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ABSTRACT

Identifying the onset and offset time of a note is a chal-
lenging step in singing voice transcription, as the soft on-
set/offset, portamento, and vibrato phenomena are rich in
singing voice signals. In this work, we utilize various types
of signal representations with deep learning for onset and
offset detection of monophonic singing voice. We con-
sider onset and offset detection as a hierarchical classi-
fication problem, where every input segment is classified
into one of all the possible states in monophonic singing,
namely the silence, activation, and transition states,where
the transition state is further classified into the onset and
offset states. An objective function based on this hierarchi-
cal taxonomy nicely guides the model to capture compli-
cated temporal dynamics of note sequences. Multiple input
signal representations containing spectral differences and
pitch saliency are employed to jointly enhance such tem-
poral patterns. The proposed method implemented with
residual networks provides improved performance over
prior art in onset and offset detection. Moreover, by in-
tegrating with a pitch detection framework, the proposed
method also outperforms previous singing voice transcrip-
tion methods. This result emphasizes the importance of
note segmentation in singing voice transcription.

1. INTRODUCTION

Note-level automatic music transcription (AMT) refers to
converting a recorded music piece into its symbolic form
containing the onset, offset, and pitch of every note [4,22].
Note-level AMT is still a challenging problem, particularly
in the case of singing voice transcription. The soft on-
set/offset and portamento patterns of singing voice hinder
the positioning of onset and offset time in both the detec-
tion [8, 29] and the annotation process [10, 15, 19]. How-
ever, solving the onset and offset detection problem, or
equivalently the note segmentation problem, 1 is manda-
tory in a note-level AMT system. How to improve a note

1 We refer to note segmentation as temporal segmentation of note ob-
jects, which is therefore equivalent to onset and offset detection [7].
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segmentation model efficiently with limited scope of data,
and how to incorporate the outcomes of detection into
note-level AMT, are both important issues in developing
a complete AMT system.

Previous note segmentation works on singing voice
usually employ state-space machines such as the hidden
Markov models (HMM), which consistently detect on-
set and offset by characterizing the temporal dynamics
among the states (attack, sustain, and silence, etc.) of note
events [16,20,24,29]. Recently, deep neural networks with
objective functions optimized for onset and offset detec-
tion have demonstrated excellent performance in note-level
AMT [1,12]. Some architectures such as the convolutional
neural network (CNN) do achieve a great advance in mod-
eling note transition by their compelling performance in
pattern recognition on a local scale. One example is the
CNN-based onset detection method in [25], where the lo-
cal feature segments with CNN outperforms the temporal
models based on the recurrent neural network (RNN) [9].

In this paper, we propose novel signal representations
and objective functions in neural network-based singing
voice segmentation. we regard onset and offset detection
as a hierarchical classification problem that maps input
segments/sequences onto our proposed state space, where
a generalized hierarchical taxonomy of the states in a note
sequence is specified to guide the learning process. Mul-
tiple data representations are also used to enhance signal-
level expressivity of note transition events. Experiments
using either the residual network (ResNet) [13] or the RNN
with attention [2] demonstrate the effectiveness of hier-
archical classification in note segmentation. Finally, a
straightforward integration of the proposed note segmen-
tation method and pitch detection provides improved note
transcription performance over prior art.

2. RELATED WORK

The most challenging case of onset detection is arguably
singing voice. According to the results from MIREX 2018
audio onset detection task, the best F1-score of singing
voice onset detection among all submissions is 61.94%,
lower than the best results of other instrument classes by
at least 10%. 2 The state-of-the-art onset detection al-
gorithms are based on either RNN [5, 11] or CNN [25].
In [25], the onset detection task is to classify whether the

2 More details can be found in: https://nema.lis.illinois.edu/nema_out/
mirex2018/results/aod/resultsperclass.html
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Figure 1: System overview of the proposed note segmen-
tation and transcription framework.

middle of the input is at the onset time, where the inputs are
short segments of spectrogram with various resolutions,
each as one channel of the CNN. Besides spectrogram,
other feature representations such as spectral difference,
spectral flux and group-delay function are also widely-used
in general-purpose onset detection [14].

Unlike onset detection, offset detection is seldom
treated independently and is more often discussed in the
context of note-level AMT [1,3,12]. The study carried out
in [15] focuses on different playing styles of string instru-
ments and summarizes several relevant features, including
spectral difference, signal RMS energy, pitch confidence
values, and pitch change, etc.

Previous methods in singing voice transcription widely
adopt state-space machines to accomplish onset detection,
pitch tracking, and offset detection in a single workflow.
For example, the Tony software [16] uses an HMM con-
taining three states, namely attack, stable, and silent, to
characterize the temporal dynamics of a note sequence.
The only allowed transition rules between these states are:
1) from attack to stable, 2) from stable to silent, and 3)
from silent to attack of another note. However, these rules
are oversimplified from real cases; for instance, an off-
set event is not always equivalent to a transition into the
silent state. Rather, some offset events are followed im-
mediately by the attack state of another consecutive note,
which sometimes has the same pitch as the previous one.
As a result, consecutive notes are merged and needs to be
resolved by post-processing.

Recently developed note-level AMT methods utilizing
deep learning has gained tremendous improvement, espe-
cially in offset detection. It is notable that in these meth-
ods, offset or onset detection sub-modules are optimized
with more than one objective functions. Elowsson used
two separate networks to learn 1) the offset curve, which
outputs one at the instance of note offset, 2) the offset de-
tection activation, which turns from zero to one when a
note offset event turns into silence, and combined the re-
sults to describe offset events [1]. Hawthorne et al. used
time-dependent object functions to infer the attack and de-
cay of a musical note. These methods shed light on the
note tracking of singing voice [12].

The above discussion inspires us two ways for improv-
ing singing voice segmentation. First, the objective func-
tions can be designed to rely not merely on the onset and
offset labels, but on an state space that describes all possi-
ble state transitions in a note sequence. Second, given the
flexibility of neural network models, one may augment all
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Figure 2: The taxonomy of the proposed models. Every
tree represents an objective function, every siblings form
a regularization term of the objective function, and every
leaf of the tree represents a state label; S, A, O, O, X , X ,
and T represent silence, activation, onset, non-onset, off-
set, non-offset, and transition, respectively. Different trees
therefore represent different optimization approaches: (a)
On-Off model. (b) Tri-state model. (c) Hierarchical classi-
fication model. See Section 3.1 for more details.

the data representations related to onset/offset into the net-
work to enhance the optimization process. The two ideas
will be discussed in Section 3.1 and 3.2 respectively.

3. METHOD

Following previous discussion, we discuss the frame-wise
onset and offset detection framework shown in Figure 1:
for every time instance t, the hierarchical classifier predicts
a set of labels yt containing onset and offset information
from a local feature representation Rt. Note transcription
is done by integrating pitch contour information.

3.1 Hierarchical classification for note segmentation

We consider the following states in a note sequence: si-
lence (S), activation (A), and transition (T ), where transi-
tion is further divided into two states, onset (O) and offset
(X). When a transition (i.e. onset or offset) occurs, there
are three possible transition behaviors of state evolution:
S→T→A where T represents an onset (O), A→T→S
where T represents an offset (X), and A→T→A where
T in this case contains an offset followed immediately by
the onset of another note (XO). In other words, there is
an important case that an onset and an offset are presum-
ably overlapped. This fact motivates us to define such a
state space that can encompass more general cases. As a
result, there is a hierarchical taxonomy of these states, as
shown in Figure 2 (c). See the caption of Figure 2 for more
detailed information.

To investigate the behavior of this state space, we intro-
duce several baselines and the proposed hierarchical classi-
fication model altogether to highlight the advantage of the
proposed model in onset and offset classification.

1) First, we consider the note segmentation model con-
sisting of two independent classifiers, one for onset detec-
tion and the other for offset detection. The 2-D onset label
yon := [O,O] is one-hot, where O represents the onset
state while O represents the non-onset state. That means,
yon = [1, 0] for onset and yon = [0, 1] for non-onset. Sim-
ilarly, we have the offset label yoff := [X,X]. Let the
prediction of the two networks be ŷon and ŷoff, the model
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is optimized by the following two objective functions:

Lon(yon, ŷon) = BCE(yon, ŷon) , (1)

Loff(yoff, ŷoff) = BCE(yoff, ŷoff) . (2)

where BCE is the binary crossentropy. This model is de-
noted as the on-off network (OON) model, and its taxon-
omy is illustrated in Figure 2 (a). Note that one tree rep-
resents one objective function, and every siblings form a
regularization term in an objective function.

2) The onset and offset detection tasks share the same
network, but with two task-specific layers, one for onset
and the other for offset. The output label y := [yon, yoff]
therefore has four dimensions. The total loss function is

LM-OON(y, ŷ) := BCE(yon, ŷon) + BCE(yoff, ŷoff) (3)

This model is denoted as the merged on-off network
(M-OON) model hereafter.

3) The onset and offset are described implicitly by the
three output states S, A, and T from a shared network.
That means, the network outputs a multi-hot 3-D vector
ytri := [S,A, T ], where S, A and T are values between 0
and 1. The total loss function is

LTSN(y, ŷ) := BCE(ytri, ŷtri) (4)

After obtaining the likelihood of S, T , A at every time
instance t, we may follow the transition behaviors men-
tioned above to determine a T state to be an onset or an
offset; the details can be found in Section 3.4. This model
will be denoted as the tri-state notwork (TSN) model, and
its taxonomy tree is constructed following Figure 2 (b).

Note that it is also possible to use categorical crossen-
tropy rather than BCE in (4). However, using BCE allows
possible overlapping of different states and therefore more
flexibility for the model. Our pilot study also shows that
using BCE achieves better performance.

4) We further consider the hierarchical structure that
T can be onset, offset or an overlap of onset and off-
set. The output label is then a six-dimension space y :=
[S,A,O,O,X,X], and the total objective function is:

LHCN1(y, ŷ) := BCE(ytri, ŷtri)

+ BCE(yon, ŷon) + BCE(yoff, ŷoff) (5)

where we define the likelihood of the transition state as
T := max(O,X). That means, if one of O or X is higher
than a threshold (0.5 in the logistic regression case), then
the state will be also predicted as T . The taxonomy tree of
this case is illustrated in Figure 2 (c).

Finally, since T is in minority, optimizing the term
BCE(ytri, ŷtri) would suffer from data imbalance. To mit-
igate this issue, we enhance the activity classification be-
tween S andA by adding a new set of labels yact := [S,A],
to enforce the output that only one of S and A would have
high likelihood. The total objective function is then

LHCN2(y, ŷ) := BCE(ytri, ŷtri) + BCE(yact, ŷact)

+ BCE(yon, ŷon) + BCE(yoff, ŷoff) (6)

For clarity, (5) is denoted as the hierarchical classifica-
tion network 1 (HCN1) model and (6) is denoted as the the
hierarchical classification network 2 (HCN2) model.

3.2 Data representations

Based on the discussion in [15], we consider the spectral
differences and the pitch salience representation in as the
input of the proposed model. Given the input audio signal
x := x[n], where n is the time index. Let the amplitude
part of the short-time Fourier transform (STFT) of x be
X. The forward spectral difference S+ and the backward
spectral difference S− are the time-forward and the time-
backward differences of two neighbouring spectra in X, as
shown in the followings:

S+ = ReLU (X[k, n+ 1]−X[k, n− 1]) , (7)

S− = ReLU (X[k, n− 1]−X[k, n+ 1]) , (8)

where ReLU(·) represents the element-wise rectified lin-
ear unit: ReLU(x) = x if x > 0, and 0 otherwise. That
means, we split the first-order temporal difference of the
spectrogram X into two channels, one is the part with pos-
itive temporal difference, and the other one is with negative
temporal difference.

For the pitch saliency feature of x, we adopt the one
proposed in the combined frequency and periodicity (CFP)
approach, which combines a frequency-domain feature in-
dicating its fundamental frequency (f0) and harmonics
(nf0), in a time-domain feature revealing its f0 and sub-
harmonics (f0/n) to form a succinct, localized pitch fea-
ture with suppressed harmonic and sub-harmonic peaks
[21, 28]. The feature is computed with the following pro-
cess. Given a DFT matrix F, high-pass filters Wf and
Wt, and activation functions σi, we consider three fea-
tures, namely, spectrogram Z0, generalized cepstrum (GC)
Z1, and generalized cepstrum of spectrum (GCoS) Z2:

Z0[k, n] := σ0 (WfX) , (9)

Z1[q, n] := σ1
(
WtF

−1Z0

)
, (10)

Z2[k, n] := σ2 (WfFZ1) . (11)

The index k in Z0 and Z2 is frequency, while the index
q in Z1 is called quefrency, which has the same unit as
time. The nonlinear activation function is defined as a
rectified and root-power function σi(Z) = |ReLU(Z)|γi ,
where i = 0, 1, 2 · · · , 0 < γi ≤ 1, and | · |γ0 is an
element-wise root function. Wf and Wt are two high-
pass filters designed as diagonal matrices used to remove
slow-varying portions, where Wf applies cutoff frequency
kc and Wt applies cutoff quefrency qc. In this paper we
set kc = 80 Hz and qc = 1/800 sec. Based on the CFP
approach, unwanted harmonics and sub-harmonics can be
suppressed by merging Z1 and Z2 together. Note that Z1

should be mapped into the frequency domain because it
is in the quefrency domain. Hence, we apply two sets of
filter banks, both of which contain 174 triangular filters
ranging from 80 Hz to 1000 Hz and with 48 bands per oc-
tave, respectively in the time and frequency domains. More
specifically, the mth filter in frequency (or time) takes the
weighted sum of the components whose frequency (or pe-
riod) is between 0.25 semitones above and below the fre-
quency at fm = 80× 2(m−1)/48 Hz (or the period at 1/fm
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seconds). The filtered representations Z̃1 and Z̃2 are then
both in the time-pitch scale. The CFP representation Z is

Z[p, n] = Z̃1[p, n]Z̃2[p, n] , (12)

where p is the pitch index. Details and source codes of
computing the CFP representations can be found in [27].

In this work, the audio recordings are resampled to 16
kHz and are merged into mono-channel. Following [5], the
input features are of multiple resolution.We compute S+,
S−, and Z using the Hann window with 3 different sizes
of 186, 372, and 743 samples (i.e. 11.61, 23.22, and 46.44
ms), resulting in nine data representation. The hop size is
320 samples (i.e. 20 ms). In CNN, S+, S−, and Z form
the three input channels, and in each channel the data rep-
resentations with three different window sizes are concate-
nated together. In RNN, all the nine data representations
are concatenated as the input.

3.3 Model

We investigate two networks that stand for two strategies in
modeling note sequences: ResNet for image classification
[13] and RNN with attention for sequence classification
[2]. Denote the frame-level feature at the time instance t as
rt. For every t, we take the sequence Rt := [rt−k, rt−k+1,
· · · , rt · · · , rt+k] as the input of the model to predict the
presence of onset and offset at t. We set k = 9 according
to the optimal loss on the validation set. That means, the
dimension of every input Rt is (c, 174, 19) (for ResNet) or
(c ∗ 174, 19) (for RNN with attention mechanism), where
c represents the number of channels: if S+, S−, and Z are
stacked as the input, then c = 3.

Our implementation of the ResNet model basically fol-
lows the ResNet-18 architecture in [13]. The network is
composed of eight sub-networks, each of which has two
convolutional layers. The convolutional layers mostly have
kernel of size (3, 3). Batch normalization is used after each
convolutional layer. The spatial pooling process is done
by using convolutional layers with stride of two. Shortcut
paths link the feature maps by skipping every two convo-
lutional layers. After the convolution stages, the feature
maps are pooled by averaging, and then are mapped to the
output space through fully connected layers. See [13] for
the implementation details. The output format and the ob-
jective functions follow the discussion in Section 3.1.

The RNN with attention is composed of a three bidi-
rectional long-short-term memory (BLSTM) [26] layers,
an attention layer, and two fully connected layers. For the
three-layer BLSTM, the dimension of every hidden unit is
150. The outputs of the BLSTM are weighted and summed
by the 2k + 1 attention weights derived from the hidden
units of the last BLSTM layer [2]. Layer normalization
is used to stabilize training and inference processes. The
results are then fed into the two-layer fully-connected net-
work, each with a dimension of 150 and 6. The output for-
mat and the objective functions of the model also follows
the discussion in Section 3.1.

Each data representation is normalized to zero mean be-
fore fed into the model. The manual labels in the dataset

are not always exact since the exact time of an onset/offset
event is hard to determine [5]. To solve this issue, we
extend the labels to a tolerance window δ that can allow
uncertainty in the onset/offset time labels: if a frame is
within δ = ±50ms to the true label, the label is also
set to 1. This δ value is chosen according to the evalu-
ation convention of onset detection in MIREX. This can
mitigate the issue of data imbalance. In this work, all
the models are obtained after 80 epochs of training on
an Nvidia TITAN Xp GPU, using the Adam optimizer
with the learning rate of 0.001. The source code, sup-
plementary materials, and listening examples are avail-
able at: https://github.com/Itachi6912110/
Hierarchical-Note-Segmentation.

3.4 Post-processing and note segmentation

We employ a linear filter with impulse response h(n) =
[0.25, 0.5, 1, 0.5, 0.25] to smooth the predicted onset and
offset sequences. Then we apply a threshold at 0.5 and a
peak picking process on the sequences to determine pos-
sible onset and offset positions. At this stage, minor mis-
matches between the predicted onset and offset positions
still remain. To ensure that every onset is followed by ex-
actly one offset, additional procedures are used.

For the OON and the M-OON models, the procedure in-
cludes: 1) if there are two onsets having no offset between
them, we insert an offset at the time when the second on-
set occurs; 2) if there are two offsets without any onset
between them, we directly discard the second one.

For the TSN model, consistent segmentation results can
be derived directly from the relationship among S, A and
T , so there is no issue on onset/offset mismatching. Onsets
and offsets are determined by the following steps: 1) ob-
tain the peak positions of the predicted sequence of T ; 2)
sum over the likelihood values of S andA in every interval
separated by those peaks obtained in 1). If the sum of S is
higher than the sum ofA, then the interval is determined to
be S. Otherwise, the interval is determined to be A; 3) for
every selected T in 1), if its left-side interval is S and its
right-side interval isA, a S→T→A pattern is detected and
the transition is determined as an onset. Conversely, if we
detect a A→T→S pattern, the transition is determined as
an offset; 4) if we detect an A→T→A pattern, the transi-
tion is determined as an offset and an onset; 5) if we detect
a S→T→S pattern, the transition is directly discarded.

For HCN1 and HCN2, the procedure is a combination
of the two strategies above: 1) if there are two onsets hav-
ing no offset between them, we insert an offset specified
to the time when S firstly surpasses A at that interval; 2)
similarly, if there are two offsets having no onset between
them, the inserted onset is specified to the time when A
firstly surpasses S at that interval; 3) any detection violat-
ing the rules of 1) and 2) is deleted.

3.5 Note-level transcription

We combine the note segmentation method with a simple
pitch estimation process for note-level singing voice tran-
scription. This is implemented by: 1) obtain the onset and
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offset times of each note with the note segmentation model,
and 2) use the vocal melody extraction method in [27] to
obtain the pitch contour of every note, and 3) the final pitch
value is simply determined by the median of the pitch con-
tour of that note.

4. EXPERIMENTS

4.1 Data and evaluation metrics

To test the robustness of our model, we set a cross-dataset
scenario for the experiments on note segmentation. We
use TONAS [10, 19], a dataset of 71 flamenco a cap-
pella sung melody, as our training dataset. In addition,
we evaluate our proposed method on the ISMIR2014 sung
melody dataset [17]. It contains singing data from 11 fe-
male adults, 13 male adults and 14 children.

Section 4.2 first compares the results using different in-
put features. Section 4.3 further compares the results of
training with five different objective functions mentioned
in Section 3.1. Section 4.4 then compares the ResNet-18
model, the RNN model with attention and the onset detec-
tor in the MADMOM library [6]. The latter is known as the
state of the art for general-purpose onset detection.

For the evaluation metrics, we report the F1-scores of
onset detection, offset detection and note transcription and
the average overlap ratio (AOR) by using the utilities in the
mir_eval library with default parameters [23]. To quan-
tify the mismatch between the detected onsets and offsets
in note segmentation results, we further compare their con-
flict ratio (CFR), which is defined as the ratio between the
number of unpaired detection and the number of all pre-
dicted transitions (i.e. onsets plus offsets):

CFR :=
# of unpaired transitions
# of predicted transitions

(13)

The unpaired transition is defined as the onset/offset
that cannot be derived from, or that violates the relation-
ship of the states used in the model. For example, in the
OON model, if there are two consecutive onsets having no
offset in between, the second offset violates the relation-
ship between onset and offset and is accounted as an un-
paired detection. On the other hand, the TSN model pro-
duces zero unpaired transition and therefore has zero CFR,
as discussed in Section 3.4. CFR can be seen as a criterion
of systematic consistency for a note segmentation model.

4.2 Comparison of input features

The first five rows of Table 1 lists the results of both onset
and offset detection with various inputs: X, S+, [S+,S−],
[S+,Z], and [S+,S−,Z]. In comparison to others, us-
ing only the spectrogram (X) with less feature engineer-
ing gives competitive result, which indicates the power of
ResNet in pattern recognition. However, it should be em-
phasized that using a detailed set of features relevant to
onset and offset such as [S+,S−,Z] achieves the best note
transcription F1-score at 59.5%, which is better than the
case using only X by 3.9%. Such improvement can be seen
from other interesting comparisons. For example, adding

either S− or Z to S+ greatly improves the F1-scores of
both the onset and offset. Adding S− to S+ also results in
14.5% improvement on onset F1-score, meaning that the
backward spectral difference may also be relevant to an
onset event. These observations can all be explained by
the fact that an onset event can be highly overlapped by an
offset event of another notes, and the feature set revealing
different aspects of the signal characteristics helps resolve
such ambiguity. For simplicity, we adopt [S+,S−,Z] in
the following experiments.

4.3 Comparison of objective functions

The lower part of Table 1 compares the results of mod-
els trained by four baseline objective functions, includ-
ing OON, M-OON, TSN, and HCN1. Comparing the F1-
scores of OON and M-OON, we observe that M-OON
slightly degrades onset detection but greatly improves off-
set detection by 29.2%. This indicates the importance of
joint training: incorporating onset information in a shared
network can help offset detection.

Although the F1-score of TSN is worse than the one
of M-OON, TSN achieves zero CFR as all onsets/offsets
can be completely inferred from the rule mentioned in sec-
tion 3.1 and 3.4. This shows that training on S, A, T and
the temporal constraints make highly consistent prediction.
However, the poor performance on onset and offset detec-
tion implies that using a single T state is not sufficient to
describe the behavior of both onset and offset.

HCN1 and HCN2 therefore combine the advantage of
both the M-OON model and TSN model. Result shows that
the HCN1 model enhances the segmentation quality (re-
ducing CFR to half) compared to the M-OON model and
improves the onset and offset detection F1-score compared
to the TSN model, then achieves the F1-score of 56.7% on
note transcription. In addition, HCN2 model outperforms
the HCN1 model in almost all evaluation metrics, where
a 2.7% improvement on note transcription F1-score is ob-
tained. Such advancement indicates the importance of reg-
ularizing activation/silence detection in note segmentation
and transcription tasks.

4.4 Comparison of models

Table 1 also compares two implementations of HCN2
using different modules for the hierarchical classifier:
ResNet-18, and the RNN with attention (denoted as RNN-
attn) as a sequence classification network for comparison.

Results show that ResNet-18 outperforms RNN-attn
in every performance metrics, probably because that an
image-based classification network can extract more de-
tailed features considering local information where se-
quential dependency is not that significant. These findings
are partly in line with that in [25], where a CNN outper-
forms sequence models such as RNN.

4.5 Singing Voice Note Transcription

Table 2 shows the results of singing voice transcription
compared with five previous methods: Ryynänen et al.
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Objective Classifier Feature F1 (onset) F1 (offset) CFR AOR P (note) R (note) F1 (note)

HCN2
ResNet-18

S+ 0.599 0.409 0.078 0.862 0.430 0.394 0.409
X 0.757 0.740 0.050 0.873 0.576 0.538 0.555
[S+,S−] 0.744 0.715 0.057 0.870 0.532 0.506 0.517
[S+,Z] 0.745 0.713 0.050 0.870 0.553 0.506 0.527
[S+,S−,Z] 0.786 0.759 0.043 0.869 0.625 0.569 0.594

RNN-attn [S+,S−,Z] 0.699 0.722 0.050 0.840 0.520 0.502 0.510
HCN1

ResNet-18 [S+,S−,Z]

0.751 0.739 0.051 0.872 0.608 0.535 0.567
TSN 0.691 0.705 0.000 0.864 0.472 0.480 0.474
M-OON 0.778 0.707 0.129 0.874 0.574 0.526 0.547
OON 0.790 0.415 0.210 0.846 0.313 0.305 0.308

Table 1: Evaluation results for various input features objective functions, and classifier models.

Figure 3: Transcription results from the 15th to the 18th
second of ‘child10.wav’ in the ISMIR 2014 dataset. From
top to bottom: predicted likelihood for S, A, O, X , and
transcription results. Background of the bottom subfigure:
the pitch saliency function Z. Blue dashed lines: estimated
pitch contour. Bullet: onset time. X mark: offset time.

[24] , Gómez & Bonada [10], SiPTH [18], Yang et al. [29],
and Tony [16]. The results for these five methods are re-
ported in [29]. Our proposed method outperforms all the
previous methods by more than 7.4% in terms of the F1-
measure. It is important to note that although our model
is trained on a dataset with the singing style (flamenco
singing) quite different from the testing data, the model
still outperforms the Tony software, which performance is
actually based on a parametric grid search on the testing
dataset [16]. This fact indicates that our method is po-
tentially generalizable over various data modalities. Be-

Method Precision Recall F
Ryynänen [24] 0.304 0.315 0.308
Gómez & Bonada [10] 0.430 0.373 0.398
SiPTH [18] 0.397 0.440 0.415
Yang [29] 0.409 0.436 0.421
Tony [16] 0.510 0.534 0.520
Proposed 0.625 0.569 0.594

Table 2: Comparison of singing transcription results.

sides, since we do not directly deal with issues such as
vibrato, unstable pitches and tuning shift [29], our model
actually benefits more from a stable note segmentation
method. This highlights the importance of note segmen-
tation in note transcription.

Fig. 3 illustrates an example of the predicted silence,
activation, onset, offset likelihood curves and note tran-
scription results of a clip in the testing dataset. The tran-
scription result from the Tony software is also provided for
comparison. It can be shown that Tony tends to miss on-
sets for consecutive notes, while the proposed model suc-
cessfully captures almost all the note transitions except the
onset at 16.71 sec, which is a challenging case due to the
bent pitch contour around the onset event and a relatively
short note duration.

5. CONCLUSION

We have presented the effectiveness of the proposed hier-
archical classification networks in note segmentation and
transcription in singing voice. By unfolding the structure
of the state evolution patterns in note sequences and by ap-
plying multi-channel data representations to modeling note
transitions, the general, robust, and consistent note seg-
mentation procedure plays a vital role in achieving state-
of-the-art performance. One important aspect omitted in
our discussion is using temporal modeling (e.g., HMM)
over the hierarchical state space rather than using post-
processing rules to complete the note transcription process.
Based on the positive result of this study, this direction is
with high potential and will be left as future work.
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