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ABSTRACT

A Dhrupad vocal concert comprises a composition section
that is interspersed with improvised episodes of increased
rhythmic activity involving the interaction between the vo-
cals and the percussion. Tracking the changing rhythmic
density, in relation to the underlying metric tempo of the
piece, thus facilitates the detection and labeling of the
improvised sections in the concert structure. This work
concerns the automatic detection of the musically relevant
rhythmic densities as they change in time across the ban-
dish (composition) performance. An annotated dataset of
Dhrupad bandish concert sections is presented. We inves-
tigate a CNN-based system, trained to detect local tempo
relationships, and follow it with temporal smoothing. We
also employ audio source separation as a pre-processing
step to the detection of the individual surface densities of
the vocals and the percussion. This helps us obtain the
complete musical description of the concert sections in
terms of capturing the changing rhythmic interaction of the
two performers.

1. INTRODUCTION

Dhrupad is one of the oldest forms of North Indian classi-
cal vocal music. A typical Dhrupad concert setting com-
prises a solo vocalist or vocalist duo as the lead and a
pakhawaj player for the percussion accompaniment, with
a tanpura in the background for the harmonic drone [1].
A Dhrupad performance lasts for over an hour and con-
sists of an elaborate, unaccompanied raga alap followed
by a composed piece, the bandish, performed along with
the percussion instrument [2]. The bandish is not only pre-
sented as composed but also used as a means for further
rhythmic improvisation (laykari), where the vocalist sings
the syllables of the bandish text at various rhythmic densi-
ties and in different patterns [3, Chapter 10]. All the while,
the pakhawaj accompaniment is either playing a basic pat-
tern (theka) of the metric cycle (fala), a rhythmic improvi-
sation to match the vocalist’s improvisation, or a free solo
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improvisation while the vocalist presents the lines of fixed
composition. The simultaneous rhythmic improvisation by
both players is peculiar to the Dhrupad genre.

Figure 1 depicts the structure of a bandish performance
from the vocalist’s perspective. The intermediate refrain
portions are the un-improvised sections where the artist
sings a portion of the bandish before diving back into an-
other spell of improvisation. A complete segmentation of
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Figure 1: The structure of a bandish performance - vocal-
ist’s perspective [3]

a Dhrupad bandish performance would thus involve pro-
viding rhythmic descriptions of un-improvised and im-
provised sections pertaining to each - the vocals and the
pakhawaj.

The goal of this work is to develop automatic meth-
ods for the structural segmentation of the Dhrupad bandish
concert. With tempo and the relationships of the rhythmic
densities of the individual instruments defining the distinct
sections of a Dhrupad bandish concert, we explore new
approaches to the reliable detection of these musical at-
tributes as they vary across the concert. Given that vocal
onsets are difficult to detect (even in isolated vocals due to
the diversity inherent to singing), we turn to alternate meth-
ods for the direct estimation of the local rhythmic density.
Advances in deep learning have led to the development of
methods that treat the estimation of the predominant tempo
from the raw audio spectral representation as a classifica-
tion task [4-6]. We explore a similar approach for our task
of estimating the changing surface tempo or rhythmic den-
sity across a concert audio. In view of the significant im-
provements reported in audio source separation in recent
years, we also consider the use of source separation fol-
lowed by tempo estimation for the constituent instruments
in order to give a more complete description of each sec-
tion.

The chief new contributions of our work are as follows:
(1) a dataset of tempo markings and rhythmic density based
structural segmentation annotations for Dhrupad bandish
concerts, (ii) adapting a state-of-the-art tempo estimation
method to the task of estimating local rhythmic density
of the polyphonic mix, and (iii) the use of source separa-



tion to extend this to each instrument(vocals and pakhawaj)
to eventually obtain a musically relevant segmentation of
bandish concerts with section labels defined in terms of the
rhythmic density inter-relationships.

2. BACKGROUND

Compositions in Hindustani music are sung at a tempo
in one of roughly three broad ranges - vilambit (10.4-60
BPM), madhya (40-175 BPM) or drut (170-500 BPM) [3,
p- 86]. This tempo is determined by the interval between
the matras of the tala (a cyclic pattern of beats) that the
composition is set to, and is referred to as the metric tempo.
The metric tempo is fairly stable with only a gradual up-
ward drift across the performance. However there are local
variations in the rhythmic density of the singing or playing
during what can be called episodes of improvisation that
constitute the surface rhythmic density or surface tempo.
For the voice, this is calculated using the number of syl-
lables or distinct notes uttered in a unit interval and for
the pakhawaj, the number of strokes played in a unit inter-
val [3, p. 86], [7]. The surface tempo is found to gener-
ally be an integer multiple (ranging between 2 and 16) of
the underlying metric tempo and we use the term ‘surface
tempo multiple’ (/ay ratio) to refer to this integer. The met-
ric and surface tempi in this form of music thus have fairly
objective definitions in terms of the performers’ intentions
and do not necessarily coincide with ‘perceptual tempo’.
And indeed as stated in [3, p. 85], the perceived tempo at
extreme values of the metric or surface tempo may be quite
different due to subdivisions at the lower end and grouping
and accenting at the higher.

Related work on structural segmentation for Hindustani
classical music can be found in [8-11]. The work in [8]
relates to the segmentation of the initial unaccompanied
alap portion of a Dhrupad vocal concert into the alap, jod
and jhala sections. The methods exploit the changing na-
ture of the energy, pulse clarity (salience), speed, and tim-
bre of the vocals. In [10, 11], the task of segmenting the
unaccompanied, and in [9] the accompanied portion of in-
strumental concert audios consisting of a lead melodic in-
strument(sitar, sarod) and a tabla accompaniment, was ad-
dressed. Signal processing methods based on finding on-
sets followed by periodicity detection were made use of for
tempo and rhythmic density estimation. Section bound-
aries were obtained with the help of a similarity detection
matrix, using frame-level ACF vectors of the detected on-
sets in [9], and using additional acoustic features and fea-
ture transformations in [11]. Faced with the problem of
two instruments playing together, differences in the instru-
ment timbres were exploited to separate the plucked string
and tabla onsets in [9] to determine separately the metric
and the surface tempo. Other source separation methods
like HPSS [12, 13] and PLCA [14] have also been used to
obtain tempo estimates for individual sources, which are
then combined together to refine the overall tempo esti-
mate.

In this work we address the structural segmentation of
the bandish section in Dhrupad vocal performances, which

has not yet been attempted. We propose to achieve this
by first estimating the surface tempo using the CNN-based
approach of [4] with a modified architecture to predict
it directly as a multiple of the metric tempo. To obtain
the surface tempo of each instrument, we make use of a
pre-trained model provided by spleeter [15] that separates
vocals from the accompaniment. We then detect section
boundaries in a concert audio using changes in the esti-
mated local surface tempi.

3. DATASET DESCRIPTION

To the best of our knowledge there is no existing dataset of
tempo and segmentation related annotations for Dhrupad
bandish performances. The dataset chosen for this work
contains 14 concert audios in the vilambit and madhya laya
- 8 from the Dunya corpus [16] and the rest from publicly
available, good quality recordings. 9 of the 14 are by the
vocalist duo Gundecha brothers, and the others by Uday
Bhawalkar. Each recording is of a single bandish perfor-
mance by the vocals, accompanied by pakhawaj, with a
tanpura in the background. The recordings are 8-15 min-
utes long and the total duration of the dataset is about 3
hours. The performances are not all in the same raga or
tala with at least one composition in each of 4 distinct ta-
las commonly found in Dhrupad. 7 more publicly avail-
able audios were partially annotated to balance the cross-
validation dataset described in Section 3.2.

3.1 Annotations

Annotations are of (i) the sam positions of the tala, i.e., the
cycle boundaries, across the concert (ii) boundaries mark-
ing changes in the surface tempo multiple of each instru-
ment and (iii) a label for each section in terms of the sur-
face tempo multiple of each instrument. The annotations
were marked by one of the authors, who is a trained musi-
cian, using the relatively objective criteria described here.

Information about the tala was obtained from the meta-
data accompanying the recording. With this, the sam posi-
tions were inferred either from the particular stroke of the
pakhawaj or the syllable of the bandish refrain that appears
on the sam in performance [17], or the number of matras
elapsed since the previous sam. Although slight deviations
are commonly observed in the metric tempo, large abrupt
jumps do not occur. Hence, once a pass was made over
the entire audio, the annotations were corrected at points
of ambiguity to ensure coherence with adjacent sam mark-
ings. The metric tempo was then calculated versus time,
once for every cycle, by dividing the cycle duration by the
number of matras in the tala.

A section boundary was marked whenever the rhythmic
density of either instrument changed and the new density
was maintained for at least a duration of 5s. As mentioned
earlier, the surface tempo is typically related to the metric
tempo as an integer multiple. Therefore every section was
labelled with the surface tempo multiple of each instru-
ment, determined by calculating the rate of events (sylla-
bles for the vocals and strokes for the pakhawaj) as a mul-



tiple of the metric tempo in the section. Pauses at the pulse
level occurring between syllables or strokes were consid-
ered as musical events contributing to the surface tempo,
while pauses longer than 5s were labeled as having no sur-
face tempo. A more detailed discussion on this appears
in [7]. The maximum of the vocal and pakhawaj surface
tempo multiples was then added to the section label as the
net surface tempo multiple denoting the overall level of
rhythmic density. Henceforth, we use the abbreviations
m.t., s.t. and s.t.m. to refer to the metric tempo, surface
tempo and surface tempo multiple.

Figure 2 is a visualisation of the annotations for a por-
tion of a bandish audio in the dataset!. This roughly 4
minute long snippet captures a few sections - (a) vocal s.t.
at 4 times the m.t.(~60 BPM) and pakhawaj at 8, (b) vocals
at the m.t. and pakhawaj at 16 times - in each of these the
net is due to the pakhawaj, and (c) both at 4 times, where
the net is due to both.
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Figure 2: The ground truth metric tempo (m.t.) and sur-
face tempo (s.t.) annotations for a portion of an audio in the
dataset. Vertical dashed lines indicate section boundaries.

3.2 Dataset Statistics and Train-test Split

Every annotated section is homogenous in the sense that
the s.t. of each instrument remains the same throughout its
duration. We therefore pool the sections from all the con-
cert audios into a dataset for training and testing our meth-
ods, treating each section as an independent entity. The
total number of sections comes up to 634 (593 from the
completely annotated and the rest from the partially anno-
tated audios), but they are not all of similar durations. Fig-
ure 3 (a) shows the distribution of section durations with a
single bar at the end for values more than 51s. We see that
a section is mostly between 6 and 20s long. With the goal
of tracking the s.t. as it is changing across a performance,
we need to perform tempo estimation on shorter examples
from each section. The duration of these examples is set to
be 8s since a higher value would give us no examples from
the large number of sections that are only 6-9s long. Fur-
ther, for the slowest tempo in the dataset of about 30 BPM,
an 8s duration would contain at most 4 beats, fewer than
which may not be sufficient for accurate tempo estimation.

The distribution of s.t.m. in the dataset for each instru-
ment and the net is shown in Figure 3 (b) in terms of the

! https://musicbrainz.org/recording/178b4cf6-88e6-414d-bfbd-
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Figure 3: Distributions of (a) section duration and (b) net,
pakhawaj and vocal s.t.m. across our dataset of 1127 ex-
amples.

relative number of non-overlapping 8s examples (extracted
from sections) available at each integer multiple, out of
a total of 1127 examples. The dataset has a narrow m.t.
range of 30 - 85 BPM, but the observed range of s.t. ex-
tends upto a large 960 BPM, due to the nature of the lay
ratios. For the pakhawaj, we find that the multiples 4 and
8 are more abundant than 1, 2 and 16, while the multiples
3, 6 and 12 are nearly absent. For the vocals, 1, 2 and 4 are
most represented and even though the multiples 3, 6 and 8
have a similar share, the sections for 8 were found to come
from several concerts, while 3 and 6 were only found in a
couple. We thus retain only the sections with s.t.m. values
from the set {1, 2, 4, 8, 16}.

To manage the data imbalance, while generating the 8s
training examples, the hop between consecutive examples
is kept shorter for sections belonging to the less populous
s.t.m values. We also augment the dataset by time-scaling
the audio of each section [18] using one or more factors
in the range {0.8, 0.84, 0.88, ... 1.2} (the s.t.m. label
remains the same), generating more time-scaled versions
for the less populous classes. The whole pool of examples
is divided into three folds such that all the examples from
a single audio section are assigned to the same fold, and
each fold has a similar distribution of the s.t.m. values.

4. METHODS

We consider the recent CNN-based tempo estimation
method from [4] (denoted as tempo-cnn) for our work. Af-
ter examining the viability of the pre-trained model, we
first attempt to train new models with the same architecture
on our dataset, and then propose some suitable modifica-
tions.



4.1 Metric Tempo Estimation

The m.t. of a Dhrupad bandish performance gradually
drifts across a performance. Hence, we are interested in
estimating it locally and tracking it versus time. With the
m.t. range of our dataset being a subset of the tempo-cnn
output range, the pre-trained model can be used as it is to
observe the nature of its predictions. Upon obtaining esti-
mates frame-wise at 0.5s hops and picking the output class
with the highest confidence in each frame, it is found that
the model almost always makes octave errors, which is to
be expected since the m.t. in our case is not always the per-
ceptual tempo that the model was trained to estimate. We
fix these errors by constraining the predicted tempo to lie
in the range of m.t. values in the dataset.

We do not attempt to train a new model for m.t. esti-
mation and instead compare the above with a non-learning
based approach from [9]. A spectral flux based method is
used to obtain the onsets and the autocorrelation function
is calculated on 12s long windows at 0.5s hops for values
of lag upto 2s. The tempo candidates are constrained to
be in the required range and an additional Viterbi smooth-
ing step is used to penalise jumps and obtain a consistent
estimate across a concert. We refer to this as the odf-acf
method. We also note that the metrical cycle tracking work
of [19] offers an alternative that can be investigated for m.t.
estimation in future work.

4.2 Surface Tempo Estimation

The s.t. values in our dataset fall outside the tempo-cnn
output range. And since the task requires correct identifi-
cation of tempo without octave errors, using the pre-trained
tempo-cnn is not possible. If we are to re-train tempo-cnn
on our dataset by increasing the output range, the huge size
of the range presents a problem due to the resulting target
class imbalance. Therefore, given that the s.t.m. is one of
a small set of integer values, we modify the task to predict-
ing this multiple instead of the actual s.t. value.

An attempt to train new models using the tempo-cnn
architecture on our dataset by reducing the final softmax
layer dimensions does not turn out to be fruitful as the
model overfits due to its high capacity and the small size of
our dataset. The main issues seem to be the high number
of dense layers at the end and the large filter lengths in the
multi-filter modules. After a series of simplifications with
some inspiration from [5], the architecture summarised in
Table 1 is found to be promising (details in [7]). The re-
duction of dense layers and the addition of dropout layers
is found to be crucial in overcoming overfitting. To pre-
vent too much information from getting cut-off due to the
dropout, the p value is set to 0.1 in the first three conv. lay-
ers, and 0.5 in the later ones. As for the multi-filter conv.
layer, fewer filters in parallel and smaller filter lengths are
found to make the network easier to train. However, to en-
sure adequate capacity, the number of filters in each layer
is kept moderately high.

Every 8s training example is transformed to a log-scaled
mel-filtered magnitude spectrogram, using the following
parameters - 40ms windows, 20ms hops and 40 mel filters

Layer Dimensions
Input 40 x 400
(BN, Conv, ELU,DO)x3 16x1x5
AvgPool 5x1

BN, MF Conv, DO
Concat, Conv
AvgPool

BN, DO, FC, Softmax

12x {1x16, 1x32, 1x64, 1x96}
16x1x1

1 x 400

# output classes

Table 1: Proposed model architecture, adapted from [4]
& [5]

over the band 20-8000 Hz, at a sampling rate of 16kHz.
The input to the network is a spectrogram of size 40 x 400
with the values normalized to lie in the range O - 1, and the
target is one of 5 classes corresponding to the 5 s.t.m. val-
ues - 1,2,4,8,16. The network is trained using CCE loss on
examples from two folds, with the other fold as the valida-
tion set, for a maximum of 500 epochs. Training is carried
out using the Adam optimizer with a learning rate of le-4
and a batch size of 32, and is halted early if the validation
loss does not decrease for 50 epochs.

4.3 Extension to Separated Sources

Given our interest in estimating the s.t. of each instrument
to obtain a more complete rhythmic description and the
section boundaries in a concert, the pre-trained 2-stems
model by spleeter [15] is used to separate the mixture
audios into vocals and accompaniment, and new models
with the same architecture as proposed above are trained
to predict the s.t.m. for each. The dataset of sections re-
mains the same but the input examples are of the separated
sources and the training and validation folds are generated
again for each source to balance the number of examples
across the corresponding classes. The target classes for the
pakhawaj are the same as earlier but those for vocals do not
include the s.t.m. 16.

4.4 Boundary Detection and Section Labelling

We aim to automatically identify sections in a concert by
looking for abrupt changes in the s.t.m. values of each in-
strument across the concert duration. For this task only
the completely annotated 14 concert audios are used. Esti-
mates of s.t.m. are obtained once every 0.5s using 8s long
excerpts over the entire duration of each audio. While do-
ing so, each excerpt is presented to that saved model out of
the three from the 3-fold CV procedure, to which no por-
tion of the section that this excerpt lies in was presented
as a training example, thus preventing any train-test leak.
The output class with the highest confidence is taken as the
s.t.m. estimate. This procedure is applied to the mixture
and the source separated audios. A boundary is marked
wherever the s.t.m. of either instrument changes, and the
section label is the tuple of the three s.t.m. estimates.

We experiment with two methods for obtaining the
three s.t.m. estimates. One, the three values are estimated



Method Accuracy 1 Accuracy 2
tempo-cnn 5.2 73.8
tempo-cnn w1.th 716 747

range constraint

odf-acf 72.0 72.0

Table 2: Metric tempo estimation accuracies (%) at 4%
tolerance using tempo-cnn [4] and the odf-acf method [9].

independently, and we refer to this method as segl. Here
the net s.t.m. may not be equal to the higher of the other
two (which should be true by definition). We thus report
results using the model output for the net s.t.m. as well
as by simply taking the maximum of the other two as the
net s.t.m. value. Two, to investigate whether using the ex-
pected relationship between the three s.t.m. values helps
improve performance, instead of obtaining them indepen-
dently, we pick that tuple of the three estimates in every
frame which has the highest average classifier confidence
value and in which the net s.t.m. is the maximum of the
other two. We refer to this method as seg2. To reduce
the number of false alarms, a post-processing step is used
with each method to smooth the outputs by constraining
the duration of a detected section to be at least 5s. This
is implemented by removing the boundaries of any section
that is shorter and replacing the label by that of the previ-
ous section.

5. EXPERIMENTS AND RESULTS
5.1 Metric Tempo Estimation

To evaluate m.t. estimation we calculate accuracyl and
accuracy?2 (allowing for octave errors) with a tolerance of
4% across each audio at a 0.5s frame-level and then aver-
age it across the dataset. We find that both the methods
fare equally well (Table 2) and the simple fix of includ-
ing a range constraint significantly improves accuracyl for
tempo-cnn (except in cases where the prediction is an oc-
tave off but already in the m.t. range).

A closer look at concert-wise scores revealed that the
accuracy was below 70% in the same 4 (out of 14) con-
certs in both the methods, where most of the errors were
due to the predicted value being either 1.5 or 0.75 times
the actual m.t. value. The tempo-cnn makes errors only in
small portions of such concerts, but in the odf-acf method,
due to the imposed penalty on jumps, the predicted tempo
was found to be incorrect over longer durations. Even so,
what we take away from the overall results is that for most
of the concerts, m.t. is estimated well across the entire
duration despite the presence of sections where both the
instruments are improvising and playing at different multi-
ples of the m.t.

5.2 Surface Tempo Estimation

Here, we first report the average 3-fold cross-validation ac-
curacy values. This accuracy measures the proportion of 8s

Case Nets.tm Vocal s.t.m Pakhawaj s.t.m

Accuracy 75.2 69.1 76.9

Table 3: Average 3-fold cross-validation accuracies (%)
for surface tempo multiple estimation

examples for which the s.t.m. was correctly identified. Ta-
ble 3 shows the results for all three cases - estimation of net
s.t.m. from the original mixture, and that of the individual
instruments from separated audios.

The results are poorer for separated vocals and better
for pakhawaj, which reflects also in the net score, given
that the net s.t.m is dominated by that of the pakhawaj. The
class-wise performance is shown using a confusion matrix
for each case in Table 4. In the case of vocals, classes 1 and
8 are estimated more accurately. For class 8, this could
be due to the distinct nature of vocalisation and the lim-
ited diversity of examples due to fewer available sections.
For class 1, most examples come from sections where the
bandish is sung at a steady rate without improvisation thus
making tempo estimation easier. For class 2, sections often
come from the earlier stages of improvisation in a concert
where the singing is not fully rhythmic and is characterized
by pauses, melismatic singing and changes to other s.t.m.
levels, making the estimation harder. The confusions be-
tween classes 2 and 4 could also be due to some bleed of
pakahwaj into the vocals during source separation.

In the case of net and pakhawaj s.t.m., classes 1 and 2
are estimated quite accurately, while the other classes are
confused with their immediate neighbours. The class 16
being confused with 8 is most likely because of the pres-
ence of accents on every other stroke. We also notice a
drop in the performance of this class in the case of sepa-
rated pakhawaj when compared to the mixture audios, pos-
sibly due to a further loss of weak onsets after separation.

5.3 Boundary Detection and Section Labelling

We evaluate boundary retrieval performance using preci-
sion, recall and F-score (Table 5a). A predicted boundary
is declared a hit if it falls within a certain duration of an
unmatched ground truth boundary, and a false alarm oth-
erwise. Results are reported at two values of temporal tol-
erance: +1.5s and +3s. The latter value is as used in [20]
and the former is included with the reason that since a large
number of sections are 6-9s long, even if both the detected
boundaries are off by 1.5s, the detected section still cap-
tures at least half of the ground truth section.

To evaluate section labelling, we report labelling accu-
racy (Table 5b) as the fraction of the duration of each con-
cert that is correctly labelled (excluding regions where the
ground truth is not one of {1,2,4,8,16}), averaged across
the dataset, as defined in [21]. Each of the three s.t.m. la-
bels are first evaluated individually and also when taken
together (i.e., a frame is said to be correctly labelled only
if all three labels are correct). We expect these scores to
be different from the cross-validation accuracies reported
in Table 3 as the test set is now no longer balanced, with



Predicted
1 2 4 8 16

1 901 22 64 00 13
2 |58 8.0 108 08 05
(a) 4 |45 134 669 119 33
8 |24 18 144 657 157
16|18 10 65 151 755
|1 [773 155 53 20
® Z|2 |210 508 262 20
Sl4 |58 201 646 94
(59 8 |18 00 132 849
1 1930 09 50 08 02
2 |02 833 144 17 03
(©) 4 |58 151 654 111 26
8 [29 1.1 115 699 145
1614 1.1 61 248 66.6

Table 4: Confusion matrix of (a) net, (b) vocal, and (c)
pakhawaj s.t.m. predictions (values in %)

the confused classes being the more common ones.

The individual labelling accuracies are quite similar for
the pakhawaj and net tempo labels, slightly lower for the
vocals, but much lower for getting all the labels right in ev-
ery frame. With segl, we see that the vocal and pakhawaj
estimates are reliable enough that taking their maximum as
the net s.t.m. instead of using the model estimate improves
the net s.t.m. labelling accuracy. Hence, for the evalua-
tion in the last column, the net is taken as the maximum of
the other two. Although this seemingly renders the model
trained to predict the net s.t.m. not very useful, we see
in seg2 that using it to obtain all the estimates together
improves all the accuracies, proving its utility.
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Figure 4: The ground truth (above) and estimated (below)
s.t.m. labels of the (a) vocals and (b) pakhawaj across the
concert GB_AhirBhrv_Choutal.

Although better tempo estimation should result in bet-
ter boundary detection since the boundaries are based en-
tirely on tempo changes, the boundary detection results us-
ing seg?2 are only slightly better than segl. In both the
cases, the smoothing step was found to improve the results
(detailed in [7]). Looking at the vocal and pakhawaj s.t.m.
estimates obtained using seg2 in Figure 4, we see that
for both the instruments, at a coarse level, the various sur-

+1.5s tolerance +3s tolerance

Prec. Rec. F-sc. Prec. Rec. F-sc.

segl 027 038 032 039 054 045
seg2 029 038 033 040 053 045

(2)
. Netfrom Netas All3
Vocals  Pakhawaj model max. labels
segl 67.2 68.7 66.9 67.5 45.9
seg2 67.7 71.0 70.4 - 48.6
(b)

Table 5: (a) Boundary detection performance and (b) s.t.m.
labelling accuracies (in %).

face tempo regions are captured well. And while for the
pakhawaj, finer section changes are also estimated accu-
rately, such changes are not tracked well in the case of vo-
cals, thus reducing the overall boundary detection scores.

6. CONCLUSIONS

We have presented a system that provides a complete
rhythmic description of a Dhrupad bandish performance,
enabling its segmentation into musicologically relevant
sections based on the rhythmic interaction between the
instruments. The metric tempo is estimated by adapting
existing methods whereas the surface tempo, with its
much larger dynamic range, is estimated in a novel
manner by predicting its relationship with the m.t. to
directly obtain the musically significant /ay ratio. Be-
cause of the challenges presented by imperfect source
separation, we benefit from using a model trained also
on the mixture audios. We find that s.t.m. values at the
lower and higher extremes are estimated better than the
intermediate values. This, despite the intermediate values
being the more represented classes in the dataset, points
to the diversity in the acoustic realisations of the different
surface densities. Future work could involve extending
the dataset to encompass more singers and compositions
in the drut lay, where we might see the same s.t.m.
manifesting completely different acoustic properties. In
such a scenario, estimating m.t. could help provide useful
‘conditioning’, and ways to jointly estimate the metric and
surface tempi could be explored. Source separation can be
improved by introducing new loss functions that preserve
onsets better and hence allow better tempo estimation on
separated audios. Finally this work provides an example
of adapting available MIR methods to music genre specific
problems.

Supplementary material

All the dataset details, annotations, code and pre-trained
models are available here: https://github.com/
DAP-Lab/dhrupad-bandish-segmentation.
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