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Abstract

When a triangulation of a set of points and edges is
required, the concept of higher order Delaunay triangu-
lations does not have a proper equivalent of constrained
Delaunay triangulations. A single edge may cause that
all triangulations with that edge have high order. This
paper studies several possible definitions that assure
that an order-k constrained Delaunay triangulation ex-
ists for any k ≥ 0, while maintaining the character
of higher order Delaunay triangulations of point sets.
Properties of these definitions and algorithms to sup-
port computations on them are also discussed.

1 Introduction

Higher order Delaunay triangulations [4] are a general-
ization of the Delaunay triangulation. They provide a
class of triangulations that are reasonably well-shaped,
depending on a parameter k. A triangulation is order-k
Delaunay if the circumcircle of the three vertices of any
triangle contains at most k other points. For k = 0, if no
four points are cocircular, there is only one higher order
Delaunay triangulation, equal to the Delaunay triangu-
lation. As k is increased, the shape quality of the tri-
angles may decrease, but the number of triangulations
may increase, hence there is more flexibility to optimize
some other criterion. The concept of higher order De-
launay triangulations has been successfully applied to
several areas, including terrain modeling [3], minimum
interference networks [1] and multivariate splines [6].

When working with triangulations it is often the case
that a given set of edges must be included in the triangu-
lation. We refer to them as constraints, or constraining
edges. For example, in mesh generation, the mesh must
respect the boundary edges of the components. When
working with polyhedral terrains for hydrologic appli-
cations, it is common to augment the terrain with the
edges representing the drainage network.

Regardless of the reason for including a set of edges,
it is important for a triangulation that includes them to
have nicely-shaped triangles. The constrained Delaunay
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Figure 1: A point set is augmented with some constrain-
ing edges (in gray). Any triangulation of this point
set that includes the gray edges must include triangle
4uvw, which has a very high order.

triangulation (CDT) [2] includes a given set of edges and
is as close to the Delaunay triangulation as possible.
This is achieved by relaxing the empty-circle property
of the Delaunay triangulation: points are allowed inside
the circumcircle C of a triangle t if they are separated
inside C from t by a constraining edge.

The only previous work on order-k Delaunay triangu-
lations with constraints focuses on finding a lowest-order
Delaunay triangulation that includes a given set of edges
[5], but the definition of order used does not consider the
constraints. Until now, there was no concept equivalent
to the CDT for higher order Delaunay triangulations.
This implies that if one of the constraints causes the in-
clusion of a triangle of very high order, then the whole
triangulation will have at least that order (see Figure 1).
Therefore, all triangles, even ones far away from these
high-order constraints, will be allowed to have that very
high order, and, more importantly, a bad shape.

In this paper we address the problem of defining
higher order constrained Delaunay triangulations. We
achieve this by proposing several definitions of the con-
strained order of a triangle, which take the constraints
into account when counting the number of points inside
the circumcircles of the triangles. The new definitions
of order try to reflect that some triangles may have a
bad shape because of the constraints, thus their order
should be computed in a different way. These triangles
will have a lower order than in the standard definition,
and therefore a low order of the whole triangulation can
be obtained.

In this paper we assume non-degeneracy of the input
set P : no four points are cocircular. For brevity, we will
sometimes write order instead of constrained order.
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2 Proposed definitions

Any suitable definition of order-k constrained Delaunay
(k-OCD) triangulations must be in line with the idea of
the CDT and, at the same time, be consistent with the
spirit of higher order Delaunay triangulations of point
sets. We summarize this by establishing a list of prop-
erties that a suitable definition should satisfy:

1. For k = 0 there is only one constrained triangula-
tion, which is the CDT.

2. If there are no constraining edges, any k-OCD tri-
angulation is a k-OD triangulation.

3. As k increases, the number of k-OCD triangula-
tions also increases.

4. If a point or endpoint of a constraint moves slightly,
the constrained order changes only slightly (this is
made more precise below).

5. The definition is intuitive for triangulations of poly-
gons.

6. The definition is intuitive for triangulations of
points with constraining edges.

The important part in any definition of higher order
constrained Delaunay triangulations is defining when
a point inside the circumcircle of a triangle must be
counted. We propose seven different definitions, where
the varying aspect is when a point is counted in the con-
strained order. Let C = C(u, v, w) be the circle through
u, v, and w. Suppose we want to compute the order of
4uvw. No other point can be in 4uvw and no con-
straint intersects it, otherwise it cannot be a triangle in
a triangulation. In the definitions below, p and r lie in
C(u, v, w). Note that uv, vw and wu can be constraints.

PATHCON (path connected). A point p is counted
if and only if there is a constraint-free path con-
tained in C that connects p to some point interior
to 4uvw.

SEESTRIANG (sees triangle). A point is counted
if and only if it can see some point in the interior
of the triangle.

SEESVTX (sees vertex of triangle). A point p is
counted if and only if it can see some vertex of the
triangle and some point in its interior.

CONFEDGE (conflicting edge). A point p is
counted if and only if there is a point r inside C
such that pr intersects 4uvw and does not inter-
sect any constraint.

SEESOPP (sees opposite). A point p is counted if
and only if it sees the opposite vertex of the trian-
gle, that is, the vertex x ∈ {u, v, w} such that px
intersects 4uvw.

SEES3VTX (sees 3 vertices). A point p is counted
if and only if it can see u, v, and w.

EMPTYQUAD (empty quadrilateral). A point p
is counted if and only if the quadrilateral formed
by the three vertices of the triangle and p is empty,
and the edge of 4uvw that is a diagonal of the
quadrilateral is not a constraint. This corresponds
to the idea of being able to flip one edge of 4uvw
to connect p.

Figure 2 shows an example where the different defi-
nitions can be compared.

We now make Property 4 more precise. Assume that
some point or endpoint p moves, without changing the
structure of the triangulation. Then a change in the or-
der of the triangulation in all definitions can only occur
if p becomes collinear with two points or cocircular with
three points. We call this a criticality during the move
of p. Property 4 should be interpreted such that if any
point moves through only one criticality, then the order
of the triangulation changes by at most one.

We make the following simple observations.

Observation 1 All the previous definitions satisfy
Properties 1 to 6, except for PATHCON, which does
not satisfy Property 4.

Observation 2 For higher order constrained Delaunay
triangulations of a point set with constraints or of a
polygon, the following inclusion relations hold1: EMP-
TYQUAD ⊆ SEES3VTX ⊆ SEESOPP ⊆ SEESVTX ⊆
CONFEDGE ⊆ SEESTRIANG ⊆ PATHCON.

Note that for triangulations of simple polygons,
SEES3VTX = EMPTYQUAD.

3 Computing the order of a triangle

A basic operation when dealing with higher order De-
launay triangulations is determining the order of a tri-
angle. In this section we analyze how efficiently this can
be done for each of the proposed definitions.

Let 4uvw be the triangle whose order is being com-
puted, let C be its circumcircle, let PC be the set of
points and endpoints inside C, and let EC be the set of
constraining edges that are at least partly inside C.

PATHCON We build a point location data structure
for the subdivision induced by EC ∪ C, which allows
us to know for each point of PC if it lies in the same
face as the interior of 4uvw. These are the points that
can be reached from the triangle, and must be counted.
The subdivision is made of parts of constraining edges
and circular arcs of C. The point location data struc-
ture can be built in O(n log n) time, and querying each
point takes O(log n) time, therefore the running time is
O(n log n).

1With a slight abuse of notation.
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Normal order (k = 10) PATHCON (k=9) CONFEDGE (k=7)SEESTRIANG (k=8)

SEESVTX (k=6) SEESOPP (k=5) SEES3VTX (k=4) EMPTYQUAD (k=2)

Figure 2: What is the order (k) of the gray triangle? For each definition, the points that are counted are drawn as
discs and the ones that are not counted as empty circles. Constraints are drawn with thick edges.

SEESTRIANG The points in PC can be in one of three
regions, bounded by C and the three edges of 4uvw.
For a point in a given region, seeing 4uvw is equiva-
lent to seeing one of the edges of 4uvw. We process
each region separately. Assume the current region is
the one bounded by uv. If uv is a constraint, no point
is counted. Otherwise, let S ⊆ PC be the subset of
(end)points that lie inside that region. For each point
in S ∪ {u, v}, we sort the other points around it by an-
gle. This can be done for all the points in O(n2) time
[7]. Then for each point, we go through the sorted list
of points around it and check if at any moment uv is
visible. We can do this in linear time because we do not
need to keep track of the order in which the constraints
become visible, we only need to know whether there is
some constraint between the point and uv. The running
time is O(n2).

CONFEDGE We compute the visibility graph of PC in
O(n2) time [7]. To determine if a point must be counted
we check if it has a visible point in one of the other two
regions of C. The running time is O(n2).

SEESVTX For each of the vertices of the triangle we
compute the visibility polygon, where the edges in EC

and the points in PC are the obstacles. This can be done
in O(n log n) time. Then we count the points visible to
some vertex; they can also see the interior of 4uvw due
to non-degeneracy. The running time is O(n log n).

SEESOPP We proceed as before, but only for the op-
posite vertex. The running time is O(n log n).

SEES3VTX Same as for SEESVTX, but we count
only the points that see the three vertices of the tri-
angle. The running time is O(n log n).

EMPTYQUAD First we compute the points that see
u, v and w. They can be in one of three regions of C.
For each region there is a vertex of 4uvw that is the
opposite vertex. We show how to proceed for the region
where that vertex is w. We need to discard the points p
such that 4uvp is not empty. Let 4uvp and 4uvq be
two triangles, and let αu (αv) denote the angle of 4uvp
at u (at v), and βu (βv) the same for 4uvq. It is easy
to see that 4uvp contains q if and only if βu < αu and
βv < αv. Each triangle can be represented by a point
in the plane using its angles at u and at v. The empty
triangles, which define an empty quadrilateral, are the
ones lying on the lower-left staircase of the point set.
They can be computed in O(n log n) time by a sweep
line algorithm. The running time is O(n log n).

4 Computing all the k-OCD triangles

Another useful operation related to HODT is computing
all the order-k triangles. For example, this is a funda-
mental step when triangulating polygons optimally for
order-k Delaunay triangulations [9]. In what follows we
always proceed edge by edge, for each of the O(n2) pos-
sible edges. For each edge, we will find all the order-k
triangles adjacent to it. We explain how to proceed for
one edge uv and assume it is not a constraint (otherwise
the algorithms are simpler).

PATHCON We give only a sketch of the algorithm.
We sweep a circle C through u and v, starting as the
halfplane to the left of −→uv and we slide it, always touch-
ing u and v, until it becomes the halfplane to the right
of −→uv. The event points will be the points and the end-
points of the constraints. At every event during the
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Figure 3: Computing all the order-k triangles for PATH-
CON. Regions identified by the sweep algorithm.

sweep, a region is found, defined by some connected
component of constraints and a part of the boundary of
the current sweep circle (see Figure 3). The region is
such that the points in it were counted until that mo-
ment, but from that moment on will not be counted
anymore, because they became disconnected from the
region in C with 4uvw. The regions are disjoint and
made of line segments and circular arcs. The time
needed to identify all the regions is O(n log n).

Next all points inside each region must be identified.
This can be done in O(n log n) time by using a point
location data structure that can handle circular arcs
(e.g. [8]). Once the number of points inside each region
is known, it is possible to sweep the circle through u and
v again and compute the order of 4uvw for all w to the
right of −→uv exactly. The overall running time for one
edge uv is O(n log n), and O(n3 log n) time is needed to
identify all the order-k triangles.
SEESTRIANG, SEESVTX, SEESOPP, SEES3VTX
and EMPTYQUAD For these definitions a simple cir-
cle sweep, where every point and endpoint of a con-
straint defines an event, is enough to determine the or-
der of 4uvw for each point w to the right of −→uv. Since
the definitions are based on visibility between the points
and some elements of 4uvw (an edge, a vertex, etc.),
once a vertex is counted (that is, it sees the part of
4uvw in question), it will be counted until it stops to
be inside the sweep circle. Given the visibility graph, we
can determine if a point must be counted in O(1) time.
In the case of EMPTYQUAD we can first discard all
the points that create a non-empty triangle with uv, as
explained in the previous section. After obtaining the
possible third points, only the ones that define empty
triangles must be selected. Again, this can be done in
O(n log n) time. Therefore the running time for one
edge uv is O(n log n) (assuming the visibility graph is
given). It follows that all order-k triangles can be found
in O(n3 log n) time.
CONFEDGE For this definition we can apply the al-
gorithm used for the previous definitions, but in this
case, checking if a point must be counted takes more
time. This is because every time a third point w to the

right of −→uv is processed, many of the points inside C
that can see w will be counted from the next step on.
Hence, O(n) time is required to find these points. The
total running time per edge is O(n2), so it takes O(n4)
time to find all order-k triangles.

5 Discussion

In the context of higher order Delaunay triangulations,
we proposed seven different definitions of the order of
a triangle that take into account a set of constraining
edges. This constitutes an attempt to combine the con-
cepts of constrained Delaunay triangulations and higher
order Delaunay triangulations. The proposed defini-
tions can be seen as natural generalizations of the idea
of order of a triangle. They define a hierarchy that
goes from the normal, restrictive, order definition, to a
very permissive definition that counts much fewer points
than the original one. In general it cannot be stated
which definition is the best one, and which one to choose
may depend on the application.

For each definition we presented algorithms to com-
pute the order of one triangle and to find all order-k
triangles of a point set with constraining edges. These
are basic problems that need to be solved for most im-
plementations of higher order Delaunay triangulations.
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