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Abstract

Let G be a connected graph of order n, edge-connectivity A and minimum
degree 0. For a vertex v in G, the neighborhood N(v) of v is defined as
the set of all vertices adjacent to v and d(v) = |N(v)| is the degree of v.
A graph is called maximally edge-connected, if A = ¢. In 1979, Goldsmith
and Entringer gave the following neighborhood condition for graphs to
be maximally edge-connected:

If
L%Jz — {%J for all even n
Z d(z) > and for odd n < 15,
2EN(u) {%JZ _7 for odd n > 15,

for each vertex u of minimum degree, then A = 4.

In this article we show that the theorem of Goldsmith and Entringer
remains valid for digraphs, and we give different improvements of this
result. In addition, we present some new sufficient conditions for graphs
and digraphs to be maximally edge-connected, depending on the neigh-
borhood of an edge and vertex, respectively.

1 Terminology and introduction

We consider finite graphs and digraphs without loops and multiple edges. Let V(D)
be the vertex set of a graph or digraph D and n = n(D) = |V(D)| its order. For a
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vertex v € V(D) of a digraph D, we denote the sets of out-neighbors and in-neighbors
of v by N*(v) and N~ (v), respectively. Furthermore, the degree d(v) of a vertex v in
a digraph D is defined as the minimum value of its out-degree d*(v) = |[N*(v)| and
its in-degree d~(v) = [N~ (v)|. We denote the minimum degree of a (di)graph D by
0 = 6(D). For two disjoint vertex sets X,Y of a digraph or graph let (X,Y") be the
set of arcs or edges from X to Y. We denote the complete graph with p vertices by
K,,. For each edge e = ab in a graph G, let {¢(e) = d(a)+d(b) — 2 be the edge-degree
of e, and let { = {(G) = min{{¢(e) : e € E(G)} be the minimum edge-degree of G.
For other graph theory terminology we follow Chartrand and Lesniak [4].

An edge(arc)-cut of a (strongly) connected (di)graph D is a set of edges (arcs)
whose removal disconnects D. The edge(arc)-connectivity A = A(D) is defined as
the minimum cardinality over all edge(arc)-cuts of D. A A-cut is an edge(arc)-cut of
cardinality A. Since A < ¢ for all (di)graphs, we call a (di)graph maximally edge(arc)-
connected, if A = 4. In 1966, Chartrand [3] proved for graphs, that 6 = A, if § >
[n/2].

In 1979, Goldsmith and Entringer [7] showed that, if for each vertex w of minimum
degree, the vertices in the neighborhood of u have sufficiently large degree sum, then
the graph is maximally edge-connected.

Theorem 1.1 (Goldsmith, Entringer [7] 1979) Let G be a connected graph of
order n > 2, edge-connectivity X and minimum degree §. If

PF — PJ for all even n

2 2
d(z) > and for odd n < 15,

€N (w) {gf —7  foroddn>15

for each vertex u of minimum degree, then A\ = 4.

In this article we show that Theorem 1.1 remains valid for digraphs, and we give a
generalization of this result. Inspired by Theorem 1.1, we present in the third section
some new sufficient conditions for (di)graphs to be maximally edge(arc)-connected,
depending on the neighborhood of an edge (arc) and vertex, respectively. These
investigations lead to an extension of the following degree sequence condition by
Dankelmann and Volkmann [5].

Theorem 1.2 (Dankelmann, Volkmann [5] 1997) Let D be a (di)graph of or-
der n with edge(arc)-connectivity A and degree sequence dy > dy > ... > d, = 4. If
0> 1(n/2] ord<|n/2] =1 and

2%

> dnj1i > kn—3,

i=1
for some k with 2 < k < 9, then A = 6.

Further sufficient conditions for equality of edge(arc)-connectivity and minimum
degree of a (di)graph were given by several authors, as for example: Balbuena and
Carmona [1], Bollobds [2], Fabrega and Fiol [6], Lesniak [9], Plesnik [10], Plesnik and
Znam [11], and Xu [12].
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2 Generalizations of the result by Goldsmith and Entringer

In the sequel we will use the following notation:
For each v € V(D) and A C V(D), let Nf(v) = Nt(v)NA and Nj (v) = N~ (v)NA.

Theorem 2.1 Let D be a strongly connected digraph of order n with arc-connectivity
A and minimum degree § < |n/2| — 1.
a) If

> d(z) > max{0(6 + 1),d" (u)(n — 6 — 3) + 6,d" (u)(n — § —3) —n + 46 + 2}

z€N*(u)

and

> d(z) >max{6(6 +1),d (u)(n —6 —3) +6,d (u)(n — 6 — 3) — n+ 46 + 2}

€N~ (u)

for each vertex u of minimum degree, then A = 4.

b) If 6 = d*(u) = d~(u),

L%JZ — {%J for all even n

> d(z) > and for odd n < 15,
zeN* (u) 2] ~7  foroddn>15
and
{%JZ — {%J for all even n
> d(z) > and for odd n < 15,
s€N~(u) LgJZ 7 foroddn>15

for each vertex u of minimum degree, then A = 4.
¢) Furthermore, if 6 = |n/2] — 1,

S d(@) >5(06+1) = [n/2]* - |n/2]

z€N*(u)

and

S d(z) 280 +1) = [n/2]* - |n/2]

zeEN~(u)

for each vertex u of minimum degree, then A = 4.

Proof. Let S be an arbitrary A-cut and let X and Y denote the vertex sets of the
two components of D — S, such that |(X,Y)] = A\. We assume to the contrary, that
A<§d—1I|X| <dor Y] <9, then A > §, which implies A = 4, a contradiction.
Now let |X|,|Y| > 641 and let u be an arbitrary vertex of minimum degree, without
loss of generality u € X. If u € Y, then we work through the following proof by using
the second parts of the conditions of the theorem. We define X, C X as the set
of vertices, which do not have an out-neighbor in Y. In an analog manner we define
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Yy C Y as the set of vertices without an in-neighbor in X. Clearly (or see Case 1 of
the proof of Theorem 3.1), if X, = @, then A = 6. Thus, let in the following Xy # 0.
If we assume that |X| = 6 4 1, then each vertex v € X satisfies d*(v) = ¢, which
implies that

2;()61(9:) < Z;()d*(r)
< O(IX=1) + 5]
< F+5-1<8(6+1)—1
< [n/2)f = n/2) - 1,

a contradiction to a), b) and c¢). Analogously, |Y'| = ¢ + 1 contradicts a), b) and c).
Now we assume |X]|,|Y| > 6 + 2, which implies |[X|,|Y| < n—§—2 and § <
[n/2] — 2. If Nyt (u) = 0, then

Z( )d(x) < X di(a)

zeNt(u zeN;g(u)
< INXI(X]=1)+18]
< df(uw)(n—-86-3)+6-1,

a contradiction to a). Furthermore, if in addition d*(u) = ¢, then
dtw)(n—06-3)+6—1=6n-6-2)—1<(|n/2] —2)(n—|n/2]) -1,

since the function f(§) = 6(n — 6 — 2) — 1 increases for 6 < [n/2] — 2. Hence a
contradiction to b).

If Nyt(u) # 0, then |Nyf(u)| < |N¥(u)], because otherwise there exists an edge-cut
with |S] — | Ny (u)| + | Ny (u)] < |S| arcs, which is impossible. Furthermore, we
observe

Z()d(x) = > d)+ Y d)
zEN*(u zeNT (u) €N (u)
< XY d@+ X d(@
TENTE (u) TENSH (u)
< INF@IIX] = 1)+ [S] = [Ny ()] + [N (@) |([Y] = 1) + |9
= INZ(@IIX]+ [N (@)IY] +2IS] = d¥(w) = [Ny (u)]
< INT@IIXT+INF (@)Y]+2(6 = 1) = 2d7 (u) + [NX (u)]
= INZ(@IIX]+ N (w)l(n = |X]) = 2+ 26 — 27 (u) + [NX (u)]
= XN ()] = [Ny (w)]) + N (u)] = 2+ 20 — 27 (u) + | Nx (u)]
< (n=0-2)Q2IN}(u)] = d(u)) + n(d"(u) = [N (w)])
—2 +26 — 2d" (u) + | Ny (u)]
< INF(u)|(n — 28 — 3) +6dT(u) —2+ 26
< (df(u) —1)(n—26—3)+8d(u) —2+2§

d*(u)(n —0—3) —n+45 + 1,
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a contradiction to a) and b), since

df(u)n—6-3)—-n+46+1 = d(n—-6+1)—n+1
(In/2] —=2)(n = |n/2] +3)—n+1

IN

for § < |n/2| — 2 and dt(u) = 4.
Since we have discussed all possible cases, the proof is complete. O

It is easy to see that Theorem 2.1 b) implies the result by Goldsmith and Entringer
for graphs in Theorem 1.1.

Furthermore, the next theorem is a direct consequence of part a) and ¢) of The-
orem 2.1.

Theorem 2.2 Let G be a connected graph of order n with edge-connectivity A and
minimum degree § < |n/2] — 1.
If5 < [n/2| —2 and
> d(z) > max{d(6+1),6(n—6—-2),6(n—56+1)—n+2}
zEN (u)

= 6(n—06—2)+max{0,30 —n+2}

for each vertex u of minimum degree, then A = 4.
Ifo=|n/2] -1 and

Y d(@) > 66+ 1) = [n/2]* — [n/2]

zEN (u)
for each vertex u of minimum degree, then A\ = 4.

Theorem 2.2 is a generalization of Theorem 1.1. In order to see that Theorem
2.2 is an improvement, if n is even and § < [n/2] —2 or nis odd and § < |n/2] — 3,
we write it in another way.

Let § = |n/2] — k, where k € N, and let v = 1, if n is odd, and v = 0, if n is

=i = (3]-8) (- [543
- (18- 03+ -2(3-
i)l o
- (37l oo g o+ (8-
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for all £ > 2. If n is odd with n > 15, then

n

S(n—5—2) < H2—7

for all £ > 2.
Furthermore

Sn—6-2)—n+36+2 = Ef— EJ—i—Qk—kZ— EJ
(5] w5 4
e ().

which implies

2
5(n—5—2)—n+35+2<m —m
for all £ > 2 and even n. If n is odd, n < 15 and ¢ < |n/2] — 2, then also
2
5(n—5—2)—n+35+2<m —H,
2 2
it k> 3. ,
Ifnisoddandnz15,then5(n—5—2)—n+35+2<{%J — 7forall k > 3.

The following remark is summing up the observations above.

Remark 2.1 Let G be a graph of order n and minimum degree 6. It is

2
{%J _{%J for all even n,
and § < [n/2] —2.
nl?_|n Il oddn < 15
d(n—9—2)+max{0,30 —n+2} < {2J {2J for all odd n <
and 6 < |n/2| — 3.
{%JZ -7 for oddn > 15
and 0 < |n/2] - 3.
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3 Neighborhood of an edge

Definition 3.1 a) Let D be a digraph and let e = uv be an arbitrary arc in D.
We define

N¥(e) = (N*(u) UNT(0)) \ {u,0} and N (&) = (N () UN" (0)) \ {u,v}.

Furthermore we define £ = £4(D) = min{|N*(e)| : e is an arc in D},
Ev =E&n(D) = min{|N~(e)| : e is an arc in D} and

v = &n(D) = min{&y, Ey )

We call £y the minimum restricted arc-degree of D.
b) Let G be a graph and let e = uv be an arbitrary edge in G.
We define

N(e) = (N(u) UN(v)) \ {u,v} and &y = En(G) = min{|N(e)| : e is an edge in G}.
We call £y the minimum restricted edge-degree of G.

Theorem 3.1 Let D be a strongly connected digraph of order n with arc-connectivity
A and minimum degree §. If

> dt@z vl (5] 1) +4

zeN*(e)

for each arc e = uv with d*(u),d*(v) < |n/2] — 1, and if

Y @zl (I5]-1)+s

zeEN~(e
for each arc e = wv with d~(u),d”(v) < [n/2| — 1, then A = 6.

Proof. Let S be an arbitrary A-cut and let X and Y denote the vertex sets of the
two components from G — .S such that |(X,Y)| = A. In the following we assume that
|X| < [n/2], because if | X| > |n/2] +1, then |Y| < |n/2] and we can work through
the following proof with Y instead of X and by using the second part of the condition
of the theorem. If | X| < 1, then we are done. Now let |X| > 2 and let X; C X be
the set of vertices incident with at least one arc of (X,Y") and X, = X \ X;.
Case 1: Let Xo = 0.

Thus, each vertex in X is incident to at least one arc in (X,Y). Let z be an arbitrary
vertex in X, then we obtain

§ < dt(z)=|N*(z)| = [N*(z) N X| + [N*(z) N Y]

<
< Y. INT@)NY[+[NT(@)nY] < (X, V)],
ve(Nt(z)NX)

and thus A = 6.
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Case 2: Let Xy # 0.

Subcase 2.1: There exists no arc in Xj.
If v is an arbitrary vertex in Xy, then each out-neighbor neighbor of v lies in Xj.
Hence we deduce that

A=|(X, V)] > |X| > [NT(v)] > 6,

and thus A = 4.

Subcase 2.2: There exists at least one arc in Xj.
Let e = uv be an arbitrary arc in Xy. By the definition of the sets X and X,, we
have dt(u),d*(v) < |X| -1 < |n/2] — 1. Using |[N*(z) N X| < [n/2] — 1 for each
vertex © € X and the hypothesis for Nt (e), we conclude that

A=(X, )] > > (fr > INT(z)n X]|
zeN*(e zEN*(e)
_ (bJ -1) sl ([5]-1)
> 4,
and thus \ = 6.
Since we have discussed all possible cases, the proof is complete. O

Corollary 3.1 Let G be a connected graph of order n with edge-connectivity A and
minimum degree §. If

S d() > |N( )|Q§J—1)+5,

z€N((e)

for each edge e = wv with d(u),d(v) < [n/2] —1 then A = 6.

Corollary 3.2 Let D be a strongly connected digraph of order n with minimum
degree 6 and arc-connectivity \. If

max{d*(w), d"(0)} 2 | 5| ond max(a (@), a- @)} 2 |5
for each arc uwv, then A = 4.

Corollary 3.3 (Hellwig, Volkmann [8] 2005) Let G be a connected graph of or-
der n with minimum degree § and edge-connectivity \. If for each edge e there exists
at least one vertex v incident with e such that

aw 2 3],

then A = 90.
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Corollary 3.4 Let D be a (strongly) connected (di)graph of order n with restricted
minimum edge(arc)-degree &y, edge(arc)-connectivity X\ and degree sequence d; >
dy> .. >dy = 6. If

39 n
D dngii > En Qﬂ - 1) +9,
i=1

then A = 6.

Inspired by this corollary we present an extension of Theorem 1.2. In order to
prove this extension we use the following lemma.

Lemma 3.1 Let D be a strongly connected digraph with minimum degree 0, arc-
connectivity A and minimum restricted arc-degree Ey. If X < 9, then there exist two
disjoint vertex sets X andY with XUY = V(D), |(X,Y)| = X and |X|,|Y| > En+2.

Proof. Let X and Y be two disjoint vertex sets with XUY = V(D) and |(X,Y)| = \.
We define Xy C X as the set of vertices, which do not have an out-neighbor in Y. If
there does not exist an arc with both endpoints in X, then A = ¢, a contradiction
(cf. the proof of Theorem 3.1). Hence let e = uv be an arbitrary arc in Xj. Since
N*(e) C X, u,v ¢ N*(e) and |[NT(e)| > &n, we obtain the desired result that

|X] > &n + 2.

Similarly one can show that |Y| > &y + 2. a

As a direct consequence of Lemma 3.1 we obtain the following generalization of
Chartrand’s [3] classical result that A = ¢ when ¢ > [n/2].

Corollary 3.5 Let D be a (strongly) connected (di)graph of order n with minimum
restricted edge(arc)-degree En and edge(arc)-connectivity X. If Ey > [n/2] — 1, then
A=0.

It is easy to see that the following theorem generalizes Theorem 1.2, since {y+2 >

d.

Theorem 3.2 Let D be a digraph of order n with degree sequence dy > do > ... >
d, = 6 and arc-connectivity \. If

2k

> dpyio; > kn -3

i=1
for some k with 2 < k < &y + 2, then A = 6.

Proof. Suppose to the contrary that A < §. Then there exist by Lemma 3.1 disjoint
vertex sets X and YV with X UY = V(D), [(X,Y)| = X and |X|,[Y] > & + 2.
Now let S C X, T C Y be two vertex sets of cardinality k& with 2 < k < &y + 2.
Furthermore, choose S and T such that the number of arcs of (X,Y") incident with
the vertices in S and 7" is minimum.
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ey +2—-(0-1)+1<k <&+ 2, then we conclude that

dod@) < Yo d(z) Sk(X|-1)+6—1—(En+2—k)
z€S €S

E)X|-1)+6-1-(0+1-k)

k|X| - 2.

IN

Similarly, we have
> d(z) < kY] -2.

zeT
If2<k<&&v+2-—(6—1), then we conclude that

dod(x) <Y df(z) <k(X|-1)=k|X| -k < k|X| -2
z€S z€S

and analogously
> d(z) < kY] —2.

zeT

Thus we obtain in both cases that
Zdnﬂ i <Y d(z) S k(X +|Y])—4=kn—4,
TzeSUT
which yields a contradiction to the hypothesis. a
Corollary 3.6 Let G be a graph of order n with degree sequence di > dy > ... >
d, = 6 and edge-connectivity \. If

2k

> dpyioi > kn -3

i=1
for some k with 2 < k < &y + 2, then A = 6.

The following theorem can be proved in an analog manner to the proof of Theorem
3.1.

Theorem 3.3 Let D be a strongly connected digraph of order n with arc-connectivity
A and minimum degree §. If

> ) zd)(

z€Nt(v) -

n
-1
5] )+6,

for each vertex v with d*(v) < [n/2] — 1, and if

> d@) 2 )

€N~ (v) -

n
—l -1
5] )+6,

for each vertex v with d~(v) < [n/2| — 1, then A = 6.
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Corollary 3.7 Let G be a connected graph of order n with edge-connectivity X and
minimum degree §. If

S d(x) > d(v) (EJ - 1) +0,

z€N(v)
for each vertex v with d(v) < |n/2] — 1, then A = 6.

Corollary 3.8 Let G be a connected graph of order n with edge-connectivity X and
minimum degree §. If

Y dz) > EJZ—2EJ + 144,

z€N (v)

for each vertex v, then A\ = 6.

4 Examples

The following example shows that Corollary 3.7 is independent of Theorem 1.1.
Furthermore, it shows that Theorem 2.2 is an improvement of Theorem 1.1, if n > 15
and ¢ < [n/2] — 2, respectively § < |n/2] — 3, if n is odd.

Example 4.1 Let H be the complete graph K,_, 1 with vertex set V(H) = {x1, 22,
ey Tp—po1}. If nois even, then n > 2p +4,n > 15,p > 2 and if n is odd, then
n > 2p+7,n > 15,p > 2. Let V(H) together with the additional vertices y,yi, Y2, -, Yp
be the vertex set of the graph G. Apart from the edges in H, there exist the edges yy;
and y;z; for alli=1,2,...,p,j =1,2,...,n —p—2. Then n(G) = n and §(G) = p.
The vertex y is the only vertex in V(G) of minimum degree, and the only vertex with
degree less or equal [n(G)/2] — 1. We observe that

> d@) = (G (n-4G)-1)

TEN(y)

3(G)(n — 8(G) — 2) + 8(G)

> (Q)(n(G) - 6(G) — 2) + max{0,36(G) — n(G) + 2}
and
Z( )d(x) = 0(G)(n(G) - 46(G)—1)

v

3(G)(ln(G)/2])
d(y) ([n(G)/2] = 1) +6(G).

Thus Corollary 3.7 and Theorem 2.2 imply that \(G) = §(G). But, since
> d@) = (&) (n(G)-4G)-1)

€N (y)
([n(G)/2] = 2)(In(G)/2] + 1)
[n(G)/2)* = [n(G)/2],

VANVAN
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if n is even, Theorem 1.1 does not show that \(G) = §(G) in this case.
Furthermore, it is

> d@) = (&) (n(G)-4G)-1)

€N (y)
([n(G)/2] = 3)(In(G)/2] +3)
ln(G)/2)* -7,

VANVAN

if n is odd with 6(G) = p < |n/2] — 3, and thus Theorem 1.1 does not show that
MG) = 6(G) in this case.

The following example shows that Corollary 3.6 is best possible in the sense that
Z?ﬁl dpy1-i > kn — 4 for some 2 < k < &y + 2 does not guarantee A = 6.

Example 4.2 Let H, and Hy be two disjoint copies of the complete graph K, with
p > 3. We define G as the disjoint union of Hy and H,. Furthermore there exist
p — 2 vertex disjoint edges with one endpoint in V(Hy) and one in V(H,). Then
n(G) = 2p, 6(G) =p — 1, N(G) < p— 2 < 3(G), Ex(G) =p— 2 and

2k 2(¢n (G)+2)

Z dnJrlfi = Z dn«l»lfi = (2p)p —4=kn—-4

i=1

i=1

for k =¢n(G) + 2.
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