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Abstract

Meta learning algorithms are effective at ob-

taining meta models with the capability of

solving new tasks quickly. However, they crit-

ically require sufficient tasks for meta model

training and the resulted model can only solve

new tasks similar to the training ones. These

limitations make them suffer performance de-

cline in presence of insufficiency of training

tasks in target domains and task heterogene-

ity—the source (model training) tasks presents

different characteristics from target (model ap-

plication) tasks. To overcome these two signif-

icant limitations of existing meta learning al-

gorithms, we introduce the cross-domain meta

learning framework and propose a new trans-

ferable meta learning (TML) algorithm. TML

performs meta task adaptation jointly with

meta model learning, which effectively nar-

rows divergence between source and target

tasks and enables transferring source meta-

knowledge to solve target tasks. Thus, the re-

sulted transferable meta model can solve new

learning tasks in new domains quickly. We ap-

ply the proposed TML to cross-domain few-

shot classification problems and evaluate its

performance on multiple benchmarks. It per-

forms significantly better and faster than well-

established meta learning algorithms and fine-

tuned domain-adapted models.

1 Introduction

Meta learning aims at obtaining a model that can cap-

ture common characteristics across different learning

tasks, such that the learned model can adapt to new

tasks quickly. Recently, various meta learning meth-

ods (Hariharan & Girshick, 2016; Koch et al., 2015; Lake

et al., 2013; Ravi & Larochelle, 2016; Santoro et al.,

2016b; Vinyals et al., 2016) have been developed to solve

multiple challenging problems, e.g., few-shot classifica-

tion (Fei-Fei et al., 2006), and achieved promising per-

formance. Those methods devise different approaches to

train a meta model that can be applied to new tasks via

simple fine-tuning.In contrast to conventional supervised

learning methods that suffer poor generalization perfor-

mance, meta learning methods explicitly optimize the

model generalization ability to new tasks and therefore

achieve better performance.

Under the standard meta learning paradigm, the meta

model is trained on a meta-training dataset consisting of

sufficient training tasks and evaluated on another dataset

with novel tasks. However, existing meta learning meth-

ods usually assume the training and test tasks have sim-

ilar characteristics. For instance, for few-shot classifica-

tion tasks, the samples of different tasks are usually from

splits of the same dataset (Finn et al., 2017; Hariharan &

Girshick, 2016; Vinyals et al., 2016). This actually de-

viates from the real world scenarios where a pre-trained

meta model usually needs to be applicable to heteroge-

neous tasks in different domains. Moreover, constructing

the meta-training set demands sufficiently many labeled

examples, which are usually not available in practice

considering the “few-shot” nature of meta learning prob-

lems. Existing meta learning methods generally ignore

such discrepancy between the traditional meta learning

paradigm and realistic application scenarios, leading to

poor generalization ability of the obtained model to new

tasks in new domains.

To extend applicability of meta learning methods, we

propose a new framework to utilize data from another

(source) domain to construct the meta-training set and

aim to develop a new meta learning algorithm to learn

a meta model from the source domain that can be di-

rectly applied to target domains, without requiring fur-

ther meta-training. We term this new framework as the

cross-domain meta learning. See Fig. 1 for an exam-
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Figure 1: Illustration of the cross-domain meta learning.

The pre-trained meta learning model M in the source do-

main is applied to solve new learning tasks T 1
1 , . . . , T 2

2

in different target domains. The target domains have too

few labeled samples to construct sufficient meta-training

tasks. Our proposed TML algorithm solves this problem

by learning a transferable meta model which can be di-

rectly applied to target tasks.

ple. Developing cross-domain meta learning algorithms

is difficult due to the scarcity of meta-training examples

in target domains and task heterogeneity caused by do-

main shift. As far as we know, none of existing meta

learning methods can deal with these challenging issues.

To address the above challenges, we propose a novel

transferable meta learning (TML) algorithm, which pro-

vides a meta model capable of fast adapting to new learn-

ing tasks in different domains via a few simple gradi-

ent descent fine-tuning. Inspired by state-of-the-art meta

learning methods (Finn et al., 2017; Vinyals et al., 2016),

TML introduces a new learning scheme. It first orga-

nizes available training data, very few of which are from

target domains, to form a collection of cross-domain

meta learning tasks. Taking these tasks as training exam-

ples, TML explicitly optimizes the capability of “learn-

ing to fast adapt” of the meta model. By taking sensi-

tiveness of model parameters to different tasks and do-

main shift as the joint learning objective, TML effec-

tively trains the meta model to learn task representa-

tions robust to domain-shift, enables cross-domain meta-

knowledge transfer and makes the model fast adaptable

to novel target tasks of different characteristics from the

source ones.

TML trains a meta model in two alternating phases. In

meta learning, TML optimizes the meta model to mini-

mize the loss over all its task-specific fine-tuned models,

i.e., minimizing the meta loss. In meta adaptation, TML

reinforces the meta model by adapting task representa-

tions to minimize domain divergence and thus facilitates

meta-knowledge transfer across heterogeneous tasks. We

use a domain discriminative loss for measuring domain

divergence. Through these two phases, TML effectively

minimizes the source domain meta loss and domain di-

vergence jointly, which together serve as an accurate sur-

rogate for learning to minimize the meta loss in the tar-

get domain. Therefore, a meta model trained by TML is

readily applicable to solving new tasks in target domains.

We apply and evaluate TML for cross-domain few-shot

learning problems, on multiple datasets with various do-

main shift issues. The results demonstrate that TML sur-

passes fine-tuning based methods and other meta learn-

ing models significantly in terms of few-shot classifica-

tion accuracy and adaptation speed. To our best knowl-

edge, TML is the first one that considers the illness of

current meta learning frameworks and explicitly pursues

generalization across heterogeneous tasks in different

domains. It substantially extends existing meta learning

algorithms and mitigates the gap between meta learning

frameworks and realistic application scenarios.

2 Related Work

Meta Learning Recently, some meta learning (Koch

et al., 2015; Ravi & Larochelle, 2016; Santoro et al.,

2016b; Snell et al., 2017; Vinyals et al., 2016; Wang &

Hebert, 2016) works are developed to solve the few-shot

learning problems. A meta model is usually trained over

a set of similar tasks to capture generalizable properties

across tasks, such that it can fast adapt to new similar

tasks. Several different strategies for designing meta-

learning algorithms are adopted (Andrychowicz et al.,

2016; Ravi & Larochelle, 2016). For instance, “learning

to compare” aims to learn a comparison metric that can

be used to find the most similar labeled sample for each

unlabeled input (Koch et al., 2015; Mishra et al., 2017;

Vinyals et al., 2016). Some meta learning methods adopt

external memory to augment the model (Munkhdalai &

Yu, 2017; Santoro et al., 2016a). For example, (San-

toro et al., 2016a) builds a meta model upon a Neural

Turing Machine (Graves et al., 2014), which encodes

and writes labeled examples into the memory and re-

trieve relevant information from the memory for classi-

fying an unlabeled sample. Differently, Model-Agnostic

Meta-Learning (MAML) (Finn et al., 2017) tries to find

a proper intermediate model, which can be fine-tuned

for several steps to produce a task-specific model given

very few samples. However, all these existing models

assume that training and testing tasks have similar char-

acteristics, and suffer performance decline in presence

of task heterogeneity. Moreover, they all require suffi-



ciently many training tasks. Our proposed TML algo-

rithm is the first one that tries to achieve fast adaptation

to new meta learning tasks in presence of varying in the

task characteristics in applied domains.

Few-shot Learning Few-shot learning (Fei-Fei et al.,

2006; Hariharan & Girshick, 2016; Lake et al., 2013)

is proposed to learn to recognize new categories with

few examples. (Fei-Fei et al., 2006) provides a solution

based on Bayesian inference over a pre-trained model

to capture general knowledge from previously learned

categories, whose generalization ability however is lim-

ited by heavy dependency on the relation between pre-

viously seen and new objects. Recently, (Hariharan &

Girshick, 2016; Luo et al., 2017) propose to transfer

intra-class features from base classes to new classes.

This method achieves good performance on new exam-

ples while maintaining the accuracy on original train-

ing classes. But all these conventional few-shot learning

methods require retraining the model from scratch when

applied to new few-shot learning tasks with randomly as-

signed labels, thus are incapable of fast adapting to mul-

tiple new tasks.

Domain Adaptation Many works have been devel-

oped for domain adaptation learning (Ganin et al., 2016;

Hoffman et al., 2013; Liu & Tuzel, 2016; Motiian et al.,

2017a,b; Tzeng et al., 2015, 2017). Maximum Mean

Discrepancy (MMD) Tzeng et al. (2014) measures the

distribution difference between the source and target do-

mains by computing norm of the mean feature differ-

ence between two domains. (Long et al., 2015; Sun &

Saenko, 2016) have shown that combining MMD with

popular deep learning models is effective. More recently,

Generative Adversarial Network (GAN) (Goodfellow

et al., 2014) based models have achieved remarkable suc-

cess, e.g. Adversarial Discriminative Domain Adaptation

(ADDA) (Tzeng et al., 2017) and CoGAN (Liu & Tuzel,

2016). ADDA adapts a well-learned source CNN by

learning a target CNN that maps target-domain images

into a feature space, where they are indistinguishable

from the source feature space by the GAN discriminator.

However, existing domain adaptation methods cannot be

applied to solve meta learning tasks.

3 The Proposed Algorithm

Meta learning aims to learn a meta model that captures

generalizable properties across tasks, such that the model

can adapt to solving new similar tasks quickly. In this

work, we consider the few-shot classification tasks in

particular, which are widely adopted for evaluating meta

learning methods. We first define the problem of meta

learning for few-shot classification. Then we elaborate

on our target problem, cross-domain meta learning, and

our proposed TML algorithm.

3.1 Problem Definition

Let X denote the input space and Y be the label space.

We are interested in meta learning for the N -category k-

shot learning tasks, where only a small number of k an-

notated samples per category (e.g., k ≤ 5) are available

for training a classification model within each task.

Let fθ(·): X→Y denote the meta learning model with

learnable parameter θ which is optimized to solve the

following few-shot learning tasks:

T � {(x1, y1), . . . , (xNk, yNk)︸ ︷︷ ︸
training samples

, (xt,yt)︸ ︷︷ ︸
test samples

, fθ, �}. (1)

More specifically, each task is to learn a specific classifi-

cation model fθ′(·) from only Nk training samples such

that the following task-specific classification loss on test

samples (xt,yt) can be minimized:

LT (fθ′) � �(fθ′(xt),yt), (2)

where � is the classification loss function.

Existing meta learning approaches generally learn a meta

model fθ(·) through meta-training over a collection of

tasks T ∼ p(T ) with similar distribution. In meta train-

ing, the meta model parameter θ is learned to minimize

the meta loss computed from all the training tasks:

θ = argmin
θ

m∑
i=1

LTi
(fθ′

i
), Ti ∼ p(T ), (3)

where θ′i is derived from the meta model θ through task-

specific adaptation, e.g., by fine-tuning θ on training

samples of task Ti. When there are sufficiently many

meta-training tasks Ti from the same distribution p(T ),
i.e., m is sufficiently large, one can reliably obtain a

well-performing meta model that can solve new task

Tt ∼ p(T ) with satisfactory task-specific loss.

However, in many realistic few-shot learning problems,

only a few labeled data are available which are not suf-

ficient to form many tasks for performing meta-training

in Eqn. (3). Thus the resulted meta model would suffer

from insufficient meta-training and would not generalize

well to new tasks. In this work, we propose to address

this problem by constructing a meta-training set from an-

other (source) domain of different characteristics where

rich labeled data are available. Despite being promising

and fitting realistic scenarios better, such a method brings

a cross-domain meta learning problem as defined below.

This problem is challenging to existing meta learning



methods as they usually assume the meta-training and

meta-test tasks are from the same distribution. We aim

to solve the following problem in this work, whose so-

lution would also bring significant practical benefits in

extending application of meta learning models to other

heterogeneous tasks in different domains.

Definition 1 (Cross-domain Meta Learning). Suppose
there are two different datasets of X × Y with domain
shift in X , called source data DS and target data DT ,
and DT only provides very few labeled samples. We aim
to learn a meta model fθ(·) by leveraging the sufficiently
many source data DS and their formed meta-training
tasks Ti ∈ pS(T ), such that the model can generalize
well to new tasks Tt ∈ pT (T ) in target dataset DT with
small task loss. Here pT (T ) is different from pS(T ) in
terms of label space Y and data distribution X .

Directly training a meta model via minimizing the meta

loss (Eqn. (3)) in target dataset DT is infeasible due to

limited labeled data and consequently insufficient meta-

training tasks. On the other hand, although the source

domain data is enough for training a meta model, directly

applying it to the target domain will suffer poor general-

ization performance due to domain shift (verified by ex-

periments in Sec. 4). To address this problem, we aim to

fully utilize cross-domain knowledge to learn a powerful

meta model fθ, which is well prepared for fast adapta-

tion to new few-shot learning tasks in target dataset DT .

To this end, we develop the transferable meta learning

algorithm in this work.

3.2 Model-Agnostic Meta-Learning (MAML)

We develop our transferable meta learning (TML) algo-

rithm from the state-of-the-art MAML algorithm (Finn

et al., 2017). While we extend MAML here, our pro-

posed idea is applicable to other meta-learning methods.

MAML solves above few-shot learning problems

by learning the parameter θ such that fθ can

solve a new task rapidly via several gradient de-

scent steps on few-shot task-related training exam-

ples. To this end, MAML forms a set of train-

ing tasks T ={T1, . . . , Tm}, where each task instan-

tiates an N -category k-shot classification problem

Ti = {(x(i)
1 , y

(i)
1 ), . . . , (x

(i)
Nk, y

(i)
Nk), (x

(i)
t ,y

(i)
t ), fθ, �} as

in Eqn. (1).

MAML fine-tunes the meta model fθ to a particular task

Ti by gradient descent:

θ′i ← θ − α∇LTi(fθ) (4)

where LTi
(fθ) =

1
Nk

∑Nk
j=1 �(fθ(x

(i)
j ), y

(i)
j ) is the task-

related training loss and α is a universal learning rate.

By treating each task as a training example, MAML opti-

mizes meta model parameter θ such that the total loss for

the task-wise fine-tuned parameter θ′i over testing sam-

ples (x
(i)
t ,y

(i)
t ) can be minimized:

min
θ

m∑
i=1

LTi
(fθ′) =

m∑
i=1

LTi
(fθ−α∇θLTi

(fθ)),

where LTi(fθ′) = �(fθ′(x
(i)
t ),y

(i)
t ), i.e., classification

loss on the reserved testing samples. The meta pa-

rameter θ is then updated by gradient descent θ ←
θ − β∇θ

∑m
i=1 LTi

(fθ′
i
). The trained meta model fθ

can be applied directly to a new similar N -category k-

shot learning task through gradient descent fine-tuning

in Eqn. (4) and performs remarkably well.

MAML inspires us in two aspects for solving few-shot

learning problems. First, instead of training a single

model on all available training data at once (which is

a common practice in most few-shot learning meth-

ods (Fei-Fei et al., 2006; Hariharan & Girshick, 2016;

Lake et al., 2013)), we should construct learning tasks

exactly matching the testing case for model training,

which is a more suitable learning scheme for obtaining

strong generalization ability from few examples. Sec-

ond, compared with optimizing the classification accu-

racy, optimizing the model adaptive capability to new

tasks better fits the nature of few-shot learning.

Although MAML provides promising solutions to few-

shot learning, its performance highly depends on the sim-

ilarity of training and testing tasks. It cannot handle dis-

crepancies among tasks—in particular the domain shift

between source and target data we aim to address—and

suffers performance decline.

3.3 Transferable Meta Learning Algorithm

Our proposed Transferable Meta Learning (TML) algo-

rithm solves cross-domain meta learning problems by

learning a meta model from the source data DS along

with a few unlabeled target data, which can fast adapt

to various few-shot classification tasks in target data DT .

Beyond existing meta-learning algorithms (like MAML),

TML entails the meta model with two-fold fast adapta-

tion capability. First, the model can learn from few train-

ing examples fast through simple fine-tuning, solving the

few-shot learning tasks. Second, the model can adapt to

tasks in different domains, addressing the task hetero-

geneity issues caused by domain shift.

TML is developed following a simple intuition: the loss

function computed in the source domain is expected

to be a good indicator of the target loss when both

tasks are similar. The main idea of TML is to learn



a meta model that is capable of adapting to new tasks

fast and meanwhile learning domain-invariant represen-

tations such that source tasks can provide useful meta-

knowledge for training models in target domains. To this

end, we develop a new learning scheme and propose a

novel meta model architecture. The meta model fϕ,θ

learned by TML includes two components, a domain-

invariant representation learner fϕ parameterized by ϕ
and a meta-classifier fθ with parameters θ, as illustrated

in Fig. 2. TML optimizes these two components jointly

such that the domain divergence can be reduced in a

way favorable for few-shot learning and facilitate cross-

domain meta-knowledge transfer.

TML Learning Scheme We apply TML to train a

meta model on a collection of source training tasks,

with a new learning scheme suiting cross-domain meta

learning. For notational simplicity, we use (xS ,yS)
and xT to collectively denote source data and unlabeled

target data respectively, and let (xt,S ,yt,S) denote an-

other source sample reserved for evaluating the loss in

Eqn. (2). Then, we define a cross-domain few-shot learn-

ing task for TML as

Ti � {(x(i)
S ,y

(i)
S ), (x

(i)
t,S ,y

(i)
t,S),x

(i)
T , fϕ,θ, �}, (5)

which includes two model training steps. First, fine-tune

the meta-classifier θ and representation learner ϕ with

few-shot source training samples (x
(i)
S ,y

(i)
S ) by gradient

descent:

ϕ′
i, θ

′
i ← (ϕ, θ)− α∇ϕ,θLTi

(fϕ,θ), (6)

and evaluate classification loss on (x
(i)
t,S ,y

(i)
t,S) based on �

as in Eqn. (2). Second, optimize representation learner ϕ
to minimize distribution divergence (see below) between

source data x
(i)
S and target data x

(i)
T . This new task for-

mulation distinguishes TML from existing meta learning

algorithms. TML explicitly meta-learns both few-shot

classification and task adaptation.

When applying the meta model fϕ,θ to few-shot learning

tasks in target domain DT , we apply gradient descent

to fine-tune the model parameters ϕ and θ over the few

labeled target data, following Eqn. (6).

TML Algorithm We explain how TML trains a

meta model on the training tasks {Ti} constructed as

above, which alternates between two optimization sub-

procedures, as illustrated in Fig. 2.

The first is meta learning step, where TML tries to learn

a domain-specific meta-classifier θ and representation

learner ϕ such that fine-tuning over them can minimize

Figure 2: TML for meta model training. TML performs

meta learning and task adaptation jointly to optimize the

meta model (consisting of representation learner ϕ and

classifier θ) and the discriminative model ω.

the loss over source test data:

min
ϕ,θ

∑
Ti∈T

LTi
(fϕ′

i,θ
′
i
)

=
∑
Ti∈T

LTi(f(ϕ−α∇ϕLTi
(fϕ,θ)),(θ−α∇θLTi

(fϕ,θ)))

where the inner loss LTi
(fϕ,θ) is the total cross-entropy

loss over the training samples (x
(i)
S ,y

(i)
S ) in task i:

LTi(fϕ,θ) =
∑

(xj ,yj)∈(x
(i)
S ,y

(i)
S )

yj log fϕ,θ(xj)

+(1−yj) log(1−fϕ,θ(xj)).

(7)

The outer meta loss LTi
(fϕ′

i,θ
′
i
) is the cross-entropy

loss defined on the task-specific testing samples

(x
(i)
t,S ,y

(i)
t,S) ∈ Ti for the fine-tuned model after one gra-

dient descent step fϕ′,θ′ :

LTi
(fϕ′

i,θ
′
i
) =

∑

(xt,S ,yt,S)∈Ti

yt,S log fϕ′
i,θ

′
i
(xt,S)

+(1−yt,S) log(1−fϕ′
i,θ

′
i
(xt,S)).

The involved meta model parameters are updated by gra-

dient descent:

ϕ ← ϕ−β∇ϕ

∑
Ti∈T

LTi(fϕ′
i,θ

′
i
),

θ ← θ−β∇θ

∑
Ti∈T

LTi
(fϕ′

i,θ
′
i
).

This meta learning step is similar to MAML but it de-

couples the representation learner ϕ and classifier θ for

developing the following meta adaptation learning.

The second step in TML is meta adaptation with a tar-

get to make the meta model fast adaptable to the target



domain DT which is different from the source DS used

for extensive meta model training. In particular, TML

trains the representation learner fϕ in this step such that

it can be adapted through fine-tuning to minimize the

distribution divergence between DT and DS , to allevi-

ate domain-shift issues when applying the meta-classier

fθ. Specifically, we use a domain adversarial discrimina-

tive loss to measure divergence between domains DS and

DT , in the feature space produced by the representation

learner fϕ, inspired by (Ganin et al., 2016).

Formally, we use US to denote the source feature space

derived by passing source data xS through the represen-

tation learner fϕ. The target feature space UT ← xT :
fϕ is derived similarly. A domain discriminator Dω pa-

rameterized by ω is trained on tasks Ti to distinguish

whether a sample x is from US or UT :

ω = argmax logDω(fϕ(xS)) + log(1−Dω(fϕ(xT )),

where we give label 1 to the data from source domain and

0 otherwise. We use the negative cross-entropy loss of

Dω as a measure over the domain divergence—a larger

discriminative loss means the samples are indistinguish-

able w.r.t. domain shift, indicating a small domain diver-

gence. The domain divergence is calculated as below,

dependent on the meta model parameter ϕ and discrimi-

nator ω:

dϕ,ω(DS ,DT ) :=− ExS∈DS
[logDω(fϕ(xS))]

− ExT∈DT
[log(1−Dω(fϕ(xT ))] .

In meta adaptation, TML learns ϕ and ω jointly to min-

imize the domain divergence derived from samples pro-

vided in training tasks Ti, i.e.,

dϕ,ω(DS ,DT ; Ti) :=−
∑

xS∈x
(i)
S

[logDω(fϕ(xS))]

−
∑

xT∈x
(i)
T

[log(1−Dω(fϕ(xT ))] .

In all, the learning objective for TML is

min
θ,ϕ

max
ω

∑
Ti∈T

LTi(fϕ′
i,θ

′
i
)− dϕ,ω(DS ,DT ; Ti),

s.t. ϕ′
i, θ

′
i ← (ϕ, θ)− α∇ϕ,θLTi

(fϕ,θ).

TML updates meta model parameters ϕ, θ and discrim-

inator ω by gradient descent. Details for our proposed

TML algorithm are summarized in Alg. 1. The output

meta model has following attractive advantages. First, it

is well prepared for fast adapting to new tasks and do-

mains through gradient based fine-tuning. Second, its

representation learner maps the heterogeneous-domain

Algorithm 1: Transferable Meta Learning

Input: Source domain data DS , target domain data DT ,

task set T , learning rates α, β, γ, max iteration I
Output: Representation learner ϕ, classifier θ, domain

discriminator ω
1 Randomly initialize θ, ϕ, ω
2 for i = 1, . . . , I do
3 Sample task Ti ∈ T .

4 Estimate ∇LTi
(fϕ,θ) using task provided training

samples (x,y) based on Eqn. (7)

5 Fine-tune the parameters ϕ, θ as Eqn. (6):

(ϕ′
i, θ

′
i) = (ϕ, θ)− α∇(ϕ,θ)LTi

(fϕ,θ)
6 Estimate meta learning gradient w.r.t. (ϕ, θ) on the

testing examples in task Ti by:

(Δcls
ϕ ,Δcls

θ ) = ∇(ϕ,θ)

∑
Ti∈T LT S

i
(fϕ′

i,θ
′
i
)

7 Sample source data xS ∈ DS , target data xT ∈ DT

8 Estimate meta adaptation gradient w.r.t. ϕ based on

(xS ,xT ) by: Δadpt
ϕ = ∇ϕdϕ,ω(DS ,DT )

9 Update model parameters:

10 ϕ ← ϕ− βΔcls
ϕ − γΔadpt

ϕ

11 θ ← θ − βΔcls
θ

12 ω ← ω − γ∇ωdϕ,ω(DS ,DT )

13 end

data into a common space with minimized domain di-

vergence such that model can effectively transfer meta-

knowledge for few-shot learning across domains. In

the experiments, we also verify that TML is superior to

the approach that performs domain adaptation and meta

learning separately.

4 Experiments
Datasets We first conduct experiments on learning a

meta few-shot classification model with TML across

three digits datasets, i.e., MNIST (LeCun et al., 1998),

USPS (Le Cun et al., 1989) and SVHN (Netzer et al.,

2011). Each dataset contains 10 categories of digit im-

ages with varying characteristics. Then we evaluate

TML on the office dataset (Saenko et al., 2010), which

is a more challenging benchmark with more complex

image contents and more significant domain shift. The

dataset contains 31 classes of office supplies from three

distinct domains, i.e., Amazon, DSLR and Webcam.

Experiment Settings All experiments follow the stan-

dard N -way K-shot protocol (Vinyals et al., 2016) for

few-shot learning, which is widely used for evaluating

meta learning algorithms. Under this protocol, samples

from one dataset are split and re-organized into multi-

ple tasks. Each task provides N selected classes with K
labeled training instances per class. Each task requires

training a few-shot learning model on the provided la-



beled samples. See Sec. 3.1 for the formal definition

of the task. We form the learning tasks for TML in the

way described in Sec. 3.3. Note the labels for the N se-

lected classes are randomly assigned under the few-shot

learning protocol. The purpose is to evaluate whether

the model indeed gains the capability of learning to rec-

ognize from few examples, instead of memorizing train-

ing examples from all the tasks. In our implementation,

both the N classes and K samples are randomly selected

from the whole dataset. Performance of a few-shot learn-

ing model is measured by the classification accuracy on

another K ×N unseen samples.

As we are interested in the cross-domain setting, in the

experiments we train a model with access to the source

data but evaluate its performance on tasks from the speci-

fied target domain. For instance, under the cross-domain

setting of “MNIST ⇒ USPS”, we train a model on

MNIST data and evaluate its performance in USPS few-

shot learning tasks.

Baselines Since the problem of cross-domain few-shot

classification is new, few valid methods are available

for solving it. Here we compare TML with follow-

ing strong baselines, which leverage the state-of-the-art

meta learning algorithms and domain adaptation meth-

ods, for obtaining the meta model. 1) Train a stan-

dard supervised-learning classifier on the source dataset,

and fine-tune it for each specific target task. Comparing

with this baseline aims to verify effectiveness of TML

in training a meta few-shot learning model with strong

generalization ability from few samples, compared with

standard supervised learning methods. 2) The state-of-

the-art meta learning algorithm, MAML (Finn et al.,

2017). In particular, we use MAML to train the meta

model in the source domain following the few-shot learn-

ing protocols and directly apply MAML to solve target

tasks. We aim to demonstrate the advantage of TML

over MAML in handling cross-domain few-shot learn-

ing problems. 3) The “oracle” MAML. It is trained us-

ing the full target datasets and provides performance up-

per bound for all the cross-domain trained models. 4)

MAML+ADDA. Concretely, apply state-of-the-art do-

main adaptation method ADDA (Tzeng et al., 2017) to

align target domain samples with the source domain at

first, and then apply MAML on the adapted sample rep-

resentations. For this baseline, the domain adaptation is

blind and unaware of few-shot learning tasks. Compar-

ing TML with it verifies the benefits of end-to-end meta-

adaptation and meta-learning in TML.

Implementation Details The meta model in TML con-

sists of two components, a meta representation learner

and a meta classifier. The former contains four cascade

convolutional units, while the latter is built with a linear

transformation layer followed by a softmax layer, follow-

ing similar architectures in (Finn et al., 2017; Vinyals

et al., 2016). The architecture of the convolutional units

varies along with the number of input image channels.

For gray-scale images (e.g., digit images), each convolu-

tional unit is composed of 1) 3×3 2D convolution with

64 filters and stride 2×2, 2) batch normalization (Ioffe &

Szegedy, 2015), and 3) ReLU nonlinear activation func-

tion. After the convolutions, a mean pooling layer is used

to transform multiple 2D feature maps into a linear fea-

ture vector. For color images (e.g., office images), the

convolutional unit changes to 1) 3×3 2-D convolution

with 32 filters and stride 1, 2) batch normalization, 3)

2×2 max pooling layer, and 4) ReLU nonlinearity. Then

the feature maps are simply flatten to produce a feature

vector for classification. The domain discriminator con-

sists of 3 fully connected layers. Each of the two hidden

layers has 500 neurons and is followed by a ReLU activa-

tion function. One single unit in the output layer is used

to indicate the input is from the source or target domain.

To train all network models, we adopt Adam (Kingma &

Ba, 2014) as the optimizer. The meta learning rate β is

set as 0.001, while the adaptation learning rate γ is set

as 2×10−4. The update (or fine-tuning) learning rate α
is fixed as 0.4 for training on gray images and 0.01 for

color images. The task batch size is 32 for gray images

and 4 for color image due to GPU memory limitation.

All models are trained on a single GeForce GTX TITAN

Black GPU with 12G memory.

4.1 Results on Digit Datasets

We present results on the digit datasets with multiple

cross-domain directions. We first convert all images to

gray scale and resize them to 28×28. When building

learning tasks, we rotate images class-wise by 90◦ ran-

domly for data augmentation (Santoro et al., 2016a).

We test our TML in following few-shot settings: 5-way

1-shot and 5-way 5-shot, and four cross-domain direc-

tions: MNIST ⇒ USPS, MNIST ⇒ SVHN, USPS ⇒
MNIST and SVHN ⇒ USPS. For the fine-tuning base-

line, we first train three classifiers of the same architec-

ture as our model on the three full digit datasets (using

the training set) individually. Then the learned classifier

on source domain is fine-tuned on the other two target

domains under the few-shot setting, i.e., fine-tuning the

model on a few training samples and evaluating it on the

testing samples for each task individually. For effectively

preventing over-fitting, we carefully select the fine-tune

learning rate which is set as 2× 10−4.

Table 1 reports the few-shot classification accuracy av-

eraged over 500 randomly sampled tasks. One can ob-

serve that MAML, MMAL+ADDA and TML all surpass

the fine-tune baseline by a large margin in all settings,



Table 1: Few-shot classification results for digit images. The left-most column shows the cross-domain direction,

where M, U, S denotes MNIST, USPS, SVHN respectively. The results are reported in terms of classification accuracy

(%) averaged over 500 tasks. The gray number in parentheses for MAML is the averaged accuracy obtained by training

MAML on the full target datasets. “M + A” denotes the MAML+ADDA baseline.

Direction
5-way 1-shot 5-way 5-shot

Fine-tune MAML M + A TML Fine-tune MAML M + A TML

M ⇒ U 39.12 86.33 (97.97) 86.83 91.70 63.42 93.43 (97.95) 93.44 94.43
M ⇒ S 21.08 22.30 (83.00) 24.03 29.60 24.56 28.82 (89.70) 29.43 29.68
U ⇒ M 37.48 83.30 (99.30) 81.80 88.90 52.99 89.42 (99.59) 90.03 90.01
S ⇒ U 23.36 84.60 (97.97) 82.70 82.67 61.21 87.23 (97.95) 87.86 89.23

Direction
10-way 1-shot 10-way 5-shot

Fine-tune MAML M + A TML Fine-tune MAML M + A TML

M ⇒ U 24.50 74.15 (94.60) 75.05 80.45 49.50 81.86 (95.85) 82.54 86.43
M ⇒ S 11.14 12.52 (67.57) 13.13 13.55 13.09 15.36 (84.41) 14.22 15.44
U ⇒ M 17.64 53.98 (98.68) 59.05 65.58 31.49 73.09 (98.98) 72.96 75.99
S ⇒ U 21.46 54.88 (94.60) 59.30 68.80 43.23 78.71 (95.85) 78.96 80.04

Table 2: Few-shot classification accuracy (in %) of TML

in source domain of the digit datasets, averaged over 500

randomly sampled tasks.

5-way 1-shot 5-way 5-shot

M 99.47 99.42
U 97.40 97.05
S 83.87 89.82

proving the benefits of considering the nature of few-

shot learning in model training. More importantly, TML

outperforms MAML for almost all settings, by a mar-

gin up to 8%. This shows effectiveness of TML in solv-

ing domain-shift issues for few-shot learning tasks. The

second-best baseline ADDA+MAML also tries to solve

domain-shift explicitly by applying ADDA to align do-

mains at first. However its performance is inferior to

TML as it conducts domain adaptation blindly which

may harm the few-shot learning performance. In con-

trast, our proposed TML performs meta-adaptation and

meta-learning jointly, providing fast adaptation abilities

to both new tasks and new domains. Thus it improves

ADDA+MAML by up to 9.5%. The superiority of TML

over ADDA+MAML becomes more significant when

training samples are very limited.

For the U ⇒ M (5-way, 5-shot) setting, TML performs

comparably well as ADDA+MAML, where the target

domain data are sufficient for ADDA to achieve good

domain adaptation. For the S ⇒ U (5-way, 1-shot) set-

ting, MAML performs slightly better than TML. This is

because the domain divergence between S and U is large

and target data from a single task are limited for TML to

perform meta-adaptation sufficiently well.

For better understanding the domain shift challenge to

few-shot learning, we also evaluate the oracle MAML

Figure 3: Adaptation speed comparison. Left: MNIST

⇒ USPS, 5-way 1-shot. Right: SVHN ⇒ USPS, 10-way

1-shot. The fine-tuning baseline updates for 300 steps in

total, i.e., one step amounts to 30 actual steps.

baseline which has full access to samples in the target

domain. The results in Table 1 show that domain shift

brings a significant performance drop to MAML, demon-

strating the necessity of addressing domain-shift in few-

shot learning. TML can reduce the performance gap

moderately. TML is effective at minimizing the domain

divergence without harming performance in source do-

main. To show this, we also evaluate its few-shot clas-

sification performance on the source domain. The re-

sults in Table 2 demonstrate that TML performs as well

as MAML in the source domain, proving TML can learn

domain-invariant representations benefiting applications

in both source and target domains.

Moreover, fast adaptation is important in practical ap-

plications. Therefore, we evaluate adaptation speed (in

terms of adaptation steps) of different methods. Given

a new task from the target domain, each model is up-

dated for several steps (e.g., 10) with gradient descent

using the task-provided few-shot training data. We plot

the few-shot classification performance against model

updating steps for the naive fine-tuning model, MAML,



Table 3: Few-shot classification results for office images. The left-most column shows the cross-domain direction,

where A, D, W denote Amazon, DSLR, Webcam respectively. The results are reported in terms of classification

accuracy (in %), averaged over 500 tasks. “M + A” denotes the MAML+ADDA baseline.

Direction
5-way 1-shot 5-way 5-shot

Fine-tune MAML M + A TML Fine-tune MAML M + A TML

A ⇒ D 42.44 45.90 49.43 54.50 74.12 71.74 71.63 80.72
A ⇒ W 41.67 46.43 48.50 53.83 69.71 70.70 69.70 78.59
D ⇒ W 46.48 72.77 72.20 76.70 74.02 77.51 78.78 88.97
W ⇒ D 49.28 80.20 80.93 82.83 78.91 90.48 89.55 91.25

Direction
10-way 1-shot 10-way 5-shot

Fine-tune MAML M + A TML Fine-tune MAML M + A TML

A ⇒ D 32.62 32.90 35.05 41.92 64.37 60.20 60.04 71.47
A ⇒ W 31.47 32.72 35.02 38.80 60.39 60.13 61.36 66.22
D ⇒ W 34.78 51.43 50.33 58.67 65.01 80.08 80.22 82.08
W ⇒ D 38.66 58.58 57.07 60.92 69.09 81.02 81.17 83.88

(a) (b)

Figure 4: (a) Adaptation speed comparison on office datasets (D ⇒ W, 5-way 5-shot). (b) Corresponding few-shot

classification confusion matrices on task-specific testing set.

MAML+ADDA and TML in Fig. 3. TML presents much

faster adaptation than others and achieves the best perfor-

mance. Notably, TML only needs one step adaptation to

achieve better performance than all the baselines.

4.2 Results on Office Datasets
We then evaluate TML on the more challenging office

dataset for four few-shot settings and three cross-domain

directions: Amazon ⇒ DSLR, Amazon ⇒ Webcam and

Webcam ⇒ DSLR. Since Amazon provides sufficient

training examples, we always take it as source domain.

The experimental results are shown in Table 1. Simi-

lar to the digit images, TML brings improvement up to

10.72% over MAML and MAML+ADDA, and performs

significantly better than the fine-tuning baseline.

We also analyze the adaptation speed of different ap-

proaches to multiple 5-way 5-shot learning tasks from

Dslr to Webcam domains, which is visualized in Fig. 4a.

TML adapts significantly faster than all the baselines,

demonstrating the meta-adaptation is effective for aug-

menting model adaptation ability. For understanding

few-shot classification performance more transparently,

we also plot classification confusion matrix for all the ap-

proaches in Fig. 4b. TML provides more accurate clas-

sification for all the 5 categories than baselines, show-

ing its effectiveness in overcoming challenges from both

domain-shift and limited training examples. In contrast,

MAML+ADDA degrades the performance of MAML

for the second category, demonstrating blind domain

adaptation may confuse some categories and harm the

few-shot learning performance.

5 Conclusion

This work introduced the new cross-domain meta learn-

ing problems challenged by insufficiency of training ex-

amples and varying characteristics of tasks. We devel-

oped the first transferable meta learning (TML) algo-

rithm which substantially extends existing meta learning

algorithms to solve new tasks in different domains and

relieve the issues brought by insufficient training tasks.
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