
Progressive Abstraction Refinement for Sparse Sampling

Jesse Hostetler and Alan Fern and Thomas Dietterich
Department of Electrical Engineering and Computer Science

Oregon State University
{hostetje, afern, tgd}@eecs.oregonstate.edu

Abstract

Monte Carlo tree search (MCTS) algorithms can
encounter difficulties when solving Markov de-
cision processes (MDPs) in which the outcomes
of actions are highly stochastic. This stochas-
tic branching can be reduced through state ab-
straction. In online planning with a time budget,
there is a complex tradeoff between loss in per-
formance due to overly coarse abstraction versus
gain in performance from reducing the problem
size. Coarse but unsound abstractions often out-
perform sound abstractions for practical budgets.
Motivated by this, we propose a progressive ab-
straction refinement algorithm that refines an ini-
tially coarse abstraction during search in order to
match the abstraction to the sample budget. Our
experiments show that the algorithm combines
the strong performance of coarse abstractions at
small sample budgets with the ability to exploit
larger budgets for further performance gains.

1 INTRODUCTION

When solving planning problems with a time budget,
choosing the right representation is crucial. The native rep-
resentation is often too detailed. It may treat many situa-
tions as distinct that are actually similar, causing the plan-
ner to spend its limited budget planning for irrelevant con-
tingencies and fail to discover the long term consequences
of actions. We should ignore details when deliberation time
is limited, but given more time we should increase the level
of detail to make better decisions. We consider how to de-
sign online planning algorithms that benefit from this type
of progressive attention to detail.

Our approach is based on the Monte Carlo tree search
(MCTS) paradigm. MCTS methods [Browne et al., 2012]
select an action in a given state by constructing a looka-
head search tree using a domain simulator. Because MCTS

methods plan for only one state at a time, their asymptotic
sample complexity is generally independent of the size of
the state space. Rather, they are limited by the search depth
achievable with a given time budget, which must be deep
enough to estimate the quality of actions in the current
state.

A full expectimax tree of depth d has of the order O(|A| ·
B)d nodes, where |A| is the size of the action set and B
is the number of possible outcomes per action. To achieve
a larger value of d, it is necessary to limit branching in
the tree. One way is to reduce |A|, an approach taken in
previous works such as [Pinto and Fern, 2014]. The other
approach, and the one we consider, is to reduce B.

MCTS algorithms limit B by selective sampling. Sparse
sampling (SS) algorithms [Kearns et al., 2002] limit B to
a constant. Trajectory sampling (TS) algorithms like UCT
[Kocsis and Szepesvári, 2006] focus exploration toward ac-
tions with higher estimated values, so that B and d are
small in non-optimal subtrees. In this paper, we investigate
a version of sparse sampling that employs state abstraction
to further reduce B.

We limit ourselves to state aggregation abstractions, in
which the ground states are partitioned into a set of ag-
gregate states. Classes of aggregation abstractions that
guarantee bounded performance loss in tree search algo-
rithms have been constructed based on the value func-
tion [Hostetler et al., 2014] and on bisimilarity [Jiang
et al., 2014]. But while performance loss bounds guarantee
asymptotic accuracy, practical time budgets may preclude
running a search to convergence. Thus the accuracy and
size of the abstraction interact in a complex way to deter-
mine the actual search performance. Small budgets call for
coarser abstractions, while large budgets can support finer
abstractions [Jiang et al., 2014].

Our observation from experience with state abstraction in
MCTS has been that search with the coarsest possible ab-
straction — the abstraction that maps all states to a single
equivalence class — often substantially outperforms search
in the ground state space for moderate search budgets. Yet



the optimal policy is seldom representable in this abstract
space, and there comes a point at which search with such an
abstraction cannot exploit further increases in the budget.

Our main contribution is an algorithm — PARSS — that
exploits the strengths of coarse abstractions while retain-
ing the convergence and optimality guarantees of search in
the ground state space. We achieve this by beginning with
a coarse abstraction and refining it during search to cre-
ate a more detailed abstraction, thus allowing performance
to continue to improve after the point where search with
the starting abstraction would have reached a plateau. We
prove that with suitable implementation choices, PARSS
converges to the same result and with the same worst-
case sample complexity as a sparse sampling search over
the ground state space. Finally, we conduct experiments
demonstrating the strength of very coarse abstractions in
anytime online planning and the ability of PARSS to fur-
ther improve upon their performance.

2 BACKGROUND

We consider a Monte Carlo tree search (MCTS) algorithm
for online planning in Markov decision processes (MDPs).
A discounted MDP is a 5-tuple M = 〈S,A, P,R, γ〉,
where S and A are finite sets of states and actions,
P (s′|s, a) is the transition function, R(s) gives the instan-
taneous reward in s, and γ ∈ [0, 1] is the discount factor.
Note that undiscounted problems (ie. γ = 1) pose no prob-
lem in our online planning setting.

Tree search algorithms construct sampled approximations
of the expectimax tree overM rooted at the current state s0.
The expectimax tree itself defines an MDP over state-action
histories as follows. LetH(M, s0) = {s0} ×A× S × · · ·
be the set of state-action histories in M starting in s0. We
write Hn for the set of histories of length n. Given a
history h = s0a1s1 . . . ansn ∈ Hn, we write s(h) ≡
sn and a(h) ≡ an for the final state and final action
in the history, p(h) ≡ s0a1s1 . . . an−1sn−1 for the pre-
fix of the history, and `(h) ≡ n for the length of the
history. Using this notation, we overload the P and R
functions to apply to histories by defining P (h′|h, a) =
1p(h′)=h1a(h′)=aP (s′|s(h), a) and R(h) = R(s(h)). The
Tree MDP induced by a general MDP M and rooted at
h0 = s0 is the tuple T (M, s0) = 〈H,A, P,R, h0, γ〉.

A solution of a Tree MDP is a policy π : H 7→
A mapping histories to actions. The value of a pol-
icy is given by the value function V π(h) = R(h) +∑
h′∈H P (h′|h, π(h))V π(h′). A policy is optimal if

V π(h) = V ∗(h), where V ∗(h) is the optimal value func-
tion, V ∗(h) = R(h) + maxa∈A

∑
h′∈H P (h′|h, a)V ∗(h′).

Equivalently, an optimal policy π∗ is such that π∗(h) =
arg maxa∈AQ

∗(h, a), where Q∗(h, a) = R(h) +∑
h′∈H P (h′|h, a) maxa′∈AQ

∗(h′, a′).

2.1 SPARSE SAMPLING

Our propsed algorithm derives from the sparse sampling
(SS) algorithm [Kearns et al., 2002]. SS estimates
Q∗(h0, a) by constructing a sampled approximation of the
Tree MDP rooted at h0. An SS tree of depth d and
width C defines a finite horizon estimate Qd(h, a) =
R(h) + γ

C

∑
h′∈k(h,a) maxa′∈AQ

d−1(h′, a′) of Q∗, with
terminal values Q0(h, a) = R(h). Each k(h, a) is a col-
lection of C iid samples h′ ∼ P (·|h, a), possibly con-
taining duplicates. The greedy policy with respect to Qd,
πSS(h) = arg maxa∈AQ

d(h, a), achieves bounded subop-
timality with sample complexity independent of the size of
the state space. Our algorithm (Section 4) is based on For-
ward Search Sparse Sampling (FSSS) [Walsh et al., 2010],
an SS algorithm that incorporates pruning.

2.2 STATE ABSTRACTION

We consider the simplest form of state abstraction — state
aggregation — in which the abstract states are the mem-
bers of a partition of the ground state space. Given a Tree
MDP T = 〈H,A, P,R, h0, γ〉, a state abstraction of T is
an equivalence relation χ on the set H. The abstraction
relation induces an abstract state space H/χ whose mem-
bers are the equivalence classes ofH with respect to χ. We
will write T/χ as shorthand for 〈H/χ,A, P,R, h0, γ〉. The
equivalence class of hwith respect to χ is denoted [h]χ, and
we say that two states h and g are equivalent with respect to
χ, denoted h 'χ g, if [h]χ = [g]χ. The abstraction relation
for a Tree MDP must be such that h 'χ g ⇒ p(h) 'χ p(g)
to ensure that T/χ is also a Tree MDP.

An abstraction χ is sound if there is an optimal policy
π∗ over T such that h 'χ g ⇒ π∗(h) = π∗(g) for
all h, g ∈ H. Classes of aggregation abstractions that
are sound or that guarantee bounded performance loss in
MCTS algorithms have been studied by Hostetler et al.
[2014] and Jiang et al. [2014].

2.3 ABSTRACTION REFINEMENT

State equivalence abstractions form a complete lattice or-
dered by abstraction granularity.

Definition 1. Abstractionψ is finer than χ, denotedψ � χ,
if h 'ψ g ⇒ h 'χ g. If in addition ψ 6= χ, then ψ is
strictly finer than χ, denoted ψ ≺ χ.

The finest abstraction is the bottom or ground abstraction
⊥, which maps all states to singleton sets, [h]⊥ = {h} ∀h.
The coarsest abstraction is the top abstraction >, which
maps all ground states of the same length to the same ab-
stract state, [h]> = H`(h) ∀h. Searching in the abstract
problem T/> amounts to searching for the best open-loop
policy in T , while searching in T/⊥ is equivalent to search-
ing in the ground space.



The lattice structure of equivalence abstractions ensures
that by iteratively constructing strict refinements of any ini-
tial abstraction we will eventually reach the bottom abstrac-
tion⊥, which is trivially sound. Furthermore, this property
does not depend on how the refinements are chosen.

3 MOTIVATING EXAMPLE: THE
SAVING PROBLEM

To illustrate the type of problem structure that motivates
our approach to state abstraction, we created a toy problem
called the Saving problem (Figure 1). The Saving prob-
lem is an episodic task in which the agent must accumulate
wealth by choosing to either save, invest, or borrow at each
time step. The save action always yields an immediate re-
ward of 1. The borrow action takes out a “loan”, which
gives an immediate reward of 2 and starts a countdown
timer tb from Tb to 0. The agent cannot borrow again while
tb > 0. When tb reaches 0, the agent receives a reward of
−3, representing repaying the loan with interest. Thus the
true value of borrow is −1, unless the episode will end be-
fore the loan is repaid. The invest action gives 0 immediate
reward, but gives the agent the right to take the sell action
sometime during the next Ti time steps. The sell action
gives a reward price(t) if executed at time t, where each
price(t)∼ DiscreteUniform{pmin, pmax} for pmin, pmax ∈ Z.
The agent can have only one investment at a time.

We instantiate the Saving problem with pmin = −4, pmax =
4, Ti = 4, and Tb = 4. With these parameters, invest is
nearly always optimal, but only if the agent takes advantage
of the investment period Ti in order to sell the investment
for more than E

[
price

]
= 0. Borrow is almost always the

worst action, but the agent must search to a depth of at least
Tb to discover its negative consequences.

Let us consider how the two extremes of state abstrac-
tion interact with the Saving problem, beginning with the
ground abstraction⊥. To avoid falling into the borrow trap,
the search must reach a depth of at least Tb. A full expec-
timax tree of depth Tb has size of the order O((|A|B)Tb),
where B = pmax − pmin + 1 is the stochastic branching due
to the random fluctuation of price. If we are restricted to
a sample budget k � (|A|B)Tb , then the constructed tree
will be very incomplete, and the agent may accidentally
choose to borrow or not to invest due to sampling variance.

At the other extreme, when searching with the top ab-
straction >, the size of the abstract tree is of the order
O(|A|Tb). This tree is much smaller in practical terms, so
searches will tend to give lower-variance estimates and bor-
row should be chosen less often. On the other hand, since
search with> cannot discriminate between states, the value
of invest will be estimated as E

[
price

]
= 0. This estimate

is less than 2, which is the opportunity cost of doing invest
and sell instead of doing save twice. Thus search with >

ti = Ti ti = Ti − 1

· · ·
ti = 0

invest / 0

sell / price(t)

¬ sell / 0

tb = Tb tb = Tb − 1

· · ·
tb = 0

borrow / 2

r = −3

Figure 1: Schematic diagram of the invest and borrow ac-
tions in the Saving problem. Edges labeled with an action
show its immediate reward.

will incorrectly choose to save rather than invest. This fail-
ure mode of open loop replanning was noted by Weinstein
and Littman [2012].

These two extremes illustrate an important point: the ap-
propriate abstraction depends on the sample budget. The
top abstraction > is superior for small budgets. Although
> is unsound in this domain, the search is operating in a
much smaller state space, resulting in lower variance and
less chance of incorrectly choosing borrow. Conversely,
⊥ is best with a large sample budget, since ⊥ is sound
whereas coarser abstractions might not be sound. With in-
termediate sample budgets, it is not clear how to determine
the appropriate abstraction granularity.

4 PROGRESSIVE ABSTRACTION
REFINEMENT

The difficulties illustrated in the Saving problem motivate
our proposed algorithm. We construct an abstract sparse
sampling algorithm that begins with the coarsest abstrac-
tion > and progressively refines the abstraction during
search. If the algorithm is interrupted early in the search, it
gives an answer based on a coarse but inaccurate abstrac-
tion. As more samples accumulate, the abstraction is re-
fined and the abstract search transforms smoothly into a
search over the ground state space.

The algorithm is built on top of the Forward Search Sparse
Sampling (FSSS) algorithm of Walsh et al. [2010]. We
first describe how to modify FSSS to construct a search
tree over the abstract state space induced by a fixed abstrac-
tion. We then “wrap” the abstract search in a progressive
abstraction refinement procedure.

In our algorithm descriptions, we treat each history h as
an object, in the sense that two histories h and g are dis-



tinct even if they describe the same sequence of states and
actions. Abstract states H are collections of ground his-
tories h, and may contain duplicates. The immediate re-
ward for an abstract state is denoted R(H) and is equal
to the average reward over its constituent ground states,
R(H) = 1

|H|
∑
h∈H R(h). We also assume the availabil-

ity of admissible value bounds Vmin and Vmax such that
Vmin ≤ V π(h) ≤ Vmax for all ground states h ∈ H and for
all policies π overH.

4.1 ABSTRACTION IN SPARSE SAMPLING

Forward Search Sparse Sampling (FSSS) [Walsh et al.,
2010] is an enhancement of ordinary sparse sampling (SS)
that incorporates pruning based on upper and lower bounds
on the values of subtrees. It provides the same performance
guarantees as SS and often does less computation.

Abstract FSSS (AFSSS; Algorithm 1) is a straightforward
extension of FSSS. AFSSS constructs an FSSS tree over
abstract states. The abstract tree encapsulates a tree of
ground states, whose structure is defined by collections of
ground successors k(h, a). Each abstract state node is a
collection H = {hi} of ground states. Associated with
each abstract state node are an upper and a lower value
bound U(H) and L(H)1 and a visit count n(H). Each
state node H such that n(H) > 0 has an action node suc-
cessor Ha for each a ∈ A. Action nodes have associated
value bounds U(H, a) and L(H, a), abstraction relations
χ(H, a), and abstract successor sets K(H, a). The visit
count n(H, a) for an action nodeHa is equal to the number
of ground successors of Ha, n(H, a) =

∑
h∈H |k(h, a)|.

The inputs to AFSSS are an abstract FSSS tree T , sam-
pling widthC, and maximum depth d. Like FSSS, AFSSS
proceeds in a series of top-down trials that each traverse a
path from the root node to a leaf state node. When extend-
ing a path, the algorithm chooses action nodes optimisti-
cally (Line 11), and chooses state nodes with the largest gap
betweenU andL (Line 12). If the path reaches an unvisited
state node (Line 9), that node is expanded by initializing
and sampling its action node successors. The backup op-
eration (Line 28) combines the average immediate reward
over ground states with the discounted future return bounds
over abstract states weighted by their empirical frequency.

When sampling an action node Ha (Line 22), the algo-
rithm must ensure that n(H, a) ≥ C to satisfy the sparse
sampling property. We accomplish this by sampling ground
successors h′ ∼ P (·|h, a) for each ground state h ∈ H and
adding them to the ground successor collections k(h, a) un-
til |k(h, a)| = dC/|H|e for all h ∈ H . Note that this sam-
pling method will sometimes draw more than C samples

1As in FSSS, these quantities bound the value estimate of the
full SS tree conditioned on the samples so far. The value of an
abstract state is a particular weighted average of ground values.
See [Hostetler et al., 2014] for details.

Algorithm 1 Abstract Forward Search Sparse Sampling
1: procedure AFSSS(T = 〈K,L,U,H0, χ〉, C, d, χ0)
2: global K,L,U,H0, χ, C, χ0

3: while time remains and not converged do
4: VISIT(H0, d)
5: procedure VISIT(H , d)
6: if H is terminal or d = 0 then
7: L(H)← R(H), U(H)← R(H)
8: else
9: if n(H) = 0 then EXPAND(H , χ0)

10: n(H)← n(H) + 1
11: a∗ ← arg maxa U(H, a)
12: H∗ ← arg maxH′∈K(H,a∗)[U(H ′)− L(H ′)]
13: VISIT(H∗, d− 1)
14: BACKUP(H , a∗)
15: BACKUP(H)
16: procedure EXPAND(H)
17: for all a ∈ A do
18: χ(H, a)← χ0(H, a)
19: (L(H, a), U(H, a))← (Vmin, Vmax)
20: SAMPLE(H , a)
21: (L(H ′), U(H ′))← (Vmin, Vmax) ∀H ′ ∈ K(H, a)

22: procedure SAMPLE(H , a)
23: for all h ∈ H do
24: while |k(h, a)| < dC/|H|e do
25: h′ ∼ P (·|h, a)
26: k(h, a)← k(h, a) ∪ {h′}.
27: K(H, a)← [

⋃
h∈H k(h, a)]/χ(H, a)

28: procedure BACKUP(H , a)
29: L(H, a)← R(H) + γ

∑
H′∈K(H,a)

|H′|
n(H,a)L(H ′)

30: U(H, a)← R(H) + γ
∑
H′∈K(H,a)

|H′|
n(H,a)U(H ′)

31: procedure BACKUP(H)
32: L(H)← maxa L(H, a)
33: U(H)← maxa U(H, a)

for an abstract action node Ha. It is crucial that sampling
is done in this way to allow the abstraction refinement algo-
rithm we will build on top of AFSSS (Section 4.2) to have
the same performance guarantees as FSSS.

AFSSS terminates when the time budget is exceeded or the
tree has converged (Line 3). The tree has converged if

L(H0, a
∗) ≥max

a6=a∗
U(H0, a)

where a∗ = arg max
a∈A

L(H0, a).
(1)

4.2 PROGRESSIVE ABSTRACTION
REFINEMENT FOR SPARSE SAMPLING

Our proposed algorithm (Algorithm 3) begins by building
an abstract FSSS tree with respect to >. After building the
abstract tree, it begins to refine the abstraction, and contin-



Algorithm 2 A generic abstraction refinement procedure
1: procedure PAR(T = 〈K,L,U,H0, χ〉)
2: Let Ha = SELECT(T )
3: if Ha 6= ∅ then
4: χ(H, a)← REFINE(χ(H, a))
5: SPLIT(H , a, χ)
6: UPDATETREE(H , a)

ues until there are no more useful refinements to perform.
We call the algorithm Progressive Abstraction Refinement
for Sparse Sampling (PARSS).

PARSS combines AFSSS with an instantiation of the
generic refinement procedure PAR described in Algo-
rithm 2. The PAR procedure consists of four steps. The
SELECT function either returns an action node Ha whose
associated abstraction relation χ(H, a) should be refined,
or indicates that no refinement is to be done. The REFINE
procedure is then called on the selected abstraction relation.
After refinement, the tree is SPLIT recursively to respect
the new abstraction. Finally, UPDATETREE re-computes
the tree statistics as necessary. The implementations of
SPLIT (Line 10) and UPDATETREE (Line 20) for AFSSS
are straightforward. The remaining operations, SELECT
and REFINE, are described in the next two sections.

After each PAR operation, PARSS calls AFSSS on the re-
fined tree. This is necessary because refinement may have
changed the value bounds of the root node such that the tree
no longer satisfies the convergence criterion.

4.2.1 Implementing SELECT

To ensure soundness, the SELECT operation must eventu-
ally select all action nodes Ha such that refining Ha could
change the root action choice. A selection mechanism that
guarantees this is said to be complete.

Definition 2. A SELECT mechanism is complete if it re-
turns an action nodeHa, whenever such anHa exists, such
that:

1. χ(H, a) �⊥.

2. U(H, a) < Vmax

These conditions ensure that refining χ(H, a) could poten-
tially alter the choice of root action. Condition (2.2) ex-
cludes action nodes in whichU(H, a) = Vmax, since in this
case refining below Ha cannot increase U(H, a) and thus
cannot affect the root action choice. This situation arises
when nodes have been generated by the EXPAND operation
in AFSSS, but have not been visited yet.

The requirements of Definition 2 place few constraints on
the order in which nodes are selected. There are several
heuristic reasons to prefer refining near the root first. The

Algorithm 3 Progressive Abstraction Refinement for SS
1: procedure PARSS(h0, C, d)
2: Let T = 〈K,L,U,H0, χ〉 where
3: K(H0, a) = ∅ ∀a ∈ A,
4: L(H0) = Vmin, U(H0) = Vmax,
5: H0 = {h0}, χ = >.
6: AFSSS(T , C, d, >)
7: while time remains and some χ(H, a) �⊥ do
8: PAR(T )
9: AFSSS(T , C, d, >)

10: procedure SPLIT(H , a, χ)
11: if H is a leaf then return
12: Let K ′ = ∅ . New abstract successor set
13: for all H ′ ∈ K(H, a) do
14: Let G′ = H ′/χ(H, a) . Refined partition
15: for all 〈G′, a′〉 ∈ G′ ×A do
16: K ′ ← K ′ ∪ {G′}
17: χ(G′, a′)← χ(H ′, a′) . Copy old relation
18: SPLIT(G′, a′, χ)
19: K(H, a)← K ′ . Overwrite old successor set
20: procedure UPDATETREE(H , a)
21: for all H ′ ∈ K(H, a) do
22: UPSAMPLE(H ′)
23: for t from 0 to `(H) do . Backup path to root
24: for all a ∈ A do BACKUP(H , a)
25: BACKUP(H)
26: Let H = p(H)

27: procedure UPSAMPLE(H)
28: if H is a leaf then
29: L(H)← R(H), U(H)← R(H)
30: else if n(H) > 0 then
31: for all a ∈ A do
32: SAMPLE(H , a)
33: for all H ′ ∈ K(H, a) do UPSAMPLE(H ′)
34: BACKUP(H , a)
35: BACKUP(H)

most important is that actions near the root are part of more
different policies than actions near the leaves. Since the
value of an action node only affects the root value if that
action is part of the optimal policy, refining nodes that are
members of more policies makes it more likely that the re-
finement will affect the root value. In discounted problems,
nodes at shallow depths are also less affected by discount-
ing. These observations suggest that a breadth-first order-
ing is a reasonable choice.

In our experiments, we used a randomized breadth-first
strategy to choose the next node to refine. Our SELECT im-
plementation is divided into subtree selection and node se-
lection phases. First, a subtree H0a that is not fully refined
is chosen uniformly at random. Then we find the shallow-
est depth d at which some descendent of H0a satisfies the



conditions of Definition 2, and return one such descendent
at depth d uniformly at random.

4.2.2 Implementing REFINE

Due to the lattice structure of partition abstractions, re-
peated refinements will eventually yield the ground ab-
straction ⊥, provided the refinements are strict. Thus, we
require that REFINE produces strict refinements, to guaran-
tee that the refinement process continues to make progress.
Definition 3. REFINE is a strict refinement function if
REFINE(χ) ≺ χ.

The best choice of REFINE implementation will depend on
the problem being solved. In our experiments, we tried the
following two variations.

Random Refinement. The simpler approach,
REFINERANDOM, first chooses the largest set H ′ in
the partition induced by χ(H, a). It then randomly
permutes the equivalence classes in H ′/⊥ and greedily
divides them into two sets of approximately equal size.
This option is fast to compute but does not exploit structure
in the ground state space.

Tree-based Refinement. If we have access to a set of
features {φi(h)} for each state, we can take a more
sophisticated approach. REFINEDT is based on an
incrementally-constructed decision tree. Each abstraction
relation χ(H, a) is defined by a decision treeD. The leaves
of D define the members of a partition of the successors of
Ha. Interior nodes are labeled with a feature i and a thresh-
old θ. The refinement operation chooses the largest leaf
node N of D and adds a new split to D dividing N into
two new sets X and Y , choosing splits greedily to maxi-
mize an evaluation function f(X,Y ).

The evaluation function f can be designed to encourage de-
sired properties in the partitions. For example, if χ is such
that for all H ∈ H/χ, all members of H have the same
optimal action and the same optimal value, then χ is sound
in sparse sampling [Hostetler et al., 2014]. This condition
is called a∗-irrelevance [Li et al., 2006]. We define an eval-
uation function that encourages a∗-irrelevance using upper
bounds u(h) and u(h, a) for ground state values. These can
be computed along with the bounds for the abstract states
during the BACKUP step (Algorithm 1, Line 28).

Using these bounds on the ground states, we define the
evaluation function

f(X,Y ) = |ū(X)− ū(Y, a∗)|+ |ū(Y )− ū(X, b∗)|,

where ū(H) = 1
|H|
∑
h∈H u(h), ū(H, a) =

1
|H|
∑
h∈H u(h, a), a∗ = arg maxa∈A ū(X, a) and

b∗ = arg maxb∈A ū(Y, b). Splits that maximize f will
tend to put ground states that have different optimal actions
or different optimal values into different abstract states.

4.3 ANALYSIS OF PARSS

The PARSS algorithm can be viewed as a different way of
orchestrating the sampling of a sparse tree. If run to termi-
nation, it provides the same performance guarantees with
the same sample complexity as ordinary sparse sampling.

Definition 4. An abstract search tree T = 〈K,L,U,H0〉
is an abstract FSSS tree with respect to χ, or an AFSSS(χ)
tree in shorthand, if

1. For each abstract state node H , ∀h, g ∈ H , h 'χ g;

2. For every abstract state node H such that n(H) > 0,
n(H, a) ≥ C for all a ∈ A,

3. All value bounds L and U are admissible (Sec-
tion 4.1),

4. T satisfies the AFSSS convergence criterion (1).

One can easily verify that the output of AFSSS is an ab-
stract FSSS tree.

Proposition 1. Consider a PARSS implementation where
the SELECT and REFINE operations satisfy the conditions
of Definitions 2 and 3. If the current search tree T is an
abstract FSSS tree with respect to abstraction χ, then af-
ter one iteration of the loop in Algorithm 3, Line 7, the
resulting tree T ′ is an abstract FSSS tree with respect to
an abstraction ψ such that ψ ≺ χ.

Proof. By assumption, REFINE(χ(H, a)) returns a new ab-
straction ψ such that ψ(H, a) ≺ χ(H, a), and therefore
ψ ≺ χ. The SPLIT operation partitions the subtree Ha ac-
cording to ψ, establishing condition (4.1). The UPSAMPLE
loop in UPDATETREE (Line 21) adds samples and performs
backups in the subtree Ha to establish (4.2) and (4.3) for
the subtree. Then values are backed up from Ha to the
root node (Line 23), which establishes (4.3) for the rest of
the tree. Finally, the call to AFSSS (Line 9) establishes
convergence (4.4).

Proposition 2. If PARSS does not exhaust its time budget,
it terminates after drawing at most (|A| ·C)d samples from
the transition function P , and the resulting search tree is
an abstract FSSS tree with respect to ⊥.

Proof. By Proposition 1, each iteration of the loop in Algo-
rithm 3, Line 7 produces a strictly refined AFSSS tree. Due
to the lattice structure of aggregation abstractions (Sec-
tion 2.3), the abstraction relations χ(H, a) will be equal to
⊥ for all H, a after a finite number of iterations. The tree
at this point is an abstract FSSS tree with respect to⊥. The
worst-case sample complexity occurs if all abstract nodes
H in the fully-refined tree are singletons.

Proposition 3. PARSS achieves the same error bounds
and sample complexity as ordinary sparse sampling.



Proof. Proposition 2 establishes that PARSS yields an
AFSSS(⊥) tree T with the same worst-case sample com-
plexity as SS (ie. O((|A| · C)d)). T is different from
a ground FSSS tree in that states that are equal in the
ground representation are aggregated in T . Because the
FSSS pruning mechanism is sound [Walsh et al., 2010],
T achieves the same error bounds as an SS tree in which
identical states are aggregated. The error bounds for sparse
sampling remain valid in this case [Kearns et al., 2002],
thus the conclusion follows.

5 RELATED WORK

The PARSS algorithm begins with an abstract tree search
under abstraction >, which as we have noted is equiva-
lent to searching for an open loop policy. Several works
have explored the use of open loop policies for value esti-
mation. Weinstein and Littman [2012] applied this idea in
continuous action MDPs, drawing on theory developed by
Bubeck and Munos [2010]. Weinstein and Littman [2013]
later developed a related algorithm with a different opti-
mization mechanism and applied it to legged locomotion
tasks. Hauser [2011] used forward search with open loop
policies to plan in partially observable continuous spaces.

Incremental construction of state space partitions starting
from the top abstraction > has been a common approach
to abstraction discovery in MDPs, in algorithms such
as the G algorithm [Chapman and Kaelbling, 1991], the
PARTI-GAME algorithm [Moore and Atkeson, 1995], and
the UTREE algorithm [McCallum, 1996]. The REFINEDT
operation (Section 4.2.2) is similar to UTREE.

One closely related work is the Tree Learning Search (TLS)
algorithm of Van den Broeck and Driessens [2011]. TLS
contains all of the main ideas we use in PARSS, but ap-
plied in the UCT algorithm and targeted at continuous ac-
tion spaces. Each state node of a TLS tree has an asso-
ciated decision tree that represents a discretization of the
action space. The decision trees are grown incrementally
when data indicate that an existing action equivalence class
leads to states with large variation in their values.

Another closely related work is that of Jiang et al. [2014],
which describes a different abstraction refinement proce-
dure for UCT. Their search proceeds in “batches” of sam-
ples. In between each batch, all of the abstraction relations
are recomputed to satisfy a local approximate homomor-
phism criterion with respect to the sampled tree, and then
the next batch of samples is drawn via search in the new
abstract state space. A key difference from our approach is
that their algorithm computes a particular abstraction with
specified approximation bounds. With more samples, the
computed abstraction becomes a better estimate of the tar-
get abstraction. In contrast, our method computes progres-
sively finer abstractions as the sample budget increases.

Table 1: Best parameters for each algorithm. Parameter
quality is measured by AUAC(wmag).

Domain Saving Racetrack (S) Racetrack (L)
Algorithm B C d B C d B C d
PARSS+DT - 5 5 - 10 5 - 20 4
PARSS+RAND - 5 5 - 10 5 - 20 4
TOP - 5 5 - 20 5 - 20 4
GROUND - 2 5 - 10 4 - 10 4
RANDOM 2 5 5 2 20 4 2 10 4

Domain Blackjack Advising 1 Advising 2
PARSS+DT - 50 2 - 5 2 - 5 2
PARSS+RAND - 50 2 - 5 2 - 5 2
TOP - 50 2 - 5 2 - 5 2
GROUND - 50 2 - 2 2 - 2 2
RANDOM 2 50 2 2 5 2 2 5 2

6 EXPERIMENTS

We evaluated PARSS with both REFINEDT and
REFINERANDOM refinement procedures (“PARSS+DT”
and “PARSS+RAND”; Section 4.2.2) in comparison to
flat FSSS (“GROUND”), AFSSS with the top abstraction
(“TOP”), and AFSSS with random abstractions of differ-
ent fixed branching factors (“RANDOM”). We compared
the anytime performance of the algorithms with both
sample budgets and time budgets.

6.1 DOMAINS

Our test domains included the Saving problem described
earlier (Section 3) as well as several other benchmark do-
mains. We chose domains that exhibit varying amounts of
stochastic branching and on which we suspected that the
top abstraction would not be optimal.

Racetrack. Racetrack is the classic RL domain of Barto
et al. [1995]. The agent controls a car in a grid world. The
state specifies the car’s position and velocity, and the ac-
tions apply an acceleration a ∈ {−1, 0, 1} × {−1, 0, 1} to
the car. The objective is to reach a goal state in as few steps
as possible without crashing into a wall. We incorporate
stochasticity by making both components of the accelera-
tion action subject independently to a random “slip” with
probability 0.2, which causes 0 acceleration to be applied
in that direction rather than the intended amount. We used
both the “small” and “large” circuits of Barto et al. [1995].

Spanish Blackjack. Spanish Blackjack is a more com-
plicated variation of the casino game Blackjack (or “21”).
In Spanish Blackjack, the player may split to a total of up
to 4 hands, may double down after splitting, may re-double
the same hand up to a total of three times, and may hit after
doubling. There are also bonuses for making 21 in 5 cards,
6 cards, or 7 or more cards, or with either 7,7,7 or 6,7,8.

Academic Advising. The Academic Advising domain
[Guerin et al., 2012] was featured at the International Plan-
ning Competition at ICAPS in 2014. The agent must take



●

●

●

●

●
●

● ● ●

20

24

28

32

36

20
0

50
0

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

Sample budget

R
et

ur
n

Algorithm

●

PARSS + DT
PARSS + Random
Ground
Top
Random

Saving

● ● ●

●

●

●

●

●

● ● ●

−40

−35

−30

−25

−20

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

20
00

00

50
00

00

10
00

00
0

20
00

00
0

Sample budget

R
et

ur
n

Algorithm

●

PARSS + DT
PARSS + Random
Ground
Top
Random

Racetrack Small

● ● ●

●

●

●
●

●

● ●
●

−60

−50

−40

50
0

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

20
00

00

50
00

00

10
00

00
0

Sample budget

R
et

ur
n

Algorithm

●

PARSS + DT
PARSS + Random
Ground
Top
Random

Racetrack Large

●

●

● ●
● ● ● ● ● ● ●

●

−1.5

−1.0

−0.5

0.0

20
0

50
0

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

20
00

00

50
00

00

10
00

00
0

Sample budget

R
et

ur
n

Algorithm

●

PARSS + DT
PARSS + Random
Ground
Top
Random

Spanish Blackjack

● ●

●

● ● ● ● ● ● ● ● ● ●

−500

−400

−300

−200

20
0

50
0

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

20
00

00

50
00

00
10

00
00

0
20

00
00

0

Sample budget

R
et

ur
n

Algorithm

●

PARSS + DT
PARSS + Random
Ground
Top
Random

Advising 1

●

●

●

● ● ● ● ● ● ● ● ● ●

−1000

−800

−600

−400

20
0

50
0

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

20
00

00

50
00

00
10

00
00

0
20

00
00

0

Sample budget

R
et

ur
n

Algorithm

●

PARSS + DT
PARSS + Random
Ground
Top
Random

Advising 2

Figure 2: Performance vs. sample budget. Results are for the parameters that maximized AUAC(wmag). Confidence
intervals are shown, but are mostly smaller than the marker shapes except for Spanish Blackjack.

and pass all of the required courses in an academic pro-
gram. The courses are linked by prerequisite relationships,
and the chance of passing a course depends on how many of
its prerequisites have been passed. We used MDP instances
1 and 2 from the IPC 2014.

In the IPC version of Advising, the agent can either pass
or fail a course. We implemented a generalized problem
that has integer grades in the range {0, . . . , g} to increase
stochastic branching. We set g = 4 and set 2 as the mini-
mum passing grade for required courses.

6.2 METHODOLOGY

We evaluated each algorithm for several combinations of
the C and d parameters. The range of d spanned 3 - 4 con-
secutive integers for each problem andC spanned 3 - 4 con-
secutive values in the sequence {5, 10, 20, 50, 100, 200}.
Specific ranges were chosen based on pilot experiments.

For the sample budget experiments, we restricted the algo-
rithms to a maximum number of samples from the transi-
tion function. We evaluated sample budgets in the sequence
{200, 500, 1000, 2000, . . .} for each parameter combina-
tion. For each budget, we measured average return over
2000 to 10000 episodes, depending on the domain.

We report results for the combinations of parameters that
maximized the weighted area under the anytime curve.
Given a budget sequence B = {b1, . . . , bn}, we calculate
AUAC as

AUAC(w)(B) =

n∑
i=2

w(bi, bi−1)
ρ(bi) + ρ(bi−1)

2
, (2)

where ρ(b) is the sample average of the return of the algo-
rithm with budget b and w : B × B 7→ R≥0 is a weight
function. In our main experiment, we use the weight func-
tion wmag(bi, bi−1) = log bi − log bi−1, which reflects a
preference for good performance across orders of magni-
tude of budget.

Performance comparisons based on sample budgets can be
misleading, since more-sophisticated algorithms do more
work per sample. For those domains in which PARSS
showed superior performance, we ran experiments with a
time budget using the same parameters that achieved the
best sample budget performance. The time budgets were
measured in milliseconds and were drawn from the se-
quence {10, 16, 25, 40, 63, 100, . . .}.

6.3 RESULTS

The two variations of PARSS had superior anytime perfor-
mance with a sample budget in Saving and in both Race-
tracks (Figure 2), and were equal to TOP on the other do-
mains. TOP outperformed GROUND in all domains except
Saving but it plateaued at a suboptimal value in Saving and
Racetrack Large. The pattern of performance on Saving
was as expected, with TOP plateauing while both variants
of PARSS continued to improve and equaled the best per-
formance of GROUND.

In Blackjack and both Advising domains, the AUAC(wmag)
performance measure emphasized quick convergence, and
the best C and d parameters were at the small end of their
ranges (Table 6.1). TOP (and thus PARSS) converged
more quickly than GROUND, and in both Advising domains
also converged to a better value. PARSS did not diverge



● ● ●
● ● ● ● ● ●

20

24

28

32

36

10 16 25 40 63 10
0

16
0

25
0

40
0

Time budget (ms)

R
et

ur
n

Algorithm

●

PARSS + DT
PARSS + Random
Ground
Top
Random

Saving (time budget)

● ●

●

●

●

●
●

●

●

● ●

−40

−35

−30

−25

−20

10 16 25 40 63 10
0

16
0

25
0

40
0

63
0

10
00

Time budget (ms)

R
et

ur
n

Algorithm

●

PARSS + DT
PARSS + Random
Ground
Top
Random

Racetrack Small (time budget)

● ●

●
●

●
●

●

●

●

●
●

−60

−50

−40

10 16 25 40 63 10
0

16
0

25
0

40
0

63
0

10
00

Time budget (ms)

R
et

ur
n

Algorithm

●

PARSS + DT
PARSS + Random
Ground
Top
Random

Racetrack Large (time budget)

Figure 3: Performance vs. time budget. Parameter settings are the same as for the sample budget experiments.

● ● ●

●

●

●

●

●

● ● ●

−40

−35

−30

−25

−20

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

20
00

00

50
00

00

10
00

00
0

20
00

00
0

Sample budget

R
et

ur
n

Algorithm

●

PARSS + DT
PARSS + Random
Ground
Top
Random

Racetrack Small (w_flat)

●
● ●

●

●

●

●

●

● ● ● ● ●

−500

−400

−300

−200

20
0

50
0

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

20
00

00

50
00

00
10

00
00

0
20

00
00

0

Sample budget

R
et

ur
n

Algorithm

●

PARSS + DT
PARSS + Random
Ground
Top
Random

Advising 1 (w_flat)

● ● ●

●

●
●

● ● ● ● ● ● ●

−1200

−1000

−800

−600

−400

20
0

50
0

10
00

20
00

50
00

10
00

0

20
00

0

50
00

0

10
00

00

20
00

00

50
00

00
10

00
00

0
20

00
00

0

Sample budget

R
et

ur
n

Algorithm

●

PARSS + DT
PARSS + Random
Ground
Top
Random

Advising 2 (w_flat)

Figure 4: Selected results with best parameters according to AUAC(wflat).

from TOP in these domains, indicating that abstraction re-
finement was not beneficial.

The RANDOM abstraction, which is a compromise between
TOP and GROUND, tended to fall in between those two ab-
stractions, although RANDOM performed poorly on Saving
for small budgets.

The results with time budgets were qualitatively similar to
the sample budget results (Figure 3).

To examine the sensitivity of our results to the choice of
anytime performance measure, we also evaluated the al-
gorithms with the parameters that maximized AUAC with
respect to the alternative weight function wflat(bi, bi−1) =
bi − bi−1. Weighting with wflat gives equal weight to all
budgets in the range, and thus gives greater emphasis to
large budgets compared to wmag. In the domains shown
(Figure 4), the different budget weighting resulted in some
qualitative changes to the results, but the relative ranking of
the algorithms remained the same. Note that the divergence
between PARSS and TOP in Advising 2 is due to noise in
parameter selection. There were no noteworthy differences
in the domains not shown.

There was no difference in performance between
PARSS+DT and PARSS+RAND. It appears that ei-
ther REFINEDT does not find better refinements than
REFINERANDOM, or else the quality of refinements does
not matter much to overall performance. We expected
the simpler REFINERANDOM mechanism to have an
advantage under a time budget, but this was not the case.

To summarize, our main experimental findings were:

• TOP was clearly superior to GROUND overall;

• PARSS equaled the performance of TOP, or sur-
passed TOP through abstraction refinement;

• The two refinement mechanisms — REFINERANDOM
and REFINEDT — had identical performance;

• Relative performance results with time budgets were
qualitatively similar to those with sample budgets.

7 SUMMARY

We have described an extension of sparse sampling called
Progressive Abstraction Refinement for Sparse Sampling
(PARSS) that adapts the granularity of its state represen-
tation to the available planning budget. PARSS exploits
the benefits of coarse, unsound abstractions for small bud-
gets while transitioning smoothly to more accurate abstrac-
tions when given a larger budget. We proved that PARSS
has the same sample complexity and accuracy guarantees
as SS. Our experiments demonstrated that planning with
the coarsest abstraction, equivalent to open loop planning,
yields strong anytime performance on several benchmark
domains, and confirmed that PARSS can improve upon
that strong performance as budgets increase.

Acknowledgements

This research was supported by NSF grant IIS 1320943.



References
Barto, A. G., Bradtke, S. J., and Singh, S. P. (1995). Learn-

ing to act using real-time dynamic programming. Artifi-
cial Intelligence, 72(1-2):81–138.

Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M.,
Cowling, P. I., Rohlfshagen, P., Tavener, S., Perez, D.,
Samothrakis, S., and Colton, S. (2012). A survey of
Monte Carlo tree search methods. IEEE Transactions on
Computational Intelligence and AI in Games, 4(1):1–43.

Bubeck, S. and Munos, R. (2010). Open loop optimistic
planning. In Conference on Learning Theory (COLT).

Chapman, D. and Kaelbling, L. P. (1991). Input general-
ization in delayed reinforcement learning: An algorithm
and performance comparisons. In International Joint
Conference on Artificial Intelligence (IJCAI).

Guerin, J. T., Hanna, J. P., Ferland, L., Mattei, N., and
Goldsmith, J. (2012). The academic advising planning
domain. In Workshop on the International Planning
Competition (WS-IPC) at ICAPS.

Hauser, K. (2011). Randomized belief-space replanning in
partially-observable continuous spaces. In Algorithmic
Foundations of Robotics IX, pages 193–209. Springer.

Hostetler, J., Fern, A., and Dietterich, T. (2014). State ag-
gregation in Monte Carlo tree search. In AAAI Confer-
ence on Artificial Intelligence.

Jiang, N., Singh, S., and Lewis, R. (2014). Improving UCT
planning via approximate homomorphisms. In Interna-
tional Conference on Autonomous Agents and Multia-
gent Systems (AAMAS).

Kearns, M., Mansour, Y., and Ng, A. Y. (2002). A sparse
sampling algorithm for near-optimal planning in large
Markov decision processes. Machine Learning, 49(2-
3):193–208.

Kocsis, L. and Szepesvári, C. (2006). Bandit based Monte-
Carlo planning. In European Conference on Machine
Learning (ECML).

Li, L., Walsh, T. J., and Littman, M. L. (2006). Towards a
unified theory of state abstraction for MDPs. In Interna-
tional Symposium on Artificial Intelligence and Mathe-
matics.

McCallum, A. K. (1996). Reinforcement learning with se-
lective perception and hidden state. PhD thesis, Univer-
sity of Rochester.

Moore, A. W. and Atkeson, C. G. (1995). The parti-game
algorithm for variable resolution reinforcement learning
in multidimensional state-spaces. Machine Learning,
21(3):199–233.

Pinto, J. and Fern, A. (2014). Learning partial policies to
speedup MDP tree search. In Conference on Uncertainty
in Artificial Intelligence (UAI).

Van den Broeck, G. and Driessens, K. (2011). Automatic
discretization of actions and states in Monte-Carlo tree
search. In ECML/PKDD Workshop on Machine Learn-
ing and Data Mining in and around Games.

Walsh, T. J., Goschin, S., and Littman, M. L. (2010). In-
tegrating sample-based planning and model-based rein-
forcement learning. In AAAI Conference on Artificial
Intelligence.

Weinstein, A. and Littman, M. L. (2012). Bandit-based
planning and learning in continuous-action Markov de-
cision processes. In International Conference on Auto-
mated Planning and Scheduling (ICAPS).

Weinstein, A. and Littman, M. L. (2013). Open-loop plan-
ning in large-scale stochastic domains. In AAAI Confer-
ence on Artificial Intelligence.


