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Restricted Edge Contractions in Triangulations of the Sphere with Boundary
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Abstract

Given a surface triangulation T of and a subset X of its
vertex set V (T ), we define a restricted edge contraction
as a contraction of an edge connecting X and V (T )−X.
Boundary vertices in V (T ) − X are only allowed to
be contracted to the boundary vertices in X adjacent
through boundary edges. In this paper, we prove that
if a triangulation T of the sphere with boundary satis-
fies some connectivity conditions, then all the vertices
in V (T ) − X can be merged into X by restricted edge
contractions. We also prove that the similar properties
hold for a triangulation of the sphere with features.

1 Introduction

A triangulation of a closed surface S (connected, com-
pact 2-manifold without boundary) is a simple graph
embedded on S, such that each face is homeomorphic
to a 2-cell and is bounded by three edges, and any two
faces share at most one edge. For a triangulation T ,
we denote the vertex set, edge set and face set by V (T ),
E(T ) and F (T ), respectively. We refer to [6] for embed-
dings of graphs into surfaces and to [9] for triangulations
in topological graph theory.

Given a surface triangulation T and a subset X of
its vertex set V (T ), we define a restricted edge con-
traction as a contraction of an edge connecting X and
V (T )−X. Boundary vertices in V (T )−X are only al-
lowed to be contracted to the boundary vertices in X ad-
jacent through boundary edges. We consider restricted
edge contractions because it can be applied to enforce
topology preservation in vertex-based region growing al-
gorithms on surface triangulations [5].

In [7] we proved that if T is a triangulation of the
sphere and X ⊂ V (T ) is a seed vertex set satisfying
|X| ≥ 4 then all vertices in V (T ) − X can be merged
into X by a sequence of restricted edge contractions.
This says that, for any triangulation of the sphere, if a
seed vertex set contains a sufficient number of vertices,
then all vertices which do not belong to the seed ver-
tex set can be merged into seed vertices by a sequence
of restricted edge contractions regardless of the config-
uration of the seed vertices. We also showed that this
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Figure 1: Edge contraction of an edge e.

property does not hold for closed surfaces other than
the sphere [7]. In this paper, we consider whether the
property holds for the sphere with boundary.

2 Edge Contractions

Contraction of an edge e is the operation that consists of
deleting e, identifying the endpoints of e, and replacing
the two resulting digons (2-sided faces) by two single
edges, as shown in Figure 1. If the contraction of an edge
in a triangulation T results in another triangulation of
the surface on which T is embedded, the edge is said to
be contractible. Non-contractible edges are not allowed
to be contracted.

An edge e in a triangulation T of a closed surface is
contractible if and only if e satisfies the following con-
ditions:

• e does not lie on any non-facial triangle.

• T is not K4 embedded on the sphere (i.e. a tetra-
hedron).

A non-facial triangle is a 3-cycle that does not bound a
face.

A triangulation is said to be irreducible if it has no
contractible edges. Steinitz [10] showed that the only
irreducible triangulations of the sphere is K4. Bar-
nette and Edelson [1] proved that there are only finitely
many irreducible triangulations for every closed surface.
Nakamoto and Ota [8] showed that the maximum num-
ber of vertices in irreducible triangulations of a surface
S has a linear bound with respect to the genus of S.

A triangulation T of a surface with boundary must
satisfy the additional requirement: for each boundary
component Bi of the surface, there is a cycle in T which
coincides with Bi. The edges of these cycles have only
one incident face and are called boundary edges. The
other edges are incident to two faces and are called in-
terior edges. A vertex is called a boundary vertex if it
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Figure 2: The endpoints of a bridge e lie either on the
same boundary component (left) or on distinct bound-
ary components (right).

is incident to at least one boundary edge; otherwise it
is called an interior vertex. We denote the boundary
components of T by B1(T ), . . . , Bk(T ) (k is the number
of the boundary components of T ). The vertex set and
edge set of Bi(T ) is denoted V (Bi(T )) and E(Bi(T )),
respectively.

An edge is called a bridge, if its endpoints are bound-
ary vertices but it is not a boundary edge. A bridge
may connect distinct boundary components (Figure 2).
An edge e in a triangulation T of a surface with bound-
ary is contractible if and only if e satisfies the following
conditions:

• e does not lie on any non-facial triangle.

• e is not a bridge.

• T is not K3 embedded on the sphere with one
boundary component (i.e. a triangle).

Edge contraction in simplicial 2-complexes homeo-
morphic to a surface is essentially equivalent to edge
contraction in surface triangulations. Simplicial 2-
complexes homeomorphic to a surface with or without
boundary [4], simplicial 2-complexes homeomorphic to
a surface with features [3], general simplicial 2- and 3-
complexes [2], and general simplicial 2-complexes with
features [11] are treated in the literature on mesh sim-
plification.

3 Restricted Edge Contractions in triangulations of
a closed surface

Given a triangulation T of a closed surface and a subset
X of its vertex set V (T ), which is called a seed vertex set,
we define a restricted edge contraction as a contraction
of an edge connecting X and V (T ) − X. Vertices in
X are called seed vertices and the other vertices are
called free vertices. Restricted edge contraction of an
edge e = uv (where u is a seed vertex and v is a free
vertex) merges the free vertex v into the seed vertex u.
Thus, during restricted edge contractions, seed vertices

Figure 3: A triangulation of the torus (black dots: seed
vertices; white dots: free vertices). All edges connecting
a seed vertex and a free vertex is non-contractible.

remain unchanged and free vertices are merged into seed
vertices.

Let T be a triangulation of a closed surface and X ⊂
V (T ) be a seed vertex set. A triangulation T ′ is called
a seed triangulation or an X-triangulation, if the vertex
set of T ′ is equal to X. If a seed triangulation can
be obtained from T by a sequence of restricted edge
contractions, then we say that T is contractible to a
seed triangulation or to an X-triangulation. We proved
the following results in [7].

Proposition 1 Let T be a triangulation of the sphere
and X ⊂ V (T ) be a seed vertex set. If |X| ≥ 4, then T
is contractible to an X-triangulation by any sequence of
restricted edge contractions.

Note that we only contract contractible edges.

Proposition 2 For every closed surface other than the
sphere, there exists a triangulation T and a seed vertex
set X ⊂ V (T ) such that T is not contractible to any
X-triangulation.

Figure 3 shows such an example for the torus (each pair
of parallel sides of the rectangle should be identified).

4 Restricted Edge Contractions in triangulations of
the sphere with boundary

For restricted edge contractions in triangulations of a
surface with boundary, a free vertex on a boundary com-
ponent Bi should be merged into an adjacent seed ver-
tex on Bi by contracting the boundary edge connecting
them. Because of this, the candidate edges for restricted
edge contractions do not contain bridges.

The sphere has the property that for any triangula-
tion T if a seed vertex set X has a sufficient number of
vertices then T is contractible to an X-triangulation re-
gardless of the configuration of the seed vertices. In this
section we consider whether the property holds for the
sphere with boundary. Unfortunately the property does
not hold for the sphere with boundary. There exists a



CCCG 2007, Ottawa, Ontario, August 20–22, 2007

Figure 4: A triangulation which is not contractible to
any seed triangulation (black dots: seed vertices; white
dots: free vertices).

triangulation of the sphere with boundary which is not
contractible to any seed triangulation for some configu-
ration of the seed vertices. Figure 4 illustrates an exam-
ple which is not contractible to any seed triangulation.
However, we can prove that if a triangulation T of the
sphere with boundary satisfies some connectivity condi-
tions and a seed vertex set X has a sufficient number
of vertices then T is contractible to an X-triangulation
regardless of the configuration of the seed vertices. To
prove this, we need some lemmas.

Lemma 3 Let T be a triangulation of the sphere with
boundary and X ⊂ V (T ) be a seed vertex set. If all the
vertices on the boundary of T are contained in X, then
T is contractible to an X-triangulation by any sequence
of restricted edge contractions.

Proof. We create a triangulation of the sphere from T
by filling every boundary component of T . For each
boundary component Bi of T , we add a dummy seed
vertex di, edges {e = div | v ∈ V (Bi)} and faces
{f = diuv | uv ∈ E(Bi)} to Bi. After filling all the
boundary components, we get a triangulation T ′ of the
sphere. Contractibility of an edge connecting a seed
vertex and a free vertex of T is the same as that of the
corresponding edge in T ′. Since T ′ is contractible to a
seed triangulation by a sequence of restricted edge con-
tractions, T can be contracted to an X-triangulation
by applying corresponding restricted edge contractions.
Furthermore, since any sequence of restricted edge con-
tractions in T ′ leads to a seed triangulation, T can be
contracted to an X-triangulation by any sequence of re-
stricted edge contractions. ¤

A 2-path (u, v, w) in a triangulation T is called non-
facial if uvw is not a face of T , and it is called chordal
if its endvertices u and w are boundary vertices and lie
on the same boundary component and its inner vertex
v does not lie on the boundary component. Figure 5
illustrates a non-facial chordal 2-path.

Lemma 4 Let T be a triangulation of the sphere with
boundary and X ⊂ V (T ) be a seed vertex set. If T

Figure 5: A non-facial chordal 2-path (u, v, w).

has neither bridges nor non-facial chordal 2-paths and
|X ∩ V (Bi)| ≥ 3 for each boundary component Bi of T ,
then all the free vertices on the boundary of T can be
contracted by any sequence of restricted edge contrac-
tions on the boundary.

Proof. By assumption boundary edges cannot lie on
any non-facial triangle. Thus all boundary edges
connecting a seed vertex and a free vertex is con-
tractible. Since contracting a boundary edge creates
neither bridges nor non-facial chordal 2-paths, all the
free vertices on the boundary of T can be contracted
by any sequence of restricted edge contractions on the
boundary. ¤

Combining Lemma 3 and Lemma 4 we get the following
proposition.

Proposition 5 Let T be a triangulation of the sphere
with boundary and X ⊂ V (T ) be a seed vertex set. If T
has neither bridges nor non-facial chordal 2-paths and
|X ∩ V (Bi)| ≥ 3 for each boundary component Bi of T ,
then T is contractible to an X-triangulation.

Proof. First we contract all the free vertices on the
boundary. Lemma 4 ensures that this can always be
done (by any sequence of restricted edge contractions
on the boundary). Then, since all boundary vertices of
the resulting triangulation are seed vertices, all the re-
maining free vertices can be contracted (by any sequence
of restricted edge contractions) by Lemma 3. ¤

In the proof, we first contract all boundary free ver-
tices and then contract all interior free vertices. If we
contract interior free vertices before contracting bound-
ary free vertices, bridges and non-facial chordal 2-paths
might be created and some free vertices on the boundary
could not be contracted.

When a triangulation does not satisfy the assump-
tion of Proposition 5, we can modify the triangulation
to satisfy the assumption; we remove bridges and non-
facial chordal 2-paths by applying edge split to them.
Edge split of an edge e is the operation that subdivides
e into two edges and subdivides each face incident to e
into two faces accordingly, as shown in Figure 6. First
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Figure 6: Edge split of an edge e.

we remove all bridges by splitting them, and then we
remove all non-facial chordal 2-paths by splitting their
edges. We can remove all bridges and non-facial chordal
2-paths after a finite sequence of edge splits.

5 Restricted Edge Contractions in triangulations of
the sphere with features

By a surface with features we mean a surface with speci-
fied (possibly intersecting) curves and points on it; they
are called feature curves and feature points, respectively.
A triangulation T of a surface with features must sat-
isfy the following requirements: for each feature curve,
there are edges (called feature edges) in T which co-
incides with the feature curve; for each feature point,
there is a vertex (called a feature vertex ) in T which co-
incides with the feature point. If feature curves intersect
themselves, each intersection point must have a corre-
sponding vertex (called corner vertex ) in T . The closure
of each connected component of the feature curves mi-
nus the corner vertices is called a feature component.
Vertices in T which correspond to endpoints of feature
curves are called anchor vertices. Cycles consisting of
feature edges in T are called feature cycles.

For restricted edge contractions in triangulations of
a surface with features, we should include every feature
vertex, corner vertex and anchor vertex in a seed ver-
tex set, and a free vertex on a feature component Fi

should be merged into an adjacent seed vertex on Fi

by contracting the feature edge connecting them. For
triangulations of a surface with features we modify the
definition of bridges and chordal 2-paths as follows. An
edge is called bridge, if its endpoints are vertices on the
feature edges but it is not a feature edge. A 2-path
(u, v, w) in a triangulation T is called chordal if its end-
vertices u and w are vertices of the feature edges and
lie on the same feature component and its inner vertex
v does not lie on the feature component.

We can prove the following lemmas and proposition
similarly as in triangulations of the sphere with bound-
ary.

Lemma 6 Let T be a triangulation of the sphere with
features and X ⊂ V (T ) be a seed vertex set. If all the
vertices on the feature edges of T are contained in X,

then T is contractible to an X-triangulation by any se-
quence of restricted edge contractions.

Lemma 7 Let T be a triangulation of the sphere with
features and X ⊂ V (T ) be a seed vertex set. If T has
neither bridges nor non-facial chordal 2-paths and |X ∩
V (Ci)| ≥ 3 for each feature cycle Ci of T , then all the
free vertices on the feature edges of T can be contracted
by any sequence of restricted edge contractions on the
feature edges.

Proposition 8 Let T be a triangulation of the sphere
with features and X ⊂ V (T ) be a seed vertex set. If T
has neither bridges nor non-facial chordal 2-paths and
|X ∩ V (Ci)| ≥ 3 for each feature cycle Ci of T , then T
is contractible to an X-triangulation.

The extension of these lemmas and proposition to trian-
gulations of the sphere with both boundary and features
is trivial.
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