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Abstract. Objective and quantitative evaluation for segmentation performance is im-
portant for the development of image segmentation algorithms. Several objective evalu-
ation metrics have been proposed in the literature. This paper presents an analysis of
the existing pixel-based and object-based evaluation metrics. We define and describe the
possible error types of image segmentation. We investigate the properties of the error
metrics by mathematical proof and experimental justification. The results indicate that
the object-based metrics have several shortages although they are more suitable than the
pixel-based metric for object-level evaluation.
Keywords: Evaluation metrics, Image segmentation, Object-based metric, Pixel-based
metric

1. Introduction. Image segmentation is one of the basic tasks in image and video anal-
ysis [1], [2]. Extensive efforts have been made to develop segmentation techniques, but
much less attention has been paid for the performance evaluation of those techniques [3],
[4]. In general, objective evaluation methods for image segmentation can be categorized
into analytical methods and empirical methods. The empirical methods are further di-
vided into discrepancy (supervised evaluation) and goodness (unsupervised evaluation)
based on whether the method requires a reference (ground-truth) image or not [5]-[8].
Among them, the supervised evaluation approach is the most popular one. Generally, the
performance evaluation in the supervised evaluation metric is to calculate the error be-
tween the segmented image and a reference image. The reference image is often obtained
manually, and the segmented image is from a segmentation algorithm. In this work, we
investigate the metrics belonging to the supervised evaluation category.

Pixel-based metric is the most popular method in the supervised approach [7], [9]. It
simply calculates the errors of pixels between the reference image and segmented image.
And then it groups the errors into false alarm and missed detection, which are repre-
sented with precision and recall respectively. The metric considers image segmentation as
a process of pixel labeling [3], thus it is not suitable for object-level evaluation. Various
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metrics which extend the pixel error measure have been proposed for higher-level applica-
tions such as image segmentation at object level [10], [3], video object segmentation and
tracking, and image understanding [2], [11], [12].

Martin et al. [10] proposed an object level error measure, including global consistency
error (GCE) and local consistency error (LCE). The error metrics are very useful to
quantify the consistency between segmentations manually performed by different people.
However, this error measure is insensitive to over (under)-segmentation; thus it is not
appropriate in segmentation applications in which the exact boundaries or sizes of the
fragments are important.

To attack this problem, Polak et al. presented the object-level consistency error (OCE)
[3]. The OCE quantifies the discrepancy between a segmented image and the reference
image at the object level that takes into account the existence, size, position, and shape of
each fragment and penalizes both over-segmentation and under-segmentation. The OCE
is suitable for specific applications in which the many small objects exist in a scene and
exact object size is critical in segmentation. The typical applications are the detection of
crown canopies of trees, and segmentation of tar sands [3].

In this paper, we first define and describe the possible error types of image segmentation.
Then we investigate the properties of the error metrics including pixel-based, Martin’s, and
Polak’s methods by mathematical proof and experimental justification. Finally, summary
and conclusion is given.

2. Error Types of Image Segmentation. Assume Ig = {A1, A2, ..., AM} is a reference
(ground-truth) image, where Aj is the jth foreground fragment (object) in Ig. Assume
Is = {B1, B2, ..., BN} is the segmented image, where Bi is the ith foreground fragment.
The total numbers of pixels (called area hereafter) of the fragments Aj and Bi are denoted
as |Aj| and |Bi|, and |A| and |B| represent the area of Ig and Is, respectively. According
to the above definitions, we can calculate four statistics, which will be described in the
following with Fig. 1 as reference. Fig. 1(b) illustrates a particular fragment pair of Aj
and Bi. The bji is the area of the intersection of Aj and Bi; aji = |Aj|−bji, cji = |Bi|−bji.
Note that in the following, f(x) is the area of the region x; δ̄(x) = 1−δ(x) and δ(x) is the
delta function whose value equals 1 if the input is 0 and whose value equals 0 otherwise.

Figure 1. Four statistics defined in this work

S1: CR (Correct Region): The area of the correctly segmented foreground region.

CR = f(Ig ∩ Is) =
M∑
j=1

N∑
i=1

|Aj ∩Bi| =
M∑
j=1

N∑
i=1

δ̄(Aj ∩Bi)bji (1)
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S2: MD (Miss Detection): The area of the miss detected foreground region.

MD = f(Ig ∩ Is) =
M∑
j=1

|Aj| − CR =
M∑
j=1

|Aj| −
M∑
j=1

N∑
i=1

δ̄(Aj ∩Bi)bji (2)

S3: FA (False Alarm): The area of the incorrectly segmented background region.

FA = f(Ig ∩ Is) =
N∑
i=1

|Bi| − CR =
N∑
i=1

|Bi| −
M∑
j=1

N∑
i=1

δ̄(Aj ∩Bi)bji (3)

S4: BR (Background Region): The area of correctly segmented background region.

BR = f(Ig ∩ Is) (4)

In this paper, we classify segmentation errors into seven types, as illustrated in Fig.
2. Each type is described with the help of its corresponding graph in the following para-
graphs. Note that in these graphs, the reference (ground-truth) fragments and segmented
fragments are marked in gray and in yellow except the over-segmentation type (in Fig.
2(h)).

Type 1: Perfect segmentation
The segmented result is completely matched with the reference, i.e.,

M = N, and

{
aji = 0, bji = |Aj| = |Bi| , cji = 0, for δ(Aj ∩Bi) = 1
aji = 0, bji = 0, cji = 0, for δ(Aj ∩Bi) = 0

(5)

Type 2: Completely incorrect segmentation
The segmented result is completely mis-matched with the reference, i.e.,

∀
i,j
δ(Aj ∩Bi) = 0 (6)

Type 3: Isolated false alarm
For simplicity without loss of generality, we define isolated false alarm as a segmented

fragment which does not intersect with any reference fragment Aj exists (say BN , marked
in red in Fig. 2(d)), and the remaining reference fragments are perfectly segmented. From
the definition, we have

M = N − 1 > 1, and

{
i 6= N, for δ̄(Aj ∩Bi) = 1
ajN = |Aj| , bjN = 0, cjN = |BN | , for δ̄(Aj ∩Bi) = 0

(7)

Type 4: Isolated missed detection
It contains a reference fragment that does not intersect with any segmented fragment Bi

(say AM , marked in black dash circle in Fig. 2(e)), and the remaining reference fragments
are perfectly segmented. By definition, we have

N = M − 1 > 1, and

{
j 6= M, for δ̄(Aj ∩Bi) = 1
aMi = |AM | , bMi = 0, cMi = |Bi| , for δ̄(Aj ∩Bi) = 0

(8)

Type 5: Partial false alarm /miss detection
Compared to the reference fragment, some pixels of the segmented fragment locate in

the background and some pixels of a reference fragment are missed detected, as illustrated
in Fig. 2(f). In this case, both partial false alarm and partial miss detection errors exist.
From the definition, we have

∃
i
δ(Aj ∩Bi) = 1 and aji, bji, cji 6= 0, N = M − 1 > 1 (9)

Type 6: Over segmentation
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Figure 2. Error types of image segmentation, (a)Reference 1, (b)Perfect
segmentation, (c)Completely incorrect segmentation, (d)Isolated false
alarm, (e)Isolated missed detection, (f)Partial false alarm/miss detection,
(g)Reference 2, (h)Over segmentation, (i)Under segmentation

A reference fragment Aj is segmented into more than one fragment, i.e.,

BSj =
{
Bi

∣∣δ(Aj ∩Bi) = 1, i = 1, ..., k
}
, and |Aj| > |BSj| (10)

Type 7: Under segmentation
The segmented fragment is a subset of a reference fragment, i.e., Bi ⊂ Aj or equivalently
|Bi| < |Aj|.

3. Analysis of Evaluation Metrics.

3.1. Evaluation metrics. Three metrics are considered in this paper. The first one is
the pixel-based method. The remaining, containing Martin’s metric and Polak’s metric,
belong to the object-based method. The pixel-based method is used as a baseline for the
evaluation of other two metrics. The definition of the metrics are given in the following
(refer to Fig. 1).

1. Pixel-based metric
The segmentation performance is evaluated by calculating the error pixels between

reference images and segmented images. Three statistics are considered here:
(a) PB1:
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Precision = CR
CR+FA

=

M∑
j=1

N∑
i=1

δ̄(Aj∩Bi)bji

M∑
j=1

N∑
i=1

δ̄(Aj∩Bi)bji+
N∑
i=1
|Bi|−

M∑
j=1

N∑
i=1

δ̄(Aj∩Bi)bji

=

M∑
j=1

N∑
i=1

δ̄(Aj∩Bi)bji

N∑
i=1
|Bi|

(11)

(b) PB2:

Recall = CR
CR+MD

=

M∑
j=1

N∑
i=1

δ̄(Aj∩Bi)bji

M∑
j=1

N∑
i=1

δ̄(Aj∩Bi)bji+
M∑
j=1
|Aj |−

M∑
j=1

N∑
i=1

δ̄(Aj∩Bi)bji

=

M∑
j=1

N∑
i=1

δ̄(Aj∩Bi)bji

M∑
j=1
|Aj |

(12)

(c) PB3:

F = 2·Precision·Recall
Precision+Recall

= 2·CR
2·CR+FA+MD

=
2

M∑
j=1

N∑
i=1

δ̄(Aj∩Bi)bji

2
M∑
j=1

N∑
i=1

δ̄(Aj∩Bi)bji+
M∑
j=1
|Aj |−

M∑
j=1

N∑
i=1

δ̄(Aj∩Bi)bji+
N∑
i=1
|Bi|−

M∑
j=1

N∑
i=1

δ̄(Aj∩Bi)bji

=
2

M∑
j=1

N∑
i=1

δ̄(Aj∩Bi)bji

M∑
j=1
|Aj |+

N∑
i=1
|Bi|

(13)

The precision measures the false alarm error rate; the recall measures the miss
detection error rate; the F measure combines false alarm and miss detection in
a single metric.

2. Object-based metric: Martin’s method
The metric considers object (fragment) difference between the reference and seg-

mented images. Three statistics defined in [10] are rewritten as follows (refer to Fig.
1).
(a) MS1:The error between fragment Aj and Bi:

Pji =

(
1− |Aj ∩Bi|

|Aj|

)
· |Aj ∩Bi| =

(
1− bji

aji + bji

)
· bji =

ajibji
aji + bji

(14)

(b) MS2:The error between fragment Bi and Aj:

Qji =

(
1− |Aj ∩Bi|

|Bi|

)
· |Aj ∩Bi| =

(
1− bji

bji + cji

)
· bji =

bjicji
bji + cji

(15)

(c) MS3:

M∑
j=1

N∑
i=1

min(Pji, Qji) (16)

The value of Pji is determined by the missed detection error aji; the greater the
missed detection error, the larger the Pji. Similarly, Martin’s method:
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(d) OM1:Global Consistency Error (GCE)

GCE(Ig, Is) = 1
n

min

{
M∑
j=1

N∑
i=1

Pji,
M∑
j=1

N∑
i=1

Qji

}
, where n =

M∑
j=1

N∑
i=1

|Aj ∩Bi| (17)

(e) OM2:Local Consistency Error (LCE)

LCE(Ig, Is) =
1

n

M∑
j=1

N∑
i=1

min(Pji, Qji) (18)

3. Object-based metric: Polak’s method
The OCE metric presented in [3] improves the Martin’s method by exploiting

weights to penalize over-segmentation and under-segmentation, which is defined in
the following (refer to Fig. 1).

Eg,s(Ig, Is) =
M∑
j=1

[
1−

N∑
i=1

|Aj∩Bi|
|Aj∪Bi| ·Wji

]
Wj

Wji =
δ̄(Aj∩Bi)|Bi|

N∑
k=1

δ̄(Aj∩Bk)|Bk|

Wj =
|Aj |

M∑
l=1
|Al|

(19)

The Wj is the area ratio of the jth fragment over all fragments in the reference.
The larger area ratio for a particular fragment indicates it is more important and thus
the weight is larger. For a reference fragment Aj, all the segmented fragments may
overlap with Aj. If the overlapping area between Bi and Aj is larger, as compared
to the total overlapping area, it indicates the fragment Bi is more significant and
thus Wji becomes larger.

Two measures Eg,s(Ig, Is) and Es,g(Is, Ig) in this method can be rewritten as:
(a) PS1:

Eg,s(Ig, Is) = 1−
M∑
j=1

N∑
i=1

bji
aji + bji + cji

· δ̄(bji)(bji + cji)
N∑
k=1

δ̄(bjk)(bjk + cjk)

· (aji + bji)
M∑
l=1

(ali + bli)

(20)

(b) PS2:

Es,g(Is, Ig) = 1−
M∑
j=1

N∑
i=1

bji
aji + bji + cji

· δ̄(bji)(aji + bji)
M∑
l=1

δ̄(bli)(ali + bli)

· (bji + cji)
N∑
k=1

(bjk + cjk)

(21)

Polak’s method combines the above two measures in a single measure OCE as
(c) OP1:

OCE(Ig, Is) = min (Eg,s, Es,g) (22)

OCE considers both Eg,s(Ig, Is) and Es,g(Is, Ig), hence it takes both missed de-
tection and false alarm errors into account.

3.2. Analysis of three metrics. The analysis is performed according to the definition of
the seven types of segmentation errors in Section II. Mathematical proof and experimental
justification are presented for investigating the property of the three metrics stated above.
For simplicity without loss of generality, we manually generate two-level (foreground and
background) ground-truth for the images downloaded from the website. Then we applied
the interactive image segmentation tool developed in [13] to obtain segmentation results.
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The segmentation of total 21 images are categorized into 7 error types as defined before.
We then used the three error metrics to calculate the error measures for every image
of each type, and the results are shown in Table I to Table VII. Each table contains
several items as follows: original image, ground-truth (reference) image, segmented image,
ground-truth with connected component labeling (GT ccl), segmented with connected
component labeling (Seg ccl), relation, and error measures for the three methods. The
“relation” presents the accurate segmentation and inaccurate segmentation in different
colors, where yellow: correct region, blue: false alarm, green: miss detection, and white:
background region.

Type 1: perfect segmentation
Deduction 1.1 (Pixel-based method): the method evaluates correctly for perfect seg-

mentation type
Proof:
Since bji = |Aj| = |Bi|, we have

F=
2

M∑
j=1

N∑
i=1

δ̄(Aj∩Bi)bji

M∑
j=1
|Aj |+

N∑
i=1
|Bi|

=

M∑
j=1

N∑
i=1

δ̄(Aj∩Bi)bji+
N∑
i=1

M∑
j=1

δ̄(Aj∩Bi)bji

M∑
j=1
|Aj |+

N∑
i=1
|Bi|

=

M∑
j=1
|Aj |+

N∑
i=1
|Bi|

M∑
j=1
|Aj |+

N∑
i=1
|Bi|

= 1

Deduction 1.2 (Martin’s method): the method measures correctly for perfect segmen-
tation type

Proof:
In this case, aji = 0, cji = 0, so

Pji =
ajibji
aji+bji

= 0, Qji =
bji cji
bji+cji

= 0,
M∑
j=1

N∑
i=1

Pji =
M∑
j=1

N∑
i=1

aji·bji
aji+bji

=
M∑
j=1

N∑
i=1

0·bji
0+bji

= 0,
M∑
j=1

N∑
i=1

Qji =
M∑
j=1

N∑
i=1

bji·cji
bji+cji

=
M∑
j=1

N∑
i=1

bji·0
bji+0

= 0,

n =
M∑
j=1

N∑
i=1

|Aj ∩Bi| =
M∑
j=1

N∑
i=1

bji,

and

GCE(Ig, Is) = 1
n

min

{
M∑
j=1

N∑
i=1

Pji,
M∑
j=1

N∑
i=1

Qji

}
= 0.

Since min(Pji, Qji) = min (0, 0) = 0, we get

LCE(Ig, Is) = 1
n

[
M∑
j=1

N∑
i=1

min(Pji, Qji)

]
= 0.

Thus, GCE = LCE = 0 for perfect segmentation.
Deduction 1.3 (Polak’s method): the method measures correctly for perfect segmenta-

tion type.
Proof:
Since aji = 0, cji = 0, we have

Eg,s(Ig, Is) = 1−
M∑
j=1

N∑
i=1

bji
aji+bji+cji

· δ̄(bji)(bji+cji)
N∑

k=1

δ̄(bjk)(bjk+cjk)

· (aji+bji)
M∑
l=1

(ali+bli)

= 1−
M∑
j=1

N∑
i=1

bji
0+bji+0

· 1·(bji+0)
N∑

k=1

1·(bjk+0)

· (0+bji)
M∑
l=1

(0+bli)

= 1−
M∑
j=1

N∑
i=1

1 · 1
N
· |Aj |
|A| = 1− 1

N

M∑
j=1

N ·|Aj |
|A| = 1− 1

|A| |A| = 0,
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Es,g(Is, Ig) = 1−
M∑
j=1

N∑
i=1

bji
aji+bji+cji

· δ̄(bji)(aji+bji)
M∑
l=1

δ̄(bli)(ali+bli)

· (bji+cji)
N∑

k=1
(bjk+cjk)

= 1−
M∑
j=1

N∑
i=1

bji
0+bji+0

· 1·(0+bji)
M∑
l=1

1·(0+bli)

· (bji+0)
N∑

k=1
(bjk+0)

= 1− 1
N ·|A|

M∑
j=1

N∑
i=1

|Aj| = 1− 1
N ·|A|

M∑
j=1

N · |Aj| = 1− 1
N ·|A|N · |A| = 0,

OCE(Ig, Is) = min (Eg,s, Es,g) = 0.
The proofs of the above three deductions are justified by experiments, and the results

are shown in Table I.

Table 1. The results for perfect segmentatoin

Type 2: completely inaccurate segmentation
Deduction 2.1 (Pixel-based method): the method measures correctly for completely

inaccurate segmentation.
Proof:
Since ∀

i,j
δ(Aj ∩Bi) = 0, we have

F =
2

M∑
j=1

N∑
i=1

δ̄(Aj∩Bi)bji

M∑
j=1
|Aj |+

N∑
i=1
|Bi|

=
2

M∑
j=1

N∑
i=1

0·bji

M∑
j=1
|Aj |+

N∑
i=1
|Bi|

= 0
M∑
j=1
|Aj |+

N∑
i=1
|Bi|

= 0

Deduction 2.2 (Martin’s method): the measure is undefined for completely inaccurate
segmentation.

Proof:
In this case, bji = 0, so

Pji =
ajibji
aji+bji

= 0, Qji =
bji cji
bji+cji

= 0
M∑
j=1

N∑
i=1

Pji =
M∑
j=1

N∑
i=1

aji·0
aji+0

= 0,

M∑
j=1

N∑
i=1

Qji =
M∑
j=1

N∑
i=1

0·cji
0+cji

= 0,

and n =
M∑
j=1

N∑
i=1

|Aj ∩Bi| =
M∑
j=1

N∑
i=1

bji = 0.
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Thus GCE(Ig, Is) = 1
n

min

{
M∑
j=1

N∑
i=1

Pji,
M∑
j=1

N∑
i=1

Qji

}
is undefined,

and LCE(Ig, Is) = 1
n

[
M∑
j=1

N∑
i=1

min(Pji, Qji)

]
is undefined.

Deduction 2.3 (Polak’s method): the method is undefined for completely inaccurate
segmentation.

Proof:
In this case, bji = 0, thus

Wji =
δ̄(Aj∩Bi)|Bi|

N∑
k=1

δ̄(Aj∩Bk)|Bk|
=

δ̄(bji)(bji+cji)
N∑

k=1
δ̄(bjk)(bjk+cjk)

= 0·(0+|Bi|)
N∑

k=1
0·(0+|Bi|)

= 0
0

is undefined.

Similarly,
M∑
l=1

δ̄(bli)(ali + bli) = 0, thus Eg,s and Es,g are undefined. Consequently,

OCE(Ig, Is) is undefined.
Experiments results in Table II justify the proofs of Deductions 2.1 to 2.3.

Table 2. The results for cpmpletely inaccurate segmentatoin

Type 3: Isolated false alarm
Deduction 3.1 (Pixel-based method): the method evaluates correctly for isolated false

alarm error.
Proof:
Since δ̄(Aj ∩Bi) = 1 fori 6= N , δ̄(Aj ∩BN) = 0, we have

F =
2

M∑
j=1

N∑
i=1

δ̄(Aj∩Bi)bji

M∑
j=1
|Aj |+

N∑
i=1
|Bi|

=
2

M∑
j=1

N−1∑
i=1

δ̄(Aj∩Bi)bji+2
M∑
j=1

0·bjN

M∑
j=1
|Aj |+

N∑
i=1
|Bi|

=

M∑
j=1
|Aj |+

N−1∑
i=1
|Bi|

M∑
j=1
|Aj |+

N∑
i=1
|Bi|

=

M∑
j=1
|Aj |+

N∑
i=1
|Bi|−|BN |

M∑
j=1
|Aj |+

N∑
i=1
|Bi|

= 1− |BN |
M∑
j=1
|Aj |+

N∑
i=1
|Bi|

= 1− |BN |

2
N∑
i=1
|Bi|−|BN |

= 1− |BN |
2|B|−|BN |

The above result indicates that the F measure is related only to the area of isolated
false alarm |BN |, which can also be measured by precision, as justified by the experiments
in Table III.
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Deduction 3.2 (Martin’s method): the isolated false alarm error is always missed in
GCE and LCE in calculation; hence this type of errors cannot be measured by this
method.

Proof:
Since bjN = 0, we have
M∑
j=1

N∑
i=1

Pji =
M∑
j=1

N−1∑
i=1

ajibji
aji+bji

+
M∑
j=1

ajN bjN
ajN+bjN

=
M∑
j=1

N−1∑
i=1

ajibji
aji+bji

,

M∑
j=1

N∑
i=1

Qji =
M∑
j=1

N−1∑
i=1

bjicji
bji+cji

+
M∑
j=1

bjN cjN
bjN+cjN

=
M∑
j=1

N−1∑
i=1

bjicji
bji+cji

,

n =
M∑
j=1

N∑
i=1

|Aj ∩Bi| =
M∑
j=1

N∑
i=1

bji =
M∑
j=1

N−1∑
i=1

bji + bjN =
M∑
j=1

N−1∑
i=1

bji

So,

GCE(Ig, Is) = 1
n

min

{
M∑
j=1

N∑
i=1

Pji,
M∑
j=1

N∑
i=1

Qji

}

= 1
n

min

{
M∑
j=1

N−1∑
i=1

Pji,
M∑
j=1

N−1∑
i=1

Qji

}
= GCE (Ig, Is − {BN})

Since min(PjN , QjN) = min
(

ajN bjN
ajN+bjN

,
bjN cjN
bjN+cjN

)
= 0, we have

LCE(Ig, Is) = 1
n

[
M∑
j=1

N∑
i=1

min(Pji, Qji)

]
= 1

n

[
M∑
j=1

N−1∑
i=1

min(Pji, Qji) + min(PjN , QjN)

]
= LCE (Ig, Is − {BN})

The above derivation indicates that the isolated false alarm error BN is always missed in
GCE and LCE in calculation; hence this type of errors cannot be measured by Martin’s
method. This is justified by the experimental results in Table III.

Deduction 3.3 (Polak’s method): OCE(Ig, Is) is undefined for isolated false alarm error.
Proof:
By definition

Eg,s(Ig, Is) =
M∑
j=1

[
1−

N∑
i=1

|Aj∩Bi|
|Aj∪Bi| ·Wji

]
Wj

Wji =
δ̄(Aj∩Bi)|Bi|

N∑
k=1

δ̄(Aj∩Bk)|Bk|

Wj =
|Aj |

M∑
l=1
|Al|

We have

Eg,s(Ig, Is) = 1−
M∑
j=1

N∑
i=1

|Aj∩Bi|
|Aj∪Bi| ·

δ̄(Aj∩Bi)|Bi|
N∑

k=1

δ̄(Aj∩Bk)|Bk|
· |Aj |

M∑
l=1

|Al|
= 1−

M∑
j=1

N∑
i=1

|Aj∩Bi|
|Aj∪Bi| ·

|Bi|
|B|−|BN |

· |Aj |
|A| .

Similarly,

Es,g(Is, Ig) =
N∑
i=1

[
1−

M∑
j=1

|Aj∩Bi|
|Aj∪Bi| ·Wij

]
Wi

Wij =
δ̄(Aj∩Bi)|Aj |

M∑
k=1

δ̄(Ak∩Bi)|Ak|

Wi = |Bi|
N∑
l=1

|Bl|

Assume BN is a fragment of isolated false alarm error, then δ̄(Aj ∩BN) = 0 for all j.
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We have WNj =
δ̄(Aj∩BN )|Aj |

M∑
k=1

δ̄(Ak∩BN )|Ak|
= 0

0
is undefined.

Thus Es,g(Is, Ig) is undefined, and OCE(Ig, Is) = min(Eg,s, Es,g) is undefined accord-
ingly, which is justified in Table III.

Table 3. The results for isolated false alarm

Type 4: Isolated miss detection
Deduction 4.1(Pixel-based method): pixel-based method measures correctly for isolated

missed detection error.
Proof:
Since δ̄(Aj ∩Bi) = 1 for j 6= M , δ̄(AM ∩Bi) = 0, we have

F =
2
M−1∑
j=1

N∑
i=1

δ̄(Aj∩Bi)bji+2
N∑
i=1

0·bMi

M∑
j=1
|Aj |+

N∑
i=1
|Bi|

=

N∑
i=1
|Bi|+

M−1∑
j=1
|Aj |

M∑
j=1
|Aj |+

N∑
i=1
|Bi|

=

N∑
i=1
|Bi|+

M∑
j=1
|Aj |−|AM |

M∑
j=1
|Aj |+

N∑
i=1
|Bi|

= 1− |AM |

2
M∑
j=1
|Aj |−|AM |

= 1− |AM |
2|A|−|AM |

The experimental result in Table IV indicates the F measure evaluates correctly for
isolated missed detection error and is determined only by recall, without any relation to
precision.

Deduction 4.2 (Martin’s method): the isolated miss detection error is always lost in
GCE and LCE in calculation; hence the method is unable to measure this type of errors.
Proof:
The proof is analogous to that of Deduction 3.2 just by switching aji and cji. We obtain

the result that the isolated miss detection error AM is always lost in the calculation of
GCE and LCE; thus the Martin’s method is unable to evaluate the error. Experimental
results are shown in Table IV.

Deduction 4.3 (Polak’s method): OCE(Ig, Is) is undefined for isolated missed detection
error.

Proof:
By definition
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Table 4. The results for isolated miss detection

Eg,s(Ig, Is) =
M∑
j=1

[
1−

N∑
i=1

|Aj∩Bi|
|Aj∪Bi| ·Wji

]
Wj

Wji =
δ̄(Aj∩Bi)|Bi|

N∑
k=1

δ̄(Aj∩Bk)|Bk|

Wj =
|Aj |

M∑
l=1
|Al|

Assume AM is a fragment of isolated miss detection, then δ̄(AM ∩ Bi) = 0 for all i. In

calculation of Eg,s(Ig, Is), we have WMi = δ̄(AM∩Bi)|Bi|
N∑

k=1

δ̄(AM∩Bk)|Bk|
= 0

0
is undefined.

Consequently, Eg,s(Ig, Is) and OCE(Ig, Is) are undefined, which is justified by Table
IV.

Type 5: Partial false alarm/miss detection
Deduction 5.1 (Pixel-based method): it can measure both partial false alarm and miss

detection errors correctly, and the F value is proportional to the error value.
Proof:

F =
2

M∑
j=1

N∑
i=1

δ̄(Aj∩Bi)bji

M∑
j=1
|Aj |+

N∑
i=1
|Bi|

∈ [0, 1]

Deduction 5.2 (Martin’s method): GCE(LCE) always outputs the smaller of the two
errors when miss detection (aji) and false alarm (cji) errors exist simultaneously. Thus
the method will generate wrong measure.

Proof:
From the definition, Pji is determined by missed detection (aji). The larger aji, the

greater the Pji. On the contrary, the false alarm (cji) determines the value of Qji, and
larger cji yields larger Qji. We prove the deduction with two extreme cases as follows.

(a) Serious false alarm (cji >> aji)
M∑
j=1

N∑
i=1

Pji =
M∑
j=1

N∑
i=1

bji −
M∑
j=1

N∑
i=1

(bji)
2

aji+bji
<

M∑
j=1

N∑
i=1

bji −
M∑
j=1

N∑
i=1

(bji)
2

bji+cji
=

M∑
j=1

N∑
i=1

Qji.



Analysis of Evaluation Metrics for Image Segmentation 1571

Thus GCE(Ig, Is) = 1
n

min

{
M∑
j=1

N∑
i=1

Pji,
M∑
j=1

N∑
i=1

Qji

}
= 1

n

M∑
j=1

N∑
i=1

Pji = 1
n

M∑
j=1

N∑
i=1

ajibji
aji+bji

.

Since Pji =
ajibji
aji+bji

= 1
1

aji
+ 1

bji

< 1
1

cji
+ 1

bji

=
cjibji
cji+bji

= Qji,

we have LCE(Ig, Is) = 1
n

[
M∑
j=1

N∑
i=1

min(Pji, Qji)

]
= 1

n

[
M∑
j=1

N−1∑
i=1

Pji

]
= 1

n

M∑
j=1

N∑
i=1

ajibji
aji+bji

.

The output is determined by aji instead of cji.
(b) Serious miss detection (aji >> cji)
M∑
j=1

N∑
i=1

Pji =
M∑
j=1

N∑
i=1

bji −
M∑
j=1

N∑
i=1

(bji)
2

aji+bji
>

M∑
j=1

N∑
i=1

bji −
M∑
j=1

N∑
i=1

(bji)
2

bji+cji
=

M∑
j=1

N∑
i=1

Qji.

So GCE(Ig, Is) = 1
n

min

{
M∑
j=1

N∑
i=1

Pji,
M∑
j=1

N∑
i=1

Qji

}
= 1

n

M∑
j=1

N∑
i=1

Qji = 1
n

[
M∑
j=1

N∑
i=1

cjibji
cji+bji

]
.

Since Pji =
ajibji
aji+bji

= 1
1

aji
+ 1

bji

> 1
1

cji
+ 1

bji

=
cjibji
cji+bji

= Qji,

we have LCE(Ig, Is) = 1
n

[
M∑
j=1

N∑
i=1

min(Pji, Qji)

]
= 1

n

[
M∑
j=1

N∑
i=1

Qji

]
= 1

n

M∑
j=1

N∑
i=1

cjibji
cji+bji

.

The output is determined by cji instead of aji.
The above derivation indicates that when both miss detection error and false alarm

error exist, we have
(a) LCE(Ig, Is) = GCE(Ig, Is), and
(b) Either GCE or LCE outputs the smaller of these two errors.
The dominant source of error is always missed. Therefore, the measure is obviously

wrong. The results are justified by Table V.
Deduction 5.3 (Polak’s method): OCE(Ig, Is) can measure errors correctly when miss

detection and false alarm errors exist simultaneously. However, it will have OCE(Ig, Is) =
Eg,s = Es,g, which means OCE cannot distinguish partial miss detection error from partial
false alarm error.

Proof:
(a) Serious false alarm ( cji >> aji)
Since ∃δ̄(Aj ∩Bi) = 1, we have

Eg,s(Ig, Is) =
M∑
j=1

 |Aj |
M∑
l=1
|Al|

− M∑
j=1

N∑
i=1

|Aj∩Bi|
|Aj∪Bi| ·

δ̄(Aj∩Bi)|Bi|
N∑

k=1
δ̄(Aj∩Bk)|Bk|

· |Aj |
M∑
l=1
|Al|

= 1−
M∑
j=1

N∑
i=1

|Aj∩Bi|
|Aj∪Bi| ·

|Bi|
|B| ·

|Aj |
|A| ,

Es,g(Is, Ig) =
N∑
i=1

 |Bi|
N∑
l=1
|Bl|

− N∑
i=1

M∑
j=1

|Aj∩Bi|
|Aj∪Bi| ·

δ̄(Aj∩Bi)|Aj |
M∑
k=1

δ̄(Ak∩Bi)|Ak|
· |Bi|

N∑
l=1
|Bl|

= 1−
N∑
i=1

M∑
j=1

|Aj∩Bi|
|Aj∪Bi| ·

|Aj |
|A| ·

|Bi|
|B| .

Hence, Eg,s(Ig, Is) = Es,g(Is, Ig), and OCE(Ig, Is) = min (Eg,s, Es,g) = Eg,s = Es,g.
For the special case, M = N = 1, we have

OCE(Ig, Is) = Eg,s = Es,g = 1− |Aj∩Bi|
|Aj∪Bi| = 1− b11

a11+b11+c11
=

a11+c11
a11+b11+c11

=
a11
c11

+1

a11
c11

+
b11
c11

+1

= 1
b11
c11

+1
=

c11
b11+c11

(c11 >> a11)

The result implies that OCE is determined by false alarm error cji, which is correct.
(b) Serious miss detection ( aji >> cji)
Since ∃δ̄(Aj ∩Bi) = 1, we have

Eg,s(Ig, Is) = 1−
M∑
j=1

N∑
i=1

|Aj∩Bi|
|Aj∪Bi| ·

δ̄(Aj∩Bi)|Bi|
N∑

k=1
δ̄(Aj∩Bk)|Bk|

· |Aj |
M∑
l=1
|Al|

= 1−
M∑
j=1

N∑
i=1

|Aj∩Bi|
|Aj∪Bi| ·

|Bi|
|B| ·

|Aj |
|A| ,
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Table 5. The results for partial false alarm/miss detection

Es,g(Is, Ig) =
N∑
i=1

 |Bi|
N∑
l=1

|Bl|

− N∑
i=1

M∑
j=1

|Aj∩Bi|
|Aj∪Bi| ·

δ̄(Aj∩Bi)|Aj |
M∑
k=1

δ̄(Ak∩Bi)|Ak|
· |Bi|

N∑
l=1

|Bl|
= 1−

N∑
i=1

M∑
j=1

|Aj∩Bi|
|Aj∪Bi| ·

|Aj |
|A| ·

|Bi|
|B| .

So Eg,s(Ig, Is) = Es,g(Is, Ig), and OCE(Ig, Is) = min (Eg,s, Es,g) = Es,g = Eg,s
For the special case, M = N = 1, we have

Eg,s = Es,g = 1− |Aj∩Bi|
|Aj∪Bi| = 1− b11

a11+b11+c11
=

a11+c11
a11+b11+c11

=
1+

c11
a11

1+
b11
a11

+
c11
a11

' 1

1+
b11
a11

=
a11

a11+b11
(a11 >> c11)

.

This also implies that OCE is determined by miss detection error aji, which is correct.
From the derivation above, we found Es,g is always equal to Eg,s. This means the

method cannot distinguish partial miss detection error from partial false alarm error.
Type 6: Over segmentation
Deduction 6.1 (Pixel-based method): the method evaluates correctly for the over seg-

mentation and the F measure is always greater than Recall.
Proof:
Assume the fragment A1 in Is is partitioned into k fragments which composite a set

BS, BS =
{
Bi

∣∣δ(A1 ∩Bi) = 1, i = 1, ..., k
}

, and |A1| > |BS|, a1i, b1i 6= 0, c1i = 0. We

have F =
2

k∑
i=1

δ̄(A1∩Bi)b1i

|A1|+|BS| =
2

k∑
i=1

b1i

|A1|+|BS| = 2|BS|
|A1|+|BS| >

|BS|
|A1| = CR

CR+MD
= Recall.

Over segmentation is a kind of miss detection error with no false alarm. Thus the
precision is equal to one, and the F value is determined only by the recall, as shown in
Table VI.

Deduction 6.2 (Martin’s method): GCE and LCE are always equal to zero and not
able to measure over-segmentation error.

Proof:
Using the same assumption above, we have

1∑
j=1

k∑
i=1

Pji =
k∑
i=1

[(
1− |A1∩Bi|

|A1|

)
· |A1 ∩Bi|

]
=

k∑
i=1

(
1− b1i

a1i+b1i

)
· b1i =

k∑
i=1

b1i +
k∑
i=1

(b1i)
2

a1i+b1i

= |BS|+
k∑
i=1

(b1i)
2

|A1|

,
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1∑
j=1

k∑
i=1

Qji =
k∑
i=1

[(
1− |A1∩Bi|

|Bj |

)
· |A1 ∩Bi|

]
=

k∑
i=1

(
1− b1i

b1i+c1i

)
· b1i = 0,

and min(P1i, Q1i) = min
(

a1ib1i
a1i+b1i

, b1ic1i
b1i+c1i

)
= min

(
a1ib1i
a1i+b1i

, 0
)

= 0

The reference fragment is fixed, i.e., |A1| is constant, thus

GCE(Ig, Is) = 1
n

min

{
M∑
j=1

N∑
i=1

Pji,
M∑
j=1

N∑
i=1

Qji

}
= 0,

LCE(Ig, Is) = 1
n

[
M∑
j=1

N∑
i=1

min(Pji, Qji)

]
= 0

We conclude that in over-segmentation case GCE = LCE = 0, which means Martin’s
method is not able to measure over segmentation error. The experimental results shown
in Table VI justify this.

Table 6. The results for over segmentation

Deduction 6.3 (Polak’s method): OCE can measure over-segmentation error correctly
Proof:
Using the same assumption in Deduction 6.1, we have

Eg,s(Ig, Is) = 1−
1∑
j=1

k∑
i=1

|A1∩Bi|
|A1∪Bi| ·

δ̄(A1∩Bi)|Bi|
k∑

l=1
δ̄(A1∩Bl)|Bl|

· |A1|
1∑

m=1
|Am|

= 1−
k∑
i=1

|Bi|
|A1| ·

|Bi|
|BS| = 1−

k∑
i=1

(|Bi|)2

|A1|·|BS| ,

Es,g(Is, Ig) =
k∑
i=1

 |Bi|
k∑

l=1
|Bl|

− k∑
i=1

1∑
j=1

|Aj∩Bi|
|Aj∪Bi| ·

δ̄(Aj∩Bi)|Aj |
M∑
k=1

δ̄(Ak∩Bi)|Ak|
· |Bi|

N∑
l=1

|Bl|
= 1−

k∑
i=1

|A1∩Bi|
|A1∪Bi| ·

|Bi|
|BS|

= 1−
k∑
i=1

|Bi|
|A1| ·

|Bi|
|BS| = 1−

k∑
i=1

(|Bi|)2

|A1|·|BS|

So OCE(Ig, Is) = Eg,s(Ig, Is) = Es,g(Is, Ig).
The result indicates that OCE is proportional to the amount of over-segmentation

error.
Type 7: Under segmentation
Deduction 7.1 (Pixel-based method): the method evaluates under-segmentation cor-

rectly and the F measure is greater than recall.
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Proof:
Assume the fragment A1 in Is is segmented into a smaller fragment B1, i.e., B1 ⊂ A1

and |A1| > |B1|. We have F = 2δ̄(A1∩B1)b11
|A1|+|B1| = 2|B1|

|A1|+|B1| >
|B1|
|A1| = CR

CR+MD
= Recall.

Under-segmentation is a kind of miss detection error. The larger the miss detection
(|A1|> |B1|), the smaller the F measure, as shown in Table VII.

Table 7. The results for under segmentation

Deduction 7.2 (Martin’s method): GCE and LCE are always equal to zero and not
able to measure under-segmentation error.

Proof:
Using the same assumption as above, we have

1∑
j=1

1∑
i=1

Pji = P11 =
(

1− |A1∩B1|
|A1|

)
· |A1 ∩B1| =

(
1− b11

a11+b11

)
· b11 = |BS|+ (b1i)

2

|A1| ,

1∑
j=1

1∑
i=1

Qji = Q11 =
(

1− |A1∩B1|
|B1|

)
· |A1 ∩B1| =

(
1− b11

b1i+c11

)
· b11 = 0,

and min(P11, Q11) = min
(

a11b11
a11+b11

, b11c11
b11+c11

)
= min

(
a11b11
a11+b11

, 0
)

= 0.

The reference fragment is fixed, i.e., |A1| is constant, thus

GCE(Ig, Is) = 1
n

min

{
1∑
j=1

1∑
i=1

Pji,
1∑
j=1

1∑
i=1

Qji

}
= 1

n
min {P11, Q11} = 0,

LCE(Ig, Is) = 1
n

[min(P11, Q11)] = 0.
We conclude that in under-segmentation GCE = LCE = 0, which means Martin’s

method is not able to measure under-segmentation error, which is also justified by exper-
iments shown in Table VII.

Deduction 7.3 (Polak’s method): OCE measures under-segmentation error correctly.
Proof:
Assume the fragment A1 in Is is segmented into a smaller fragment B1, i.e., B1 ⊂ A1

and |A1| > |B1|. In this case, we have a11, b11 6= 0, c11 = 0. Thus

Eg,s(Ig, Is) = 1−
1∑
j=1

1∑
i=1

|A1∩Bi|
|A1∪Bi| ·

δ̄(A1∩Bi)|Bi|
1∑

l=1
δ̄(A1∩Bl)|Bl|

· |A1|
1∑

m=1
|Am|

= 1− |B1|
|A1| ·

|B1|
|B1| = 1− |B1|

|A1| ,
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Table 8. Comparison of error measure abilities for three error metrics

Error types Pixel based Martin’s metric Polak’s metric
Perfect segmentation

√ √ √

Completely inaccurate
segmentation

√
× ×

Isolated false alarm
√

× ×
Isolated missed detection

√
× ×

Partial false alarm/
missed detection

√
× �

Over-segmentation
√

×
√

Under-segmentation
√

×
√

Es,g(Is, Ig) =
1∑
i=1

 |Bi|
1∑

l=1
|Bl|

− 1∑
i=1

1∑
j=1

|Aj∩Bi|
|Aj∪Bi| ·

δ̄(Aj∩Bi)|Aj |
1∑

k=1
δ̄(Ak∩Bi)|Ak|

· |Bi|
1∑

l=1
|Bl|

= 1− |A1∩B1|
|A1∪B1| ·

|B1|
|B1|

= 1− |B1|
|A1|

.

So we have OCE(Ig, Is) = Eg,s(Ig, Is) = Es,g(Is, Ig).
The result indicates that OCE is proportional to the amount of under-segmentation

error.

4. Summary and Conclusion. In this paper, we have investigated the properties of
three evaluation methods for image segmentation quality: pixel-based method, Martions
method and Polaks method through mathematical proof and experimental justification.
The results are summarized in Table VIII, where the “

√
” and “×” denotes the method

can and cannot measure the error types, respectively. The special marker “�” represents
the method is able to measure the error type, but unable to distinguish partial false
alarm error from partial missed detection error. This paper shows that the object-based
metrics have several deficiencies although they are suitable for object-level evaluation. In
addition, Polak’s method is better than Martin’s method, as expected.
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