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Abstract

The subject matter for this paper is GDDs with three groups and block
size five in which each block has configuration (1, 2, 2); that is, each
block has exactly one point from one of the three groups and two points
from each of the other two groups. We provide necessary and sufficient
conditions of the existence of a GDD (n, 3, 5;λ1, λ2) with configuration
(1, 2, 2). A highlight of this paper is a technique which uses two and then
three idempotent MOLS consecutively to construct a required family of
GDDs.

1 Introduction

Group divisible designs (GDDs) have been studied for their usefulness in statistics
and for their universal application to constructions of new designs [12, 16, 17]. Cer-
tain difficulties are present especially when the number of groups is smaller than the
block size. In [3, 4], the question of existence of GDDs for block size three was set-
tled. There is a more technical proof given in the book “Triple Systems” [2]. Similar

∗ D.G. Sarvate thanks Dr. Bob Mignone for continuing support.
† L. Zhang thanks The Citadel Foundation for its support.



D.G. SARVATE AND L. ZHANG/AUSTRALAS. J. COMBIN. 66 (2) (2016), 333–343* 334

results were established for GDDs with block size four in [5, 7, 9, 14, 18]. In [6, 8], re-
sults about GDDs with two groups and block size five with fixed block configuration
were presented. In [13], results about GDDs with fours groups and block size five
with fixed block configuration were established. In [15], generalizations of designs
for block size five from Clatworthy’s Table are given. In [10], results about GDDs
with block size six with fixed block configuration were studied.

A group divisible design, GDD(n,m, k;λ1, λ2), is a collection of k-element subsets
of a v-set V called blocks which satisfies the following properties: the v = nm
elements of V are partitioned into m subsets (called groups) of size n each; each

point of V appears in r = λ1(n−1)+λ2n(m−1)
k−1

(called the replication number) of the
b = nmr

k
blocks; points within the same group are called first associates of each other

and appear together in λ1 blocks; any two points not in the same group are called
second associates of each other and appear together in λ2 blocks.

In [5, 18], the necessary conditions are proved to be sufficient for the existence of
a GDD(n, 3, 4;λ1, λ2) with configuration (1, 1, 2), that is, each block has exactly one
point from each of the two groups and two points from the third group. The purpose
of this paper is to establish results for GDDs with block size five and three groups
(i.e. GDD(n, 3, 5;λ1, λ2)) in which each block has configuration (1, 2, 2), that is, each
block has exactly one point from one of the three groups and two points from each
of the other two groups. Unless otherwise stated, GDDs addressed in this paper all
have the configuration (1, 2, 2). First we find the relationship between λ2 and λ1.

Theorem 1.1 Necessary conditions for the existence of a GDD (n, 3, 5; λ1, λ2) are

n ≥ 2 and λ2 = 2(n−1)λ1
n

.

Proof: Suppose a GDD(n, 3, 5;λ1, λ2) exists, then the replication number r for an

arbitrary point is λ1(n−1)+λ2(2n)
4

. Also, since vr = bk, we have b = 3n×[λ1(n−1)+λ2(2n)]
20

.
On the other hand, since every block must contain exactly two first associate pairs
(with configuration (1, 2, 2)), the group size n should be greater than or equal to
2. Also, the number of blocks b must equal the number of the first associates pairs
3n(n−1)λ1

2
divided by 2, i.e., b = 3n(n−1)λ1

4
. We have b = 3n(n−1)λ1

4
= 3n×[λ1(n−1)+λ2(2n)]

20
,

that is, λ2 = 2(n−1)λ1
n

. 2

Since λ2 = 2(n−1)λ1
n

, if we let λ1 = nt
2

for any positive integer t such that nt ≡
0 (mod 2), then λ2 = (n−1)t. Also, since the replication number r = λ1(n−1)+λ2(2n)

4
=

5n(n−1)t
8

, n(n − 1)t ≡ 0 (mod 8). Combine nt ≡ 0 (mod 2) and n(n − 1)t ≡ 0 (mod
8), and we have the following corollary.

Corollary 1.1 Suppose t is a positive integer and let λ1 = nt
2

. The necessary con-
ditions for t are as follows.

1) If n ≡ 0 (mod 8), then there is no condition for t.

2) If n ≡ 1, 4, 5 (mod 8), then t must be even.
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3) If n ≡ 2, 3, 6, 7 (mod 8), then t ≡ 0 (mod 4).

Remark 1.1 Notice that if a GDD(n, 3, 5;λ1, λ2) exists, then for any integer c ≥ 1,
a GDD(n, 3, 5; cλ1, cλ2) exists by taking c copies of GDD(n, 3, 5; λ1, λ2). Therefore,
we can reduce the problem to find a GDD(n, 3, 5; λ1, λ2) for the minimum value
of λ1.

2 GDD(n, 3, 5;λ1, λ2) for n ≡ 2, 3, 6, 7 (mod 8)

Theorem 2.1 Necessary conditions are sufficient for a GDD(2, 3, 5;λ1, λ2) and a
GDD(3, 3, 5;λ1, λ2), respectively.

Proof: By Theorem 1.1 and Corollary 1.1, the necessary condition for the existence
of a GDD(2, 3, 5;λ1, λ2) is λ2 = λ1 = t where t ≡ 0 (mod 4). Thus, the minimum
values of λ1 and λ2 are both 4. A GDD(2, 3, 5; 4, 4) on the three groups {1, 2},
{3, 4}, and {5, 6} is as follows: {1, 2, 3, 4, 5}, {1, 2, 3, 4, 6}, {1, 2, 3, 5, 6}, {1, 2, 4, 5, 6},
{1, 3, 4, 5, 6}, and {2, 3, 4, 5, 6}. By Remark 1.1, we have a GDD(2, 3, 5;λ1, λ2).

By Theorem 1.1 and Corollary 1.1, the necessary condition for the existence of
a GDD(3, 3, 5;λ1, λ2) is λ2 = 4λ1

3
and t ≡ 0 (mod 4). The minimum values of t, λ1

and λ2 are 4, 6 and 8 respectively. A GDD(3, 3, 5; 6, 8) on the three groups {1, 2, 3},
{4, 5, 6} and {7, 8, 9} is given in Figure 1. Note that each column represents a block.
By Remark 1.1, we have a GDD(3, 3, 5;λ1, λ2). 2

1    1    1    1    1    1    1    1    1    1    1    1    2    2    2    2    2    2    4    4    4    4    4    4    5    5    5 
2    2    2    2    2    2    3    3    3    3    3    3    3    3    3    3    3    3    5    5    5    6    6    6    6    6    6      
4    4    5    7    7    8    4    4    5    7    7    8    4    4    5    7    7    8    7    7    8    7    7    8    7    7    8      
5    6    6    8    9    9    5    6    6    8    9    9    5    6    6    8    9    9    8    9    9    8    9    9    8    9    9     
7    8    9    6    4    5    8    9    7    6    4    5    7    8    9    5    6    4    1    2    3    3    1    2    2    3    1     

Figure 1: A GDD(3, 3, 5; 6, 8)

Definition 2.1 A 1-factor of a graph G is a set of pairwise disjoint edges which
partition the vertex set. A 1-factorization of a graph G is a set of 1-factors which
partition the edge set of the graph.

A 1-factorization of K2n contains 2n− 1 1-factors.

Definition 2.2 A 2-factor of a graph G is a spanning subgraph of G which is regular
of degree 2. A 2-factorization of a graph G is an edge disjoint decomposition of G
into 2-factors.

It is known that a K2n+1 (n ≥ 1) has n 2-factors. We will use the same notation,
say G to denote a set or a group and a complete graph on |G| points labeled with
elements from G. Similarly, a pair of elements (a, b) and an edge (a, b) will be used
interchangeably. The context should make the intention clear.
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Lemma 2.1 A GDD(n, 3, 5; 2n, 4(n− 1)) exists for any n ≥ 2.

Proof: Suppose that G1 = {v1, v2, . . . , vn}, G2 = {u1, u2, . . . , un} and G3 = {w1, w2,
. . . , wn} are the three groups. If n is odd, then there are n−1

2
2-factors for each

group. Note that each 2-factor has n edges. Let Ai = {ai1, ai2, . . . , ain} be the ith
2-factor for G1, where i = 1, 2, . . . , n−1

2
, and Bi = {bi1, bi2, . . . , bin} be the ith 2-factor

for G2, and Ci = {ci1, ci2, . . . , cin} be the ith 2-factor for G3. For i = 1, 2, . . . , n−1
2

and s = 1, 2, . . . , n, we construct n blocks {ais} ∪ {bi1} ∪ {ws}, {ais} ∪ {bi2} ∪
{ws+1}, . . . , {ais} ∪ {bin} ∪ {ws−1}, where subscripts of w’s are modulo n from

{1, 2, . . . , n}. As a result, we have n2(n−1)
2

blocks. Do the same to get n2(n−1)
2

blocks
in the form of {cis} ∪ {ai1} ∪ {us}, {cis} ∪ {ai2} ∪ {us+1}, . . . , {cis} ∪ {ain} ∪ {us−1},
and n2(n−1)

2
blocks in the form of {bis} ∪ {ci1} ∪ {vs}, {bis} ∪ {ci2} ∪ {vs+1}, . . . ,

{bis}∪{cin}∪{vs−1}. Thus, we have a total of 3n2(n−1)
2

blocks as required. For n = 5,
A1 = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 1)}, B1 = {(6, 7), (7, 8), (8, 9), (9, 10), (10, 6)}, and
G3 = {11, 12, 13, 14, 15}, see the 25 blocks constructed using A1, B1 and elements
from G3 in Figure 2 for an example.

                        
                        
                        
                        

                        

Figure 2: The first 25 blocks of a GDD(5, 3, 5; 10, 16)

Notice that in the above construction, when we used the 2-factors Ai’s and Bi’s,
every edge of Ai is used n times. Again, when we used the 2-factors Ci’s and Ai’s,
every edge of Ai is used n times. That is, every edge of Ai is used a total of 2n
times in the construction. Similarly, every edge of Bi and every edge of Ci are
used a total of 2n times, respectively. This implies that λ1 = 2n. Furthermore,
when we used 2-factors of G1 and G2 and elements from G3 to construct blocks,
edges (a, c) and (b, c) occur twice, and edge (a, b) occur 4 times, where a ∈ G1,
b ∈ G2 and c ∈ G3. Since there are n−1

2
2-factors of each Gi’s, edges (a, c) and

(b, c) appear 2 × (n−1
2

) times, respectively, and edge (a, b) appears 4 × (n−1
2

) times.
Similarly, the blocks constructed using 2-factors of G2 and G3 have 2 × (n−1

2
) (a, b)

and (a, c) edges, respectively, and 4 × (n−1
2

) (b, c) edge. The blocks constructed
using 2-factors of G3 and G1 have 2× (n−1

2
) (a, b) and (b, c) edges, respectively, and

4 × (n−1
2

) (a, c) edge. Thus, each edge corresponding to the second associate pair
occurs 4× (n−1

2
) + 2× (n−1

2
) + 2× (n−1

2
) = 4(n− 1) times, that is, λ2 = 4(n− 1) as

required.

If n is even, we construct the blocks in a manner similar to the construction of
the blocks when n is odd, except that we use 1-factors for n even. Notice that
there are n − 1 1-factors of each Gi’s, and there are n

2
edges in each 1-factor.

When we use 1-factors Ai from G1 and Bi from G2 and elements from G3, where
i = 1, 2, . . . , n−1, we construct n2

4
blocks {ais}∪{bi1}∪{ws}, {ais}∪{bi2}∪{ws+1},

. . . , {ais}∪{bim}∪{ws−1} for s = 1, 2, . . . , n
2
, where m = n

2
and subscripts of w’s take

modulo of m from {1, 2, . . . ,m}. Notice that we only used half of the elements from
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G3. Duplicating these blocks, and then in each block of the duplicated n2

4
blocks, re-

place only the element wj from G3 to wj+m. The resulting n2

2
blocks used all elements

from G3
n
2

times. Since there are n−1 1-factors of G1 and G2, respectively, we have a

total of n
2(n−1)

2
blocks. Similarly, construct n2(n−1)

2
blocks using 1-factors from G3 and

G1 and n2(n−1)
2

blocks using 1-factors from G2 and G3, respectively. We have a total

of 3n2(n−1)
2

blocks as required. For n = 10, A1 = {(1, 2), (3, 4), (5, 6), (7, 8), (9, 10)},
B1 = {(11, 12), (13, 14), (15, 16), (17, 18), (19, 20)}, and G3 = {21, . . . , 25, 26, . . . ,
30}, see the 50 blocks constructed using A1, B1 and elements from G3 in Figure 3
for an example.

                        
                        

                        
                        
                        

                        
                        

                        
                        
                        

Figure 3: The first 50 blocks of a GDD(10, 3, 5; 20, 36)

Notice that in the above construction for n even, when we used the 1-factors Ai’s
and Bi’s, every edge of Ai is used n times. Again, when we used the 1-factors Ci’s
and Ai’s, every edge of Ai is used n times. That is, every edge of Ai is used a total
of 2n times in the construction. Similarly, every edge of Bi and every edge of Ci
are used a total of 2n times, respectively. This implies that λ1 = 2n. Furthermore,
when we used 1-factors of G1 and G2 and elements from G3 to construct blocks,
edges (a, c) and (b, c) occur once, and edge (a, b) occur twice, where a ∈ G1, b ∈ G2

and c ∈ G3. Since there are n − 1 1-factors of each Gi’s, edges (a, c) and (b, c)
appear n − 1 times, respectively, and edge (a, b) appears 2(n − 1) times. Similarly,
the blocks constructed using 1-factors of G2 and G3 have n−1 (a, b) and (a, c) edges,
respectively, and 2(n − 1) (b, c) edge. The blocks constructed using 1-factors of G3

and G1 have n−1 (a, b) and (b, c) edges, respectively, and 2(n−1) (a, c) edge. Thus,
each second associate edge occurs 2(n− 1) + (n− 1) + (n− 1) = 4(n− 1) times, that
is, λ2 = 4(n − 1) as required. We conclude that a GDD(n, 3, 5; 2n, 4(n − 1)) exists
for any n ≥ 2. 2

Theorem 2.2 Necessary conditions are sufficient for a GDD(n, 3, 5;λ1, λ2) for n ≡
2, 3, 6, 7(mod 8).

Proof: By Corollary 1.1, if n ≡ 2, 3, 6, 7(mod 8), then t ≡ 0 (mod 4). The minimum
value of t is 4, thus the minimum values of λ1 and λ2 are 2n and 4(n−1), respectively.
Since a GDD(n, 3, 5; 2n; 4(n− 1)) exists by Lemma 2.1, the necessary conditions are
sufficient by Remark 1.1. 2
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3 GDD(n, 3, 5;λ1, λ2) for n ≡ 0 (mod 8)

If n ≡ 0 (mod 8), then there is no condition on t by Corollary 1.1. The minimum
value of t is 1, thus the minimum values of λ1 and λ2 are nt

2
= n

2
and n−1, respectively.

The following definitions and results which can be found in [1, 11] will be used in
our proofs of GDDs.

Definition 3.1 A Latin square L of side (or order) n is an n×n array in which each
cell contains a single symbol from an n-set S, such that each symbol occurs exactly
once in each row and exactly once in each column. Two Latin squares L1 and L2 of
the same order are orthogonal if L1(a, b) = L1(c, d) and L2(a, b) = L2(c, d), implies
a = c and b = d. A set of Latin squares L1, . . . , Lm is mutually orthogonal, or a set
of MOLS, if for every 1 ≤ i < j ≤ m, Li and Lj are orthogonal.

Definition 3.2 A Latin square L of order n on {1, 2, . . . , n} is called an idempotent
Latin square if L(i, i) = i for i = 1, 2, . . . , n and is called a symmetric Latin square
if L(i, j) = L(j, i) for all i and j in {1, 2, . . . , n}. A Latin square where rows and
columns are labeled by {1, 2, . . . , n} is referred to as a quasigroup (L, ◦) where i◦j =
L(i, j).

Theorem 3.1 If there are m MOLS of order n, then there are m − 1 idempotent
MOLS of order n. (See page 129 in [11]).

Theorem 3.2 There are three idempotent MOLS for all positive integers n except
for n ∈ {2, 3, 4, 6, 10}. (See Table III.3.88 on page 186 in [1]).

Definition 3.3 A partially balanced incomplete block design with m associate classes
(PBIBD(m)) is a block design based on a v-set X with b blocks each of size k such
that if the elements x and y are ith associates, then they are together in precisely λi
blocks, 1 ≤ i ≤ m .

Theorem 3.3 If two idempotent MOLS of order n exist, then a PBIBD(3) with
block size 5, λ1 = 4, λ2 = 7, λ3 = n− 1 and v = 3n exists.

Proof: Let V = {a1, . . . , an, b1, . . . , bn, c1, . . . , cn} be a set of 3n elements. Suppose
there exist two idempotent Latin squares of order n on symbols {1, 2, . . . , n}, namely
(L1, o1), and (L2, o2).

For 1 ≤ i, j ≤ n and i 6= j, we construct the following blocks {ai, aj, bio1j, bio2j,
cio2j}, {bi, bj, cio1j, cio2j, aio2j}, and {ci, cj, aio1j, aio2j, bio2j}. By the definitions of the
Latin square and MOLS, we observe the following for the blocks {ai, aj, bio1j, bio2j,
cio2j} where 1 ≤ i, j ≤ n and i 6= j: pairs (ai, aj) (i 6= j) appear twice and pairs
(as, bu) (s 6= u) appear four times as in a Latin square each entry appear exactly
once in each row and column. Similarly, for s 6= u, pairs (as, cu) appear twice, pairs
(bs, bu) appear twice, and pairs (bs, cu) appear once. Also, pairs (bs, cs) appear n− 1
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times because these pairs appear from Latin squares L2 and hence have the same
index, and as the Latin square is idempotent, every index appear n− 1 times as the
non-diagonal entry. Similarly, we can count the occurrences of pairs in the remaining
blocks. Hence, altogether, pairs (ai, bj), (ai, cj), (bi, cj) (i 6= j) appear seven times
each, but (ai, bi), (bi, ci) and (ci, ai) appear n − 1 times and pairs (ai, aj), (bi, bj),
(ci, cj) appear four times. Therefore, we have a PBIBD(3) with λ1 = 4, λ2 = 7 and
λ3 = n− 1. 2

Since for n = 8, there exist three idempotent MOLS by Theorem 3.2, we have
the following result using the construction in Theorem 3.3.

Corollary 3.1 For n = 8, we have a GDD(8, 3, 5;4, 7) with groups G1 ={a1, . . . , an},
G2 = {b1, . . . , bn} and G3 = {c1, . . . , cn}.

Theorem 3.4 Necessary conditions are sufficient for a GDD(n, 3, 5;λ1, λ2) for n ≡
0 (mod 8), i.e., a GDD(8k, 3, 5; 4k, 8k − 1) exists for k ≥ 1.

Proof: The construction is similar to the construction in Theorem 3.3. We use three
idempotent MOLS here instead of two as in Theorem 3.3. Let n = 8k(k ≥ 1) and
V = {a1, . . . , an, b1, . . . , bn, c1, . . . , cn} be a set of 3n elements. By Theorem 3.2, there
exist three idempotent MOLS of order n on symbols {1, 2, . . . , n}, namely (L1, o1),
(L2, o2) and (L3, o3).

For 1 ≤ i, j ≤ n and i 6= j, we construct the following blocks {ai, aj, bio1j, bio2j,
cio2j}, {bi, bj, cio1j, cio2j, aio2j}, {ci, cj, aio1j, aio2j, bio2j}, and k− 1 copies of each of the
following blocks: {ai, aj, bio1j, bio2j, cio3j}, {bi, bj, cio1j, cio2j, aio3j}, and {ci, cj, aio1j,
aio2j, bio3j}. We can count the occurrences of the pairs as in Theorem 3.3: pairs
(ai, aj), (bi, bj) and (ci, cj) (i 6= j) appear 4 + 4(k − 1) = 4k times, and pairs (ai, bj),
(ai, cj) and (bi, cj) (i 6= j) appear 7 + 8(k − 1) = 8k − 1 times, and pairs (ai, bi),

(bi, cj) and (ai, cj) appear n(n−1)
n

= 8k − 1 times. That is, λ1 = 4k and λ2 = 8k − 1
as required. Thus, a GDD(8k, 3, 5; 4k, 8k − 1) exists for k ≥ 1. 2

4 GDD(n, 3, 5;λ1, λ2) for n ≡ 1, 4, 5 (mod 8)

If n ≡ 1, 4, 5 (mod 8), then t must be even by Corollary 1.1. The minimum value of
t is 2, thus the minimum values of λ1 and λ2 are nt

2
= n and 2(n− 1), respectively.

Example 4.1 A GDD(4, 3, 5; 4, 6) is given in Figure 4.

Lemma 4.1 A GDD(n = 8s + 4, 3, 5;n = 8s + 4, 2(n − 1) = 2(8s + 3)) exists for
any s ≥ 0.

Proof: For n = 4, we have a GDD(4, 3, 5; 4, 6) in Example 4.1. For n = 8s+4(s ≥ 1),
we construct blocks in a manner similar to the constructions in Theorems 3.3 and 3.4.
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Figure 4: A GDD(4, 3, 5; 4, 6)

By Theorem 3.2, there exist three idempotent MOLS of order n = 8s+ 4 (s ≥ 1) on
symbols {1, 2, . . . , n}, namely (L1, o1), (L2, o2) and (L3, o3).

For 1 ≤ i, j ≤ n and i 6= j, we construct the following blocks: two copies
of each of the blocks {ai, aj, bio1j, bio2j, cio2j}, {bi, bj, cio1j, cio2j, aio2j}, {ci, cj,
aio1j, aio2j, bio2j}, and 2s − 1 copies of each of the blocks {ai, aj, bio1j, bio2j, cio3j},
{bi, bj, cio1j, cio2j, aio3j}, and {ci, cj, aio1j, aio2j, bio3j}. We can count the occurrences
of the pairs as in Theorem 3.3: pairs (ai, aj), (bi, bj) and (ci, cj) (i 6= j) appear
2× 4 + 4(2s− 1) = 8s+ 4 times, and pairs (ai, bj), (ai, cj) and (bi, cj) (i 6= j) appear
2×7+8(2s−1) = 16s+6 = 2(8s+3) times. That is, λ1 = 8s+4 and λ2 = 2(8s+3)
as required. Thus, a GDD(8s+ 4, 3, 5; 8s+ 4, 2(8s+ 3)) exists for s ≥ 0. 2

Example 4.2 A GDD(5, 3, 5; 5, 8) is given in Figure 5.
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Figure 5: A GDD(5, 3, 5; 5, 8)

Lemma 4.2 A GDD(n = 4s+1, 3, 5;n = 4s+1, 2(n−1) = 8s) exists for any s ≥ 1.
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Proof: Example 4.2 in Figure 5 illustrates the construction for s = 1 where G1 =
{1, . . . , 5}, G2 = {6, . . . , 10} and G3 = {11, . . . , 15} and each Gi (i = 1, 2, 3) has two
2-factors. Similarly, we construct the GDDs for s > 1 as follows.

Let G1 = {a1, . . . , a4s+1}, G2 = {b1, . . . , b4s+1} and G3 = {c1, . . . , c4s+1}. Since
a K4s+1 has 2s 2-factors, each group has 2s 2-factors. Suppose G1 has 2-factors
{T1, . . . , T2s}, G2 has 2-factors {S1, . . . , S2s}, and G3 has 2-factors {R1, . . . , R2s}.
Note that each 2-factor has n = 4s+ 1 edges. Let Ti = {x1, x2, . . . , x4s+1} and Si =
{y1, y2, . . . , y4s+1}. For each i = 1, 2, . . . , s, we construct (4s + 1)2 blocks as follows.
The first 4s+ 1 blocks are {xj, yj, c1}, i.e., {xj}∪{yj}∪{c1}, for j = 1, 2, . . . , 4s+ 1.
In general, the kth set of 4s + 1 blocks is {{xj, yj+(k−1), ck} : j = 1, . . . , 4s + 1} for
k = 1, 2, . . . , 4s + 1. As a result, we have s(4s + 1)2 blocks. Similarly, we construct
the next s(4s + 1)2 blocks using 2-factor Ti where i = s + 1, . . . , 2s and 2-factor Ri

(4s+ 1 edges need to be cycled for every 4s+ 1 blocks) and point bj from G2 where
j = 1, . . . , 4s+ 1. Similarly, we construct the last s(4s+ 1)2 blocks using 2-factor Si
where i = s + 1, . . . , 2s and 2-factor Ri−s (4s + 1 edges need to be cycled for every
4s + 1 blocks) and point aj from G1 where j = 1, . . . , 4s + 1. We have a total of
3s(4s+ 1)2 blocks as required.

From the above construction, it is clear that λ1 = 4s + 1 since each 2-factor Ti,
Si and Ri (i = 1, . . . , 2s) appear 4s+ 1 times.

Now we will check the count for λ2. First, we consider the blocks obtained using
2-factors of G1 and G2 and points from G3. As to construct these blocks, with each
2-factor Ti, we cycle Si, i = 1, 2, · · · , s, λ2 count between the elements of G1 and G2

increases by 4 and between the elements of G1 ∪ G2 and G3 by 2. Therefore, as we
use s 2-factors of G1 with s 2-factors of group G2, it contributes 4s towards λ2 count
between the elements of G1 and G2, and 2s towards λ2 count between the elements
of G1 ∪G2 and G3. Similarly, counting the contribution towards λ2 from the blocks
obtained by using s 2-factors of G1 and G3, and then from the blocks obtained by
using s 2-factors of G2 and G3, we obtain λ2 = 8s as required. We conclude that a
GDD(n = 4s+ 1, 3, 5;n = 4s+ 1, 2(n− 1) = 8s) exists for any s ≥ 1. 2

Combining Lemmas 4.1 and 4.2 (notice that Lemma 4.2 applies for both n ≡ 1
and 5 (mod 8)), we have the following theorem.

Theorem 4.1 Necessary conditions are sufficient for a GDD(n, 3, 5;λ1, λ2) for n ≡
1, 4, 5 (mod 8).

Combining Theorems 2.2, 3.4 and 4.1, we have the following.

Theorem 4.2 Necessary conditions are sufficient for a GDD(n, 3, 5;λ1, λ2).

5 Summary

In this paper we have obtained complete existence results for GDD(n, 3, 5;λ1, λ2)
with configuration (1, 2, 2). It is worth noting that although Latin squares have been
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used to construct BIBDs and GDDs in the past, to the best of our knowledge, an
application like that which we have used in Theorem 3.4 and Lemma 4.1, using two
and then three idempotent MOLS consecutively, has not been done to construct
other designs.
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