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Abstract

If z is a vertex of a digraph D, then we denote by d*(x) and d~(z) the
outdegree and the indegree of x, respectively. The global irregularity of a
digraph D is defined by i,(D) = max{d" (z),d” (z)} —min{d" (y),d (y)}
over all vertices z and y of D (including z = y). If 4,(D) = 0, then D is
regular and if 4,(D) < 1, then D is almost regular.

A c-partite tournament is an orientation of a complete c-partite graph.
In 1998, Y. Guo showed, if every arc of a regular c-partite tournament is
contained in a directed cycle of length three, then every arc belongs to
a directed cycle of length n for each n € {4,5,...,c}. In this paper we
present the following generalization of Guo’s result for n > 6.

Let V1, Va, ..., V. be the partite sets of an almost regular c-partite
tournament. If ¢ > 6 and |V| = |Vz| = ... = |V,| > 2, then every arc of
D is contained in a directed cycle of length n for each n € {4,5,...,c}.

1. Terminology and introduction

In this paper all digraphs are finite without loops or multiple arcs. The vertex
set and arc set of a digraph D is denoted by V(D) and E(D), respectively. If xy
is an arc of a digraph D, then we write + — y and say x dominates y, and if X
and Y are two disjoint vertex sets or subdigraphs of D such that every vertex of X
dominates every vertex of Y, then we say that X dominates Y, denoted by X — Y.
Furthermore, X ~» Y denotes the fact that there is no arc leading from Y to X.
For the number of arcs from X to Y we write d(X,Y). If D is a digraph, then the
out-neighborhood N (x) = N¥(z) of a vertex x is the set of vertices dominated by
x, and the in-neighborhood N (x) = N~ (x) is the set of vertices dominating z. The
numbers df(z) = d*(z) = |[N*(z)| and dj(z) = d~(x) = |[N~(x)| are called the
outdegree and indegree of x, respectively. For a vertex set X of D, we define D[X] as
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the subdigraph induced by X. If we speak of a cycle, then we mean a directed cycle,
and a cycle of length m is called an m-cycle. If we replace in a digraph D every arc
2y by yz, then we call the resulting digraph the converse of D, denoted by D71

There are several measures of how much a digraph differs from being regular. In
[7], Yeo defines the global irreqularity of a digraph D by

ig(D) = max{d"(z),d" (z)} — min{d" (y),d" (y)}

over all vertices z and y of D (including = = y). If iy(D) = 0, then D is regular and
if i;(D) < 1, then D is called almost regular.

A c-partite or multipartite tournament is an orientation of a complete c-partite
graph. A tournamentis a c-partite tournament with exactly c vertices. If Vi, V5, ..., V,
are the partite sets of a c-partite tournament D and the vertex x of D belongs to
the partite set V;, then we define V(z) = V.

It is very easy to see that every arc of a regular tournament belongs to a 3-cycle.
The next example shows that this is not valid for regular multipartite tournaments
in general.

Example 1.1 Let C,C" and C” be three induced cycles of length 4 such that
C — " — " — C. The resulting 6-partite tournament D; is 5-regular, but
no arc of the three cycles C,C’, and C"” is contained in a 3-cycle.

Let H, H,, and H be three copies of D; such that that H — H; — Hy — H.
The resulting 18-partite partite tournament is 17-regular, but no arc of the cycles
corresponding to the cycles C,C’, and C” is contained in a 3-cycle.

If we continue this process, we arrive at regular c-partite tournaments with arbi-
trary large ¢ which contain arcs that do not belong to any 3-cycle.

However, recently the author [5] showed that every arc of a regular c-partite tour-
nament belongs to a 4-cycle, when ¢ > 6. We even proved the following more general
result.

Theorem 1.2 (Volkmann [5]) Let V4, V4, ..., V, be the partite sets of an almost
regular c-partite tournament D. If |[Vi| = |V3| = ... = |V.] = r and ¢ > 6, then every
arc of D is contained in a 4-cycle.

The condition ¢ > 6 in Theorem 1.2 is in the following sense best possible. There
exist 4- and 5-partite regular tournaments with » > 2 which contain arcs that do not

belong to any 4-cycle.

In 1998, Y. Guo [2] proved the following generalization of Alspach’s classical re-
sult [1] that every regular tournament is arc pancyclic.

Theorem 1.3 (Guo [2]) Let D be a regular c-partite tournament with ¢ > 3.
If every arc of D is contained in a 3-cycle, then every arc of D is contained in an
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n-cycle for each n € {4,5,...,c}.

Using Theorem 1.2 as the basis of induction, we present in this paper the fol-
lowing generalization of Theorem 1.3 for ¢ > 6. If D is an almost regular c-partite
tournament with the partite sets Vi, Va,..., V. such that [Vi| = |Vo| = ... = |V.| > 2
and ¢ > 6, then every arc of D is contained in an n-cycle for each n € {4,5,...,c}.
This result is also a supplement to a theorem of Jacobson [3], which states that in an
almost regular tournament with ¢ > 7 vertices, every arc is contained in an n-cycle
for each n € {4,5,...,c}.

2. Main results
If D is a regular c-partite tournament with the partite sets V4, Vs, ..., V., then

Vil = Vol = ... = |V = [V(D)|/c = r and d*(z) = d~(x) = r(c — 1)/2 for every
vertex  of D. The next lemma is immediate.

Lemma 2.1 If D is an almost regular c-partite tournament with the partite sets
Vi, Va, ..., Ve such that |Vi| = |Va] = ... =|V,| = r, then
c—1)r+1

CoV o), iy <

for every vertex x of D.

It may be noted that an almost regular c-partite tournament with the partite sets
Vi, Va, ..., Vo such that |Vi| = |Va| = ... = |V.| = r is regular if and only if ¢ is odd
or ¢ and r are even.

Theorem 2.2 Let D be an almost regular c-partite tournament with the partite
sets V1, Va, ..., Ve such that |Vi| = |Va| = ... = |V =r > 2. If ¢ > 6, then every arc
of D is contained in an n-cycle for each n € {4,5,...,c}.

Proof. We prove the theorem by induction on n. For n = 4 the result follows from
Theorems 1.2. Now let e be an arbitrary arc of D and assume that e is contained
in an n-cycle C' = a,aqas...a,_1a, with e = a,a; and 4 < n < ¢. Suppose that
€ = ayay is not contained in any (n + 1)-cycle.

Firstly, we observe that N*(v) — V(C) # 0 for each v € V(C) = {a1, as, ..., a,},
because otherwise Lemma 2.1 yields the contradiction

c—1)r—1

n= V()| > d(w) +2>

Analogously, one can show that N~ (v) — V(C) # 0 for each v € V/(C).
Next let S be the set of vertices that belong to partite sets not represented on C'
and define
X={zeSIC—z}, Y={yeSly—C}L
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Assume that X # () and let x € X. If there is a vertex w € N~ (a,,) — V(C) such that
x — w, then a,aias . ..a, szwa, is an (n 4+ 1)-cycle through a,a1, a contradiction.
If (N~ (an) =V(C)) — =, then [N~ (z)| = [N~ (an) = V(O)|+|V(C)| = [N~ (an)|+2,
a contradiction to the hypothesis that i,(D) < 1. If there exists a vertex b €
(N~ (an) — V(C)) such that V(b) = V(x), then b is adjacent with all vertices of
C. In the case that N=(b) N V(C) # 0, let k = maxj<;<n—1{ila; — b}. Then
apay ... apbags1 ... apn is an (n 4+ 1)-cycle through a,as, a contradiction. It remains
the case that N=(b) N V(C') = 0. If there is a vertex u € (N~ (b) — V(C)) = N~ (b)
such that * — w, then aj,aias...a,_szuba, is an (n + 1)-cycle through a,a;, a
contradiction. Otherwise, N~ (b) — z, and we arrive at the contradiction d~(z) >
d=(b)+|V(C)|. Altogether, we have seen that X # () is not possible, and analogously
we find that Y # 0 is impossible. Consequently, from now on we shall assume that
X=Y=0.

By the definition of S, every vertex of V(C) is adjacent to every vertex of S, and
from our assumption n < ¢, we deduce that S # @. Now we distinguish different
cases.

Case 1. There exists a vertex v € S with v — a,. Since Y = (), there
is a vertex a; € V(C) such that a; — v. If k = maxj<i<p—1{ila; — v}, then
ApQ1 . .. ARUGELY - . . Gy 1s an (n 4+ 1)-cycle through a,aq, a contradiction. This implies
a, — S.

Case 2. There exists a vertex v € S with a; — v. Since X = (), there
is a vertex a; € V(C) such that v — a;. If k = ming<;<,—1{ilv — a;}, then
ApQ1 . .. Ak_10a . . . Gy is an (n+ 1)-cycle through a,a;, a contradiction. This implies
S — aj.

Case 3. There exists a vertex v € S such that v — a,_;. If there is a vertex
a; € V(C) with 2 < i < n — 2 such that a; — v, then we obtain as above an
(n 4 1)-cycle through a,aq, a contradiction. Thus, we investigate now the case that
v — {ai,az,...,a,_1}. Because of S — a1, we note that every vertex of N*(ay)
is adjacent to v. If there is a vertex © € (N*(a;) — V(C)) such that © — v, then
a,0120a30y . . . ay is an (n + 1)-cycle through a,a;, a contradiction. Therefore we
assume now that v — (N*(a;) — V(C)). This leads to d*(v) > d*(a1) + 1, and
thus, because of i,(D) < 1, it follows that N*(v) = N*(a;) U {a;} and ay —
{ag,as,...,a,_1}. This is a contradiction, when D is regular.

It remains the case that D is not regular, and thus ¢ even and r > 3 odd. Now let
H=N*%(a1)-V(C),Q=N"(v)—{a,},and R=V (D) — (HUQUV(v) UV (C)).
With respect to Lemma 2.1, we see that

|R|Scr_{%_(n_2)+w

—1+r+ n} =0.
If there is an arc xas with @ € H, then a,a1xaza3. .. a, is an (n + 1)-cycle through
the arc a,a;, a contradiction.

Subcase 3.1. Let n > 5. If there is an arc xy with * € H and y € @, then
A1 TYVA4as . . . Ay is an (n + 1)-cycle, a contradiction. Consequently, it remains the
case that (Q U {ai,as,v}) ~ H. Hence, since |R| = 0, for every € H, we conclude
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that d(z, V(D) — H) < r+n — 3 and thus, it follows from Lemma 2.1

-—1)r—1
dpy(v) = d* (x) — d(z, V(D) — H) > % —r—n+3.
This implies
|H|([H| -1
=D > Bl = X di(@)
zeH
1) —1
> |H|{%—r—n+3}. (1)
The conditions d*(v) > d*(a1) + 1, a; — {as,as,...,a,_1}, and Lemma 2.1 yield
|H| =d™(a;) — (n—2) = ((71% —n + 2. Combining this with inequality (1), we
obtain
- —1Dr —1 c—1)r—1
|H|—1:%—n+1 22{%—r—7z+3}.

It is straightforward to verify that this inequality is equivalent with 2n > (¢—5)r+9.
Because of ¢ — 1 > n and r > 3, this leads to the contradiction ¢ < 4.

Subcase 3.2. Let n = 4. Because of ay — S, it holds SU {a;} € N*(ay). This
implies together with Lemma 2.1 that % >dt(as) > |1S|+1>(c—4)r+1,a
contradiction, when ¢ > 7. Therefore, it remains the case that ¢ = 6 and r > 3. Now
let ' = N~ (aq) —V(C) and L = N*(a3) — V(C). If there is a vertex w € F N L,
then agaiasasway is a 5-cycle through asaq, a contradiction. If there is an arc xy
with € L and y € F, then agaiazxryay is a 5-cycle, a contradiction. Consequently,
it remains the case that F N L = 0 and F ~ (L U {as,a4}). According to Lemma
2.1, we obtain

|L‘:|N+(a3)|,12%71:5T;37

and thus it follows for every x € F that

1
d(V(D)—F,x)§6r—|F|—|L|—2§%—|F\—§.

This leads to
5 —1

_ _ Tr 1
dppey(x) = d™(2) = d(V(D) = Fo) = = = T |Fl+ 5 = [F| =7

for every x € F. Hence, we conclude on the one hand that

|E(DIF)) = > dpipy (@) = |FI(IF| = 7).

el

On the other hand, since F' NS = (), the subdigraph D[F] is 3-partite, and the well
known Theorem of Turdn [4] yields

|B(D[F)) < 5|
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The last two inequalities imply r > 2|F|/3. Since |F| = [N~ (aq) = V(C)| > d~(a4) —
2, we deduce from Lemma 2.1 that

2F| _ 2/5r—1 5r
T>7>7< —2)25—

W ot

- 3 —3 2
Therefore, 2r < 5, a contradiction to r > 3.
Summarizing the investigations of Case 3, we see that there remains the case that
Ap—1 — S.
Case 4. There exists a vertex v € S such that a; — v. If we consider the
converse of D, then analogously to Case 3, it remains the case that S — as.

If C = ayaqas...a, and v € S, then the following three sets play an important
role in our investigations

H=N*(a) - V(C), F=N(a,)-V(C), Q=N (v)-V(C).

Summarizing the investigations in the Cases 1 - 4, we can assume in the following,
usually without saying so, that

{an-1,a,} — S = {a1,a0} ~ H (2)

Case 5. Let n = 4. Because of (2), we have ay — S, and thus SU{a;} C N*(ay).
This implies together with Lemma 2.1 % > d*(as) > |S] + 1, a contradiction,
when ¢ > 7 or |S| > 3r, when ¢ = 6. Therefore, it remains the case that ¢ = 6,
|S| = 2r, D[V(C)] is a tournament, and D[S] is a bipartite tournament.

Subcase 5.1. Assume that as — ay4. If a1 — a3 and v € S, then agaiazvasay is a
5-cycle through asaq, a contradiction. Let now a3 — a;. If there are vertices v € S
and z € H such that x — v, then a4a;zvasa4 is a 5-cycle, a contradiction. Otherwise,
we have S — H. If we choose v,w € S such that v — w, then N*(a;) = H U {as}
and N*(v) D H U {ay, a2, w}, a contradiction to i4(D) < 1.

Subcase 5.2. Assume that ay — ay. Firstly, let a; — az. If there are vertices
veSandxz € F=N"(ag) —V(C) such that v — z, then asaiazvzay is a 5-cycle, a
contradiction. Otherwise, we have FF — S. If we choose v, w € S such that v — w,
then we see that N~ (as) = FU{az} and N~ (w) 2 F U {as,a4,v}, a contradiction
to i4(D) < 1. In the remaining case that az — a4, it follows from Lemma 2.1

6r = [V(D)| > [H|+|F|+[S|+|V(C)| - |HNF|

5r7171+5r71
2

Tr+1—|HNF|

> —142r+4—|HNF|

Consequently, |HNF| > r+1 and thus, HNF' consists of at least two partite sets. If
we choose us, us € H N F such that uy — us, then C" = aga ususay is also a 4-cycle
through a4a;. Since uy — ay4, the cycle C’ fulfills the conditions of Subcase 5.1, and
we obtain similarly a contradiction.
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Altogether, we have shown in the meantime that every arc of D belongs to a
5-cycle.

Case 6. Let n > 5 and assume that there exists a vertex v € S such that
v — Gp_o. If there is a vertex a; € V(C) with 3 < i < n — 3 such that a; —
v, then we obtain, as in Case 1, an (n + 1)-cycle through a,a;, a contradiction.
Thus, we investigate now the case that v — {ai,as,...,a,—2}. If there is a vertex
x € H such that x — v, then a,a1zvazay .. .a, is an (n + 1)-cycle through a,as,
a contradiction. Therefore we assume now that v — H. This leads to d*(v) >

d*(a1), and thus, because of iy(D) < 1, it follows that a1 — {as,a3,...,an_1} or
a1 — {as,a3,..., 4,1} — {a;} for some a; € {as,as4,...,a,_1} and a; — a1 or
V(al) = V(Gj).

Subcase 6.1. Assume that ay — {ag,as,...,a,—1}. If there is a vertex x € H

such that  — a,, then a,aiasay...a,_jvxa, is an (n + 1)-cycle, a contradiction.
Therefore, we may assume now that a, — (H—V(a,)). If a;_1 — a, for 3 <i <n-—-1,
then a,aia;a;,1...a,_1va2a3 . .. a;_1a, is an (n + 1)-cycle, a contradiction. Hence,
it remains the case that a, — a;_1 or a;.1 € V(a,) for 2 < i < n—1. Let
{a1,az,...,a, 2} = AU B such that a, — A and B C V(a,). Then N*(a;) =
HU{ag,as,...,a,_1} and N*(a,) 2 AUSU(H — (V(a,) — (BU{a,}))). This leads
to

d*(a,) > |A| +|S| + |H| — (r = (|B| + 1)) = d"(a)) + |S| = r + 1. (3)
This yields a contradiction, when D is regular or |[S| > 2r. It remains the case
that D is not regular and |S| = r, and thus n = ¢ — 1, ¢ even and r > 3 odd.

Furthermore, we see that B = @) and so a, — {a1,4as,...,a, 2}. If we define R =
V(D) - (HUFUSUV(C)), then by Lemma 2.1, we find that
—1)r—1 —1)r—1
|R| Scr—{%—(n—2)+%—l+r+n}:0.

If there is an arc zy with z € H and y € F, then a,a1a4 . .. a,_1v2Yy0, is an (n+ 1)-
cycle, a contradiction. Consequently, it remains the case that (F U{a1, az, an,v}) ~
H. Hence, since |R| = 0, for every z € H, we conclude that d(x,V(D)—H) < r+c—5
and thus, it follows from Lemma 2.1

T () = d*(@) — dlav(D) — 1) > CTTL ey
This implies
VIUHLZD S o) = X iy (o)
> |H‘{%—T—c+5}. (4)

According to (3), we have d*(a,) > d*(a;) + 1 and thus, it follows from Lemma 2.1
that |H| = d*(a;) — (n—2) = % — ¢+ 3. Combining this with inequality (4),
we obtain

Dr

“1)r—1
|H‘,1:(67

— 2>2
9 c+22>

{%frfc+5}.
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The last inequality is equivalent with 2¢ > (¢—5)r+ 15. Because of r > 3, this leads
to the contradiction 2¢ > 3c.

Subcase 6.2. Assume that there exists exactly one j € {as,a4,...,a,_1} such
that a; — ({as,as,...,an—1} —{a;}) and a; — a1 or V(a;) = V(a1). This condition
implies d*(v) > d*(a;) + 1. Therefore, it remains the case that D is not regular, ¢
even and r > 3. If we define R = V(D) — (HU QU V(v) UV(C)), then it follows
from Q@ = N~ (v) — {an_1,a,} and Lemma 2.1

(¢ 12)7’ 1 -3+ (¢ 12)r 1

Subcase 6.2.1. Let n > 6. If there is an arc zy with z € H and y € @, then
(p@1TYVA4as . . . Gy 18 an (n + 1)-cycle, a contradiction. Hence, it remains the case
that (Q U {a,as,v}) ~ H. However, in this situation we obtain, analogously to
Case 3, the contradiction ¢ < 6.

Subcase 6.2.2. Let n = 5 and assume that a; — {a2,a3} and a4y — a; or
V(ay) = V(ay). If there is a vertex € H such that x — as, then asa;azagvxas is a 6-
cycle, a contradiction. Therefore, we may assume that as — (H—V (as)). If as — as,
then asajaszaqvasas is a 6-cycle, a contradiction. Hence, it remains the case that
as — ag or V(ag) = V(as). Let {a1,a2} = AU B such that a5 — A and B C V(as).
Then N*(a;) = H U {as, a3} and Nt(as) 2 AUSU (H — (V(as) — (B U {as}))).
This leads to

d*(as) 2 [A]+]S] + |H| = (r = (IB| + 1)) = d"(a1) + [S| = r + 1. (5)

|R|§cr7{ 72+r+n}:0.

This yields a contradiction, when |S| > 2r. It remains the case that D is not regular
and |S| = r, and thus ¢ = 6 and r > 3 odd. Furthermore, D[V (C)] is a tournament
and so a5 — {a1, a2} and a4 — a;. In the case that as — as, we deduce analogously
to (5) the contradiction d*(as) > d*(a;) + 2. Hence, we assume that a3 — as. In
addition, we find that d*(v) > d*(a1)+1. If we define R = V(D)—(HUQUSUV (C)),
then it follows from @ = N~ (v) — {a4, a5} and Lemma 2.1

or —1 or

-1
|R|§6r7{ 5 -2+ 5 72+r+5}:0.

If there is an arc xy with x € H and y € @, then asa;xyvasas is a 6-cycle, a
contradiction. Hence, it remains the case that (Q U {a1, as, a,,v}) ~ H. However,
in this situation we obtain analogously to Case 3 a contradiction.

Subcase 6.2.3. Let n = 5 and assume that a; — {a2,a4} and a3 — a; or
V(az) = V(ay). If there exist vertices z,y € H such that  — y and y — as, then
asajaqvryas is a 6-cycle, a contradiction. Let now W = H — V(as) and U = {z €
Wldp g (z) = 0}. It follows that U is a subset of one partite set and a5 — (W —U).
Since |U| < r—1, we note that [W —U| > 2= —2-2(r —1) = =2 > 0. If a3 — as,
then asajaqvasasas is a 6-cycle, a contradiction. Hence, it remains the case that
as — ag or V(ag) = V(as). Let {a1,a3} = AU B such that as — A and B C V(as).
Then N*(a;) = HU{ag,a4} and N*(as) 2 AUSU(H — ((V(as) — (BU{as}))Ul))
and therefore

d*(as) 2 [Al +[S| + [H| = (r = (1Bl + 1)) = [U| 2 d"(a1) + [S] = 2r + 2. (6)
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This yields a contradiction, when |S| > 2r and thus for ¢ > 7. It remains the case
that |S| = r, and thus ¢ = 6 and r > 3 odd. Furthermore, D[V (C')] is a tournament
and so as — {a1,a3} and a3 — a1. If we define U = (N*(a1) N N~ (as)) — V(C),
then U’ C U. Let now J = N~ (as) — (U'UV(C)) and G = N*(a1) — (U' U{ag, as}).
If there is an arc zy with € G and y € J U U’, then asa;aqvzyas is a 6-cycle, a
contradiction. Hence, it remains that (J U U’ U {ay, az,as,v}) ~ G.

Suppose next that there exist vertices b € G and w € S such that b — w. If w —
as, then asa;bwasagas is a 6-cycle, a contradiction. So, we can assume that ag — w.
If there is a vertex € (N~ (a5) — V(C)) such that w — x, then asa;azazwzas is a 6-
cycle, a contradiction. Thus, we can assume that (N~ (a5) —V(C)) — w. Altogether,
we see that N~ (as) C (N~ (as) — V(C))U{az,a4} and N~ (w) 2 (N~ (as) —V(C))U
{as, a4, as, b} and this yields the contradiction d~(w) > d~(as) + 2. Consequently, it
remains the case that S — G. If we define R = V(D) — (HUJUSUV(C)), then,
because of |J| > [N~ (as)| — |U'| =2 > 271 — r — 1, we obtain

or — 1 5r —1
r 72+r

\R\§6r7{ 77’71+7’+5}=r71.

Hence, for each z € G, we conclude that d(z, V(D) — G) < r+1 and thus it follows

r—1 r—
By () = d*(@) (@, V(D) - G) > L p 1 222
This implies
G|(|G| -1 3
91 5 i - 5 a5 ;
zeG

In view of Lemma 2.1, we have |G| = d*(a;) — |U'| -2 < d*(a;) -2 < ¥ —2 = 53,
Combining this with inequality (7), we obtain 5% —1 > |G| -1 > 3r —3, and thU.b
the contradiction r < 1.

Summarizing the investigations of Case 6, we see that there remains the case that
Ap—o — S.

Case 7. Let n = 5. If we consider the cycle C~! = ajasasaszasa; = bsbibabsbybs
in the converse D~! of D, then {b;,b5} — S — {b1, bs, b3}. Since this is exactly the
situation of Case 6, there exists in D~! a 6-cycle, containing the arc bsb; = a1as, and
hence there exists in D a 6-cycle through asa;.

Case 8. Let n > 6. Assume that there exists a vertex v € S such that a3 — v.
If we consider the converse of D, then in view of Case 6, it remains the case that
S — as.

Case 9. Let ¢ > n > 6. If there exist vertices v € S and x € H such that x — v,
then a,aizvazay. . .a, is an (n+ 1)-cycle, a contradiction. Consequently, we assume
now that S — H. Let v € S. If there exists a vertex « € H such that z — a,, then
(@102 . . . Gp_2VTa, 18 an (n + 1)-cycle, a contradiction. Hence, it remains the case
that (S U {a1,a2,a,})~ H.

If a7 — a; and a;_1 — a, for i € {3,4,...,n — 1}, then the (n + 1)-cycle
Ap1Q; . . . Qp_1VAg . . . a;_1G, yields a contradiction. Thus, if a; — a; for an i €
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{3,4,...,n — 1}, then we may assume that a, — a;_; or V(a;) = V(a,). Let
N = {a;,, Gy, - . ., a;, } be exactly the subset of V(C') — {as} with the property that
a; — N. Then we define AU B = {a;,_1,ai,—1,--., a1} such that a, — A
and B C V(a,). This definition and the fact that a, — (H — V(a,)) lead to
N*(a1) ={as} UNUH and N*(a,) 2 {a1} UAUSU(H — (V(a,) — (BU{a,}))).
This implies

d+(an)

%

|A| + ST+ 1+ [H| = (r—(|B]+1))
|[A| +|B|+2+ S| —r+dt(a;)) — |N| -1
d*(ag) +|S) —r+ 1.

This yields a contradiction, when D is regular or ¢ > n + 2. It remains the case
that D is not regular and |S| = r, and thus ¢ = n+ 1 > 8 even and r > 3 odd.
Furthermore, D[V (C)] is a tournament, B = (J, and it follows by Lemma 2.1
(c=1)r+1
P (®)
Subcase 9.1. There exists a vertex v € S such that v — a,_3. If there is a vertex
a; € V(C) with 4 < ¢ < n — 4 such that a¢; — v, then we obtain, as in Case 1,
an (n 4+ 1)-cycle through a,aq, a contradiction. Thus, we investigate now the case
that v — {a1,a9,...,a,_3}. T R=V(D)— (HUQUSUV(C)), then because of
|H| = [N*(a1) = V(C)| 2 d*(a1) = (n—2) and |Q] = [N~ (v) = V(C)| = d"(v) = 3,
we see with respect to Lemma 2.1 that

(c—1)r—1
2

dt(a,) =d"(a)) +1=

—1)r—1
|R|§cr7{ f(n72)+%73+r+n}:2.
If there is an arc xy with x € H and y € @, then a,a1xyvasas . . . a, is an (n+1)-cycle,
a contradiction. Consequently, it remains the case that (Q U S U {a1,a2,a,}) ~ H.
Hence, since |R| < 2, for every x € H, we conclude that d(z,V(D)—H) < n—3+2 =

¢ — 2 and thus, it follows from Lemma 2.1

Bhun(@) = &) — d(o, V(D) ~ Hy > Loy f2 S
This implies
MU= S | (o)) = X djgy (o) > |H|{% o

zeH
Since d*(v) > |H|+ (n—3) = |H| 4+ ¢—4 and d*(v) < d*(a1) + 1, we deduce from
Lemma 2.1 and (8)

(c—Dr-1

|H| < d*(v) — (n—3) <d"(a)) —c+5 = —c+5.

Combining this with inequality (9), we obtain

(c=Dr—1

5 —c+4>|H|-1>(¢c—1)r+3—2c
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This inequality is equivalent with 2¢ > (¢ — 1)r — 1. Since r > 3, this leads to the
contradiction ¢ < 4.

Subcase 9.2. Finally, we assume that a,,_3 — S. If there is a vertex w € H N F,
then anaias . ..a, svway is a (n+ 1)-cycle, a contradiction. Now let HNF = (), and
let R=V(D)—(HUFUSUV(C)). We have seen above that |H| = d"(a;) —|N|—1
and [N*(a,) NV(C)| > |N| + 1. Hence [N~ (a,) NV(C)|] < n—|N|—2, and thus

|F| = |N"(a,) = V(C)| > d (an) — (n— 2 —|N]). It follows from Lemma 2.1 that
—Dr—1 —1)r—1
|R|§cr7{7(c 2)’" 7|N|71+%7n+2+|N\+r+n}:O.

According to (8), we have |H| = % — |N|, and therefore, (8) and |R| = 0 show
that |F| = d (an) — (n —2 = |N|) = % — ¢+ |N|. If there is an arc zy with
x € H and y € F, then a,a1as . .. an,_svzya, is an (n + 1)-cycle, a contradiction. If
there is an arc uy with u € S and y € F, then a,a1as . . . a,_suya, is an (n+1)-cycle,
a contradiction. Consequently, it remains the case that (F'U S U {a1,as2,a,}) ~ H
and F ~ ({a1,a,} USUH).

Subcase 9.2.1. Assume that |[N| > 5. Since |R| = 0, for every x € H, we conclude
that d(z, V(D) — H) < n — 3 = ¢ — 4 and thus, it follows from Lemma 2.1

c—1)r—1 c—1r+7
dg[H](:r) =d"(z) —d(z,V(D) - H) > % et 4= % -
This implies
[HI(H] = 1) =147
f |_ZdD[H] >|H|{f—c}.

zeH

Because of |H| = % —|N| < ((71% — £, we obtain

-—1)r—3 g
%—%—12 |H| 1> (c—1)r +7— 2.
This inequality is equivalent with 3¢ > (¢ — 1)r 4+ 19. The condition r > 3 leads to
the contradiction 0 > 16.
Subcase 9.2.2. Assume that |N| <
conclude that d(V(D) — F,y) <n—2=

— 1. Since |R| = 0, for every y € F, we
— 3 and thus, it follows from Lemma 2.1

<
2

Do) = d~() — d(V(D) — Fry) » EZ DLy (C2UPED
This implies
L= > mo) = 3 dpt) 2 17 €055 o)

yeFr
Because of |F| = % —c+|N| < % — §, we obtain

-—1 g
w—%—12|ﬂ—12(0—1)r+5—20.
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This inequality is equivalent with 3¢ > (¢ — 1)r + 9. The condition r > 3 leads to
the contradiction 0 > 6. This completes the proof of the theorem. O

From the theorem of Alspach [1] and Theorem 2.2 we can immediately deduce
the following result.

Corollary 2.3 If D is a regular c-partite tournament with ¢ > 6, then every arc of
D is contained in an n-cycle for each n € {4,5,...,c}.

Example 2.4 Let A7 = {u,us,us}, Ay = {v,v9,v3}, A3 = {w,we, w3}, and
Ay = {1, 22,23} be the partite sets of a 4-partite tournament such that v — v —
Uy — (A4U{’03}), (A4U{’LL3}) — V2 — U — (A4U{U3})7 (A4U{U3}) — UV — A3 — U,
UQ—>A3—>U2,UQ—>UQ,U3HA3—>U3—>A4—>U3—>U3,M1H.Z’1—>’LU2H.Z’2—>
w3 — T3 — Wy, To — wi, T3 — ws, and x3 — wy (see Figure 1). The resulting
4-partite tournament is almost regular, every arc belongs to a 3-cycle, however, the
arc uv is not contained in a 4-cycle.

U2

N\
WY
W% S— ™,

U3

Figure 1: An almost regular 4-partite tournament with the property
that every arc belongs to a 3-cycle, but the arc uv is not
contained in a 4-cycle

Remark 2.5 Example 2.4 shows that it is not possible to generalize Guo’s Theorem
1.3 to almost regular 4-partite tournaments with the partite sets Vi, V5, V3, Vy such
that [V1| = |Va| = |V3| = |V4] = r is odd.

Remark 2.6 In [6], the author has constructed an almost regular 6-partite tour-
nament D with |Vi| = |Va| = |V3| = 2, V4| = |Vs5] = 3, and |Vs| = 4 which contains
an arc that does not belong to any 4-cycle. This example shows that Theorem 2.2
is not valid for almost regular c-partite (¢ > 6) tournaments in general.
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