schedules for 2-guard room search Stephen Bahun* Anna Lubiw* ### **Abstract** We consider the problem of searching a polygonal room with two guards starting at a specified door point. While maintaining mutual visibility and without crossing the door, the guards must move along the boundary of the room and eventually meet again. We give polynomial time algorithms for finding a search schedule that minimizes the total distance travelled by the guards and for minimizing the time required for the search by solving L_1 shortest path problems among curved obstacles in a polygon. #### 1 Introduction The two-guard room search problem is a variation on the problem of searching for a mobile intruder inside a polygon, introduced in [14]. The present variation was first proposed by Park et al. [13] and involves two guards walking along the boundary of a polygonal region. Given a room (P,d) the guards start at point d (the door) on the boundary of polygon P, and they are allowed to walk along the boundary of the room, initially going in opposite directions, without ever crossing the door point. The goal is for the guards to maintain mutual visibility at all times and meet again somewhere else on the boundary of the room, at which point the whole room has been searched for a mobile intruder. We consider the problem of finding a shortest or fastest search schedule dictating the motion of the guards subject to these conditions. The first paper on this problem [13] gave an $O(n \log n)$ time algorithm to determine if a room can be searched. This was improved to O(n) by Bhattacharya et al. [1]. Neither paper considers the time or distance required to search the room. In an earlier variant of the problem called "searching a corridor" the final meeting point of the guards is specified as well as the initial point, and the guards may not cross either of these points. Our room search problem is not solvable by testing all possible final meeting points, since there are rooms that can be searched only by allowing the guards to cross the final meeting point [13]. For searching a corridor, Icking and Klein [7] find a search schedule of minimum total length in time $O(n \log n + k)$ where $k \in O(n^2)$ is the size of the output. Our optimization approach is quite different. There is also a wealth of research on versions of the problem with different numbers of guards and different types of visibility—see [8] and [10] for the case of one guard; Lavalle et al. [6] for "visibility-based pursuit-evasion" with multiple guards; and Efrat et al. [5] for a chain of k guards. In this paper, we present an algorithm that will find optimal search schedules, if they exist, using two different notions of optimality: the shortest distance travelled and the shortest length of time required to search the room. The shortest distance schedule is found in $O(n^2)$ time and the fastest schedule is found in $O(n^4)$ time. This algorithm makes use of a search space that is a visibility diagram describing the valid positions for the two guards to maintain mutual visibility. The concept was first discussed in [8] and later modified by Zhang [15]. To maintain relevance to the current problem, we use the latter version, which assumes that two points on a single polygon edge are mutually visible. Our main lemma is that minimizing the distance (resp. time) of the room search schedule corresponds to minimizing the length of a path in the search space under the L_1 (resp. L_{∞}) metric. The rest of the paper is presented as follows. In section 2 we give the background information describing the visibility diagram, its relationship to the problem, and how to create it. In section 3, we relate paths in the visibility diagram to search schedules of the room and discuss optimality of search schedules. In section 4, we examine what types of curves can appear on the visibility diagram and we discuss how the visibility diagram can be constructed. In section 5, we discuss how to solve the shortest paths problems in the visibility diagram, giving the optimal schedules. Section 6 is a summary of the work presented here. ### 2 Preliminaries For any room (P,d), the visibility diagram [8] encodes, for any pair of points on the boundary of P, whether or not the points are mutually visible. We will consider a reduced visibility diagram from [1] as the V-diagram, containing the minimum amount of relevant information for the room search problem. The diagram's boundary is a right triangle with the left and top sides equal in length to the perimeter of P. With the top left corner ^{*}David R. Cheriton School of Computer Science, University of Waterloo, {sbahun, alubiw}@cs.uwaterloo.ca Figure 1: Room and its V-diagram from [1] (0,0) representing d, the x (resp. y) coordinate represents the distance along the border of P from the door in the clockwise (resp. counterclockwise) direction. Then we can associate any point (x,y) in the diagram with positions of the two guards on the border of P. To represent the mutual visibility of pairs of points, any point (x,y) in the V-diagram is shaded iff the corresponding positions are not mutually visible in the polygon. Figure 1 shows an example of this, where 0 is the door point. Any point on the diagonal corresponds to a meeting point of the two guards. Then any path π in the V-diagram from the top-left corner (the door) to the diagonal (the goal) that does not cross any shaded areas (obstacles) corresponds to a valid search schedule s of P; we say that $s = S(\pi)$. We will assume that each guard can travel independently at varying speeds in the range [0, 1] both forwards and backwards (without crossing the door point). For any search schedule s, let D(s) denote the distance travelled by the guards during s, and let T(s) denote the time required for s. It should be noted that minimizing each of these may result in different search schedules. Figure 2 shows an example of a room, with a door at 0, where the two notions of optimal schedule give two different search schedules. The shortest distance is achieved if one guard travels from 0 to 2, while the other guard waits at 5, resulting in a total distance travelled equal to 24 (the perimeter of the polygon). This schedule takes over 19 time units. The quickest search schedule involves one guard travelling along 0, 5, 4, 3, and 2 while the other guard must go from 0 to b and back to a to maintain mutual visibility. This requires backtracking from b to a, which results in a total distance travelled that is greater than 24, but it takes less than 15 time units to complete the entire search. Figure 2: Optimal schedules are different # 3 Correspondence Between Paths in the V-diagram and Search Schedules The V-diagram can be used to construct optimal schedules for searching the room. We first describe a relationship between the length of a path in the V-diagram and the distance/time of the corresponding room search schedule. **Lemma 1** Let π be a path in the V-diagram for a room and $s = S(\pi)$ be the corresponding search schedule of the room. Then $|\pi|_1 = D(s)$ and $|\pi|_{\infty} = T(s)$. In order to prove this lemma we must define D(s) and T(s) more precisely. Let us first recall how the length of a curve is defined. A distance metric d(a,b) defines the distance between a pair of points a and b. This is the length of the line segment from a to b. The length of a general curve $\pi = \pi(t), t \in [0,T]$ is defined to be $\sup(\sum_{i=1}^k d(\pi(t_i), \pi(t_{i-1})))$ where the sup is taken over partitions t_0, \ldots, t_k of [0,T]. We only consider rectifiable curves, which are defined as curves where the sup exists. We define T(s) and D(s) in a similar fashion, first for straight line segments and then using a sup. **Proof.** [Proof of Lemma 1] By the above clarification of the definition of D(s) and T(s) it suffices to prove the result for a path π that is a straight line segment. In the L_1 metric $|\pi|_1 = |a-b|_1 = |(a-b)_x| + |(a-b)_y|$. This represents the sum of the distances travelled by the two guards, so $\pi_1 = D(s)$. In the L_{∞} metric $|\pi|_{\infty} = |a-b|_{\infty} = \max(|(a-b)_x|, |(a-b)_y|)$. Since both guards have the same maximum speed of 1, assume that the guard travelling the greatest distance travels at speed 1 to minimize the time spent, which is then that guard's distance. We then have $|\pi|_{\infty} = T(s)$. Corollary 2 The search schedule requiring the shortest amount of distance to travel along the room boundary corresponds to the shortest path in the L_1 metric from the door to the goal in the V-diagram. The quickest search schedule for a room (P,d) corresponds to the shortest path in the L_{∞} metric from the door to the goal in the V-diagram. ## 4 V-diagram Construction We now discuss the nature of the V-diagram and how it is created. **Theorem 3** The border of each obstacle in the V-diagram is piecewise hyperbolic. **Proof.** The proof is in the electronic version of the proceedings. \Box To construct the V-diagram we need to accurately describe all of the obstacles. To do this, we must, for each of the reflex vertices: - 1. Find the two points at which the projections of the adjacent edges through the vertex first intersect the polygon again. This takes O(n) time. - 2. Starting at one of these points and working along the polygon towards the reflex vertex, for each edge of the polygon that is encountered, find the curve of the V-diagram representing the pairs of points on the polygon that have a line of visibility through the reflex vertex. This takes O(n) time. Therefore, with O(n) reflex vertices, the exact visibility diagram can be described in $O(n^2)$ time. ### 5 Finding Shortest Paths in V-diagram We have now reduced the problem of finding optimal search schedules with respect to distance and time to the problem of finding shortest paths in the L_1 and L_{∞} metrics among curved obstacles in the plane that are piecewise hyperbolic. We note the following two properties of L_1 and L_{∞} shortest paths: - 1. Between any two points there is a shortest L_1 path that is rectilinear. This remains true in the presence of curved obstacles, except in the situation that doesn't arise for us where the shortest path travels between two abutting curved objects. - 2. The L_1 and L_{∞} norms are related by a linear mapping; in particular we can find shortest L_{∞} paths by rotating the plane and its obstacles by 45° and scaling, and then finding shortest L_1 paths. This is justified in [9]. Thus it suffices to find shortest L_1 paths, either among the original obstacles, or among the obstacles rotated by 45° . There is considerable work on finding shortest L_1 paths among polygonal obstacles in the plane [2, 12]. There is also work on "curvilinear" computational geometry [4] which has led to shortest path algorithms among "splinegons" [11]. However, there appears to be no solution in the literature to finding shortest L_1 paths among curved obstacles. There are two basic approaches to solving this problem. The continuous Dijkstra approach is used by Mitchell [12] for polygonal obstacles. Alternatively, the problem may be modelled as a graph shortest path problem [3]. The former approach will likely lead to a more efficient solution, but we will simply claim a polynomial time algorithm via modelling the problem on a graph. **Lemma 4** Between any two points there exists a shortest path among obstacles in the L_1 metric such that the path intersects obstacle boundaries only at local x or y extreme points of the obstacles, and such that the portion of the path between two consecutive such points is monotone in x and y. **Proof.** The proof is in the electronic version of the proceedings. \Box This lemma justifies creating a graph whose vertices are the extreme points of obstacles and whose edges correspond to monotone paths between pairs of points. We will in fact use a subset of these edges, not because it reduces the quadratic number of edges, but because it simplifies finding the edges. If there is a monotone path between two points then there is a lowest monotone path, the lower envelope of all monotone paths. A lowest monotone path is minimal if it does not go through an extreme point of an obstacle except at its endpoints. Observe that a non-minimal path is a concatenation of minimal paths. This justifies restricting the edges of the graph to minimal lowest monotone paths between pairs of points. The weight of an edge is the L_1 distance between the endpoints. We add an additional vertex g to represent the goal line in the V-diagram, and the edges and edge weights are defined similarly with respect to any point on the goal line. Let N be the number of vertices. Since there are O(n) barriers each with O(n) extreme points, thus N is $O(n^2)$. In the case where the obstacles are not rotated by 45° (the original L_1 case) we obtain a tighter bound of $N \in O(n)$ (see the electronic version of the proceedings). The graph has $O(N^2)$ edges. We now show how to construct the graph. Find the extreme points of the obstacles, and the pieces of obstacle boundaries between extreme points. Note that these pieces are monotone. For each extreme point shoot rays downward and to the left and the right until we hit the first obstacle boundary piece encountered. We claim that this can all be done in $O(N \log N)$ time using plane sweeps in the x and y directions. Consider two extreme points ρ and ψ , with ρ higher. Suppose ψ is to the right of ρ . Claim 1 There is a minimal lowest monotone path between ρ and ψ iff (1) the ray down from ρ meets the ray left from ψ , or (2) the two rays meet the same piece of obstacle boundary. **Proof.** The proof is included in the electronic version of the proceedings. \Box An analogous result holds in case ψ is to the left of ρ . We can test intersection of rays during the plane sweep. It remains to identify edges arising from condition (2). For any piece of obstacle boundary b let U be the set of extreme points whose downward ray hits b, let R be the set of extreme points whose leftward ray hits b, and let L be the set of extreme points whose rightward ray hits b. Note that R or L is empty. We add an edge between any pair $\rho \in U$ and $\psi \in R$ if ρ is above and to the left of ψ . We add an edge between any pair $\rho \in U$ and $\psi \in L$ if ρ is above and to the right of ψ . The number of edges is $O(N^2)$ and we can output them in that time. On the constructed graph, Dijkstra's algorithm finds a shortest path from the door vertex to g in $O(N^2)$ time. From this we can recover a shortest path in the V-diagram and hence an optimal room search schedule. ### 6 Conclusion We have shown how to use a visibility diagram of a room to create an optimal schedule to search the room with two guards. By solving a shortest L_1 path problem among curved obstacles, a shortest distance schedule can be found in $O(n^2)$ time and a fastest route schedule can be found in $O(n^4)$ time. While this technique has not yielded remarkably fast running times, it is a novel approach that may be applicable to finding optimal schedules for other mobile guard problems. # References - [1] Binay Bhattacharya, John Z. Zhang, Qiaosheng Shi, and Tsunehiko Kameda. An optimal solution to room search problem. In *Proceedings of the 18th Canadian Conference on Computational Geometry (CCCG'06)*, pages 55–58, 2006. - [2] Danny Z. Chen, Kevin S. Klenk, and Hung-Yi T. Tu. Shortest path queries among weighted obstacles in the rectilinear plane. SIAM Journal of Computing, 29(4):1223–1246, 2000. - [3] K. Clarkson, S. Kapoor, and P. Vaidya. Rectilinear shortest paths through polygonal obstacles in $O(n(\log n)^2)$ time. In SCG '87: Proceedings of the third annual symposium on Computational geometry, pages 251–257, New York, NY, USA, 1987. ACM Press. - [4] David P. Dobkin and Diane L. Souvaine. Computational geometry in a curved world. *Algorithmica*, 5(3):421–457, 1990. - [5] Alon Efrat, Leonidas J. Guibas, Sariel Har-Peled, David C. Lin, Joseph S. B. Mitchell, and T. M. Murali. Sweeping simple polygons with a chain of guards. In 11th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 927–936, 2000. - [6] Leonidas J. Guibas, Jean-Claude Latombe, Steven M. LaValle, David Lin, and Rajeev Motwani. A visibility-based pursuit-evasion problem. International Journal of Computational Geometry and Applications, 9(4-5):471–494, 1999. - [7] Christian Icking and Rolf Klein. The two guards problem. *International Journal of Computational Geometry and Applications*, 2(3):257–285, 1992. - [8] Steven M. LaValle, Borislav H. Simov, and Giora Slutzki. An algorithm for searching a polygonal region with a flashlight. In SCG '00: Proceedings of the sixteenth annual symposium on Computational geometry, pages 260–269, 2000. - [9] D. T. Lee and C. K. Wong. Voronoi diagrams in L_1 (L_{∞}) metrics with 2-dimensional storage applications. SIAM Journal on Computing, 9(1):200–211, 1980. - [10] Jae-Ha Lee, Sang-Min Park, and Kyung-Yong Chwa. Searching a polygonal room with one door by a 1-searcher. *International Journal of Computational Geometry and Applications*, 10(2):201–220, 2000. - [11] E. A. Melissaratos and Diane L. Souvaine. Shortest paths help solve geometric optimization problems on planar regions. SIAM Journal of Computing, 21(4):601–638, 1992. - [12] J. S. B. Mitchell. L_1 shortest paths among polygonal obstacles in the plane. Algorithmica, 8(1):55–88, 1992. - [13] Sang-Min Park, Jae-Ha Lee, and Kyung-Yong Chwa. Searching a room by two guards. *International Journal of Computational Geometry and Applications*, 12(4):339–352, 2002. - [14] Ichiro Suzuki and Masafumi Yamashita. Searching for a mobile intruder in a polygonal region. *SIAM Journal on Computing*, 21(5):863–888, 1992. - [15] Zhong Zhang. Applications of Visibility Space in Polygon Search Problems. PhD thesis, Simon Fraser University, August 2005.