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Optimal Average Case Strategy for Looking around a Corner
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Abstract

A robot is free to move in a non-convex polygonal re-
gion, starting against an edge on the boundary. Ahead
of the robot at one unit of distance is a corner, i.e. a
reflex vertex (see Figure 1). The angle θ is unknown
to the robot. The robot’s task is to look at the region
around the corner, which it initially cannot see.
We let ϕ = π − θ. If ϕ ≥ π/2, the robot is best off

moving straight to the vertex. However, if ϕ is close to
0, much shorter paths exist, making this solution sub-
optimal. Therefore we ask: What is the best path for
the robot to follow?
In this paper, we look into the problem of finding

an optimal average-case strategy under a homogeneous
probability distribution for ϕ. The average-case perfor-
mance of a strategy is measured by its average cost, de-
fined as the expected value of the strategy’s competitive
function. Given a value for ϕ, the competitive function
of a strategy gives the ratio of the distance the robot
travels to look around the corner (as prescribed by the
strategy) to the shortest distance it must travel to do
so.
We give strong evidence that an optimal average-case

strategy exists and achieves an average cost of ∼ 1.189.

1 Introduction

The corner exploration problem was first examined by
Icking, Klein and Ma in [7]. The authors measure the
performance of a strategy by its competitive factor, de-
fined as the maximum value attained by its compet-
itive function (lower is better). Under this measure,
they show there exists an optimal strategy character-
ized as the solution of a certain differential equation.
This strategy’s competitive function is in fact identi-
cally equal to a constant c ≈ 1.21218. Thus both its
competitive factor and its average cost are equal to c.
Although this strategy’s competitive factor is optimal,
strategies with better average costs exist.
The problem of finding an optimal average-case strat-

egy reduces to that of finding a curve which minimizes
an integral giving the average cost. The appropriate
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tool for handling such problems is the calculus of vari-
ations, on which we state a couple of useful theorems
in the appendix. This said, formal proofs of some of
our results would require complex techniques from that
field. For the problem at hand, we obtain near optimal
results using discretizations of the instance.
After giving discretizations of the problem, we ap-

ply some techniques from the calculus of variations to
produce a strong candidate for an optimal average-case
strategy. The average cost of this strategy is ∼ 1.189.
This is better than the average cost of the strategy de-
scribed in [7], which is ∼ 1.21218 as we noted earlier.
However, we should state that the competitive factor of
our strategy is worse: ∼ 1.3136 for ours vs. ∼ 1.21218
for [7].
Unfortunately, we do not have a closed-form for our

strategy, so we propose a closed-form approximation
whose average cost exceeds ours by less than 0.202%.

2 Competitive Strategies

2.1 Preliminaries

We need some of the early definitions and results in [7],
which we reproduce here.

Figure 1: The robot’s predicament.

We start by introducing a coordinate system with the
origin located at the corner, and with the robot’s start-
ing position, W , one unit away from the origin. We let
ϕ be the angle between the invisible wall and the pro-
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longation of the visible wall, M(π). The distance from
W to M(ϕ) is denoted by a(ϕ). We observe that

a (ϕ) =

{
sin(ϕ) : ϕ < π

2

1 : ϕ ≥ π
2

(1)

A strategy is a curve which starts at the point W and
finishes on the prolongation of the visible wall, M(π).
For any possible value of ϕ, there is a point on such a
curve from which the other wall is visible, the intersec-
tion of the curve with M(ϕ).
We let AS(ϕ) be the length of the path described by

strategy S between W and the first point of intersection
with M(ϕ). The competitive function, fS(ϕ), of S is the
ratio of AS(ϕ) to a(ϕ) and its competitive factor, cS , is
the supremum of the values taken by fS(ϕ) in (0, π].

fS(ϕ) =
AS(ϕ)

a(ϕ)
, cS = sup

ϕ∈(0,π]

fS(ϕ)

We say that S is competitive if cS < ∞. If a strategy
reaches M(ϕ′) for the first time, turns back and meets
M(ϕ′) again, this part of the path may be cut off and
replaced by a radial line segment, giving a better strat-
egy. Strategies with radial line segments can then be
approximated arbitrarily closely by strategies that can
be described in polar coordinates.

Definition 1 ([7]) A curve S = (ϕ, s(ϕ)), where s is
defined on [0, π], is called a strategy for the corner prob-
lem if the following holds.

(i) s is a continuous function on an interval [0, σ],
where σ ≤ π.

(ii) On the open interval (0, σ), s is piecewise continu-
ously differentiable and s′(0) exists (possibly ±∞).

(iii) s is rectifiable, i.e. s has finite arc length.1

(iv) s(0) = 1.

(v) If s(σ) �= 0 then σ = π.

The last property says that the strategy must end some-
where on M(π), possibly the corner. By agreeing that
s(ϕ) = 0 for σ < ϕ ≤ π, we can regard s(ϕ) as defined
on all of [0, π].

Lemma 1 ([7]) Let S = (ϕ, s(ϕ)) be a strategy. Then
S is competitive iff |s′(0)| < ∞. The estimation

cS ≥
√

s′2(0) + 1

holds for the competitive factor.

1This criterion is not listed in [7], but it is assumed. Since
s′(σ) is not known to exist, it is necessary to require this.

Thus competitive strategies are piecewise continuously
differentiable in [0, π). Using the formula for arc length
in polar coordinates, we have

AS(ϕ) =

∫ ϕ

0

√
s2(t) + s′2(t) dt (2)

By the fundamental theorem of calculus, A′
S(ϕ) =√

s2(ϕ) + s′2(ϕ) on [0, π), and so AS is continuous
therein. Since s is rectifiable, AS(π) < ∞ so that AS is
bounded on [0, π]. By L’Hôpital’s rule,

lim
ϕ→0

fS(ϕ) = lim
ϕ→0

√
s2(ϕ) + s′2(ϕ)

cos(ϕ)

=
√

s′2(0) + 1

Defining fS(0) :=
√

s′2(0) + 1, fS is continuous on [0, π)
and bounded on [0, π]. In particular, fS is integrable on
[0, π] (this is given by Lebesgue’s criterion for Riemann-
integrability, see [1] pp. 171).

2.2 The Objective

We are interested in finding a competitive strategy S
which minimizes the average value taken by fS(ϕ) in
the interval [0, π]. More precisely, we wish to minimize
the expected value of the ratio of the distance traveled
before the corner is seen over the shortest path to the
line of sight:

E[fS ] =
1

π

∫ π

0

fS(ϕ) dϕ

=
1

π

∫ π

0

∫ ϕ

0

√
s2(t) + s′2(t)

a(ϕ)
dt dϕ (3)

which we define as the average cost of fS . Since fS
is integrable on [0, π], the above integral exists and is
finite.

Observation 1 If S = (ϕ, s(ϕ)) is an optimal strategy,
then s is non-increasing on [0, π]. Indeed, the robot is
always better off staying at the same radial distance from
the corner than getting farther from it.

3 A Discretization

As a first attempt to gain insight into the problem, we
look at a discretization of it. To this end, we start by
partitioning the interval [0, π] into n equal subintervals
(for simplicity, we choose n to be even), so that we get
partition points x0, . . . , xn with x0 = 0, xn = π and
xi+1 − xi = π

n for i = 0, . . . , n − 1. Putting θ = π
n ,

we will assume that the angle ϕ in the original problem
can only take values in {k θ : 1 ≤ k ≤ n} with equal
probability 1

n .
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Figure 2: Robot’s path in the discretization.

For non-negative values y0, . . . , yn, let P (y0, . . . , yn) de-
note the polygonal path which joins the polar points
(x0, y0), . . . , (xn, yn) in that order. The problem is then
to find values for y0, . . . , yn which minimize the aver-
age cost incurred by the strategy P (y0, . . . , yn). The
requirement that the robot starts one unit away from
the origin is worked in by demanding that y0 = 1.
Let Li(y0, . . . , yn) denote the ith segment of the path
P (y0, . . . , yn). The law of cosines gives us

|Li(y0, . . . , yn)|2 = y2i−1 + y2i − 2 cos(θ)yi−1yi

= (yi−1 − cos(θ)yi)
2 + sin2(θ)y2i

And so |Li(y0, . . . , yn)| may be expressed as the norm
of a vector

‖(yi−1 − cos(θ)yi, sin(θ)yi)‖ (4)

Notice that the expression above is convex in the ar-
guments y0, . . . , yn. For 1 ≤ k ≤ n, the robot travels
a distance of

∑k
i=1 |Li(y0, . . . , yn)| before it reaches the

ray kθ. Remembering (1), we see that the competitive
function, fS takes on values according to

fS(kθ) =

k∑
i=1

|Li(y0, . . . , yn)|
sin(kθ)

if 1 ≤ k ≤ n
2 and

fS(kθ) =

k∑
i=1

|Li(y0, . . . , yn)|

if n
2 + 1 ≤ k ≤ n. The average cost of the strategy

P (y0, . . . , yn) is thus given by

1

n

n
2∑

k=1

k∑
i=1

|Li(y0, . . . , yn)|
sin(kθ)

+

1

n

n∑
k=n

2 +1

k∑
i=1

|Li(y0, . . . , yn)|

Now, the convexity of (4) gives us the convexity of the
above expression and so the problem at hand is actually
a convex program. Using a numerical solver 2, we are
able to find solutions for n = 100, plotted below:
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Figure 3: Optimal discrete strategy for n = 100.

This plot suggests that an optimal continuous strategy
exists. The solutions for n = 1000 and n = 5000 further
support this hypothesis. Note that the solution does not
reach the corner as is the case with the strategy found in
[7]. Instead, it continually approaches the corner until
it reaches the ray π, at a distance of ∼ 0.067 from the
corner.

Observation 2 This discretization method suggests
that if H = (ϕ, h(ϕ)) is an optimal continuous strat-
egy, then h is differentiable at π and h′(π) = 0. To see
this, consider yn in relation to yn−1: once the robot has
reached the ray (n−1) θ, it is best off heading to the ray
n θ = π in the shortest possible path, which is the line
segment perpendicular to n θ. Thus yn = cos(θ) yn−1

and we expect the difference quotient

yn − yn−1

θ
=

(cos(θ)− 1)

θ
yn−1

to converge to h′(π) as θ approaches 0, if it converges
at all. Since

lim
θ→0

(cos(θ)− 1)

θ
= 0

2We used CVX, a package for specifying and solving convex
programs [6].
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and 0 ≤ yn−1 ≤ 1, we would have h′(π) = 0. It is actu-
ally possible to prove this rigorously with the techniques
of the calculus of variations. An argument along similar
lines, by considering yn and yn−1 in relation to yn−2,
gives h′′(π) = ∞.

4 A Continuous Solution

Our discretization has given us good evidence that an
optimal continuous strategy exists. We now explore this
possibility with more appropriate tools coming from the
calculus of variations. First however We start by consid-
ering yet another discretization which will reinforce our
evidence. We also derive an expression for the average
cost E in the form of a single integral.

Next, we apply the techniques of the calculus of varia-
tions to the problem of minimizing E. Namely, we solve
the Euler-Lagrange equation associated with E. In gen-
eral, proving that a given solution to the Euler-Lagrange
equation is a minimizer for a variational problem is diffi-
cult and attempting to do so would lead us too far deep
into the theory of the calculus of variations. Instead, we
will be content with the near perfect match we observe
between our candidate solution and the discrete optimal
average-case solutions.

4.1 The Average Cost as a Single Integral

In view of (3), the expression for the average cost is

E[fS ] =
1

π

∫ π

0

fS(ϕ) dϕ

=
1

π

∫ π

0

∫ ϕ

0

√
s(t)2 + s′2(t)

a(ϕ)
dt dϕ (5)

Before continuing, we define a function b:

b (ϕ) =

{
ln
(

1−cos(ϕ)
sin(ϕ)

)
: ϕ < π

2

ϕ− π
2 : ϕ ≥ π

2

(6)

Note that b(ϕ) is continuous and that b′(ϕ) = 1
a(ϕ) on

(0, π], i.e. b is an antiderivative for the reciprocal of a.
Using Fubini’s theorem (see [3] pp. 64) we may change
the order of integration in (5):

1

π

∫ π

0

∫ π

t

√
s(t)2 + s′2(t)

a(ϕ)
dϕ dt

Finally, invoking the fundamental theorem of calculus,
this gives

E[fS ] =

∫ π

0

√
s(t)2 + s′2(t)

(
π
2 − b(t)

)
π

dt (7)

4.1.1 Another Discretization

The above derivation suggests we try to approximate
the average cost E by a Riemann sum. Suppose S =
(ϕ, s(ϕ)) is an optimal strategy. Choosing an n > 0
sufficiently large, we let θ = π

n and ϕi = i θ. We ap-
proximate s′(ϕi) by the Newton quotient

s(ϕi+1)− s(ϕi)

θ

Putting yi = s(ϕi), we make an approximation for
E[fS ]:

1

π

n−1∑
i=0

√
y2i +

(
yi+1 − yi

θ

)2 (π
2
− b(ϕi)

)
θ (8)

Naturally, we look for values y0, . . . , yn which will mini-
mize (8). Fortunately, this problem is once again convex
and in fact computationally easier than the one before.
Using a numerical solver, we are able to increase n to
100000, the result is shown below together with our pre-
vious discretization:
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1st discrete solution, n = 100
2nd discrete solution, n = 100000

Figure 4: Optimal solutions for two types of discretiza-
tions

Notice the two solutions almost agree everywhere they
are both defined. The value of (8) in this case is ∼
1.1892.

4.2 An Optimal Strategy

If we regard E as a functional acting on functions de-
fined in [0, π] and piecewise continuously differentiable
in [0, π), our goal is to find such a function h, subject to
h(0) = 1 and h(x) ≥ 0 for x ∈ [a, b], that minimizes E.
In general, proving the existence of a continuous min-
imizer for variational problems such as this one is not
an easy task. Instead, we will take the corroborating
results from the first and second discretization as proof
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one exists, and that its average cost should be close to
1.1892. The discretizations suggest we look for such a
minimizer with h(π) > 0. Before proceeding, we ver-
ify that we may apply the techniques of the calculus of
variations:

Lemma 2 Suppose h minimizes (7) and h(π) > 0.
Then h is C2 on (0, π).

Proof. As we have observed, h is non-increasing on
[0, π], thus h(t) > 0 for all t ∈ [0, π]. If we define

F (x, y, z) =
1

π

√
y2 + z2

(π
2
− b(x)

)
then

E(h) =

∫ π

0

F (t, h(t), h′(t)) dt

Now we have

∂2F

∂z2
(t, h(t), h′(t)) =

1

2π

(π − 2b(t))2

(h(t)2 + h′(t)2)
3
2

which remains non-zero in (0, π). By the criterion for
the regularity of minimizers, h is C2 in (0, π). �
As shown in the appendix, the above lemma ensures
h satisfies the Euler-Lagrange equation associated with
(7) in (0, π). Although too long to produce here, this
equation may be expressed in the explicit form

h′′ = G(t, h, h′)

so long as h(t) > 0 and 0 < t < π. Thus if we know the
values for, say, h(π2 ) and h′(π2 ), then we can determine
h by the Existence-Uniqueness Theorem for ordinary
differential equations. With this mind, we use the dis-
cretization results for n = 100000 to estimate values for
h(π2 ) and h′(π2 ). The resulting solution to the Euler-
Lagrange equation associated with (7) is plotted below
alongside the optimal discrete solution for n = 100.
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1st discrete solution, n =100
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Figure 5: Optimal discrete solution together with opti-
mal continuous solution

The very close match between the continuous solution
and the discrete one gives us strong evidence that we
have indeed found an optimal strategy. The average
cost of this strategy is ∼ 1.189. Its competitive factor
is ∼ 1.3136.

5 Conclusion

Our results give us strong evidence that we have found
an optimal average case strategy. It achieves an average
cost of ∼ 1.189. Although we do not have a closed-form
expression for this strategy, a good approximation is
given by

1 + 7 θ

35 + 21 θ + 22 θ2

which has an average cost of ∼ 1.1914, which exceeds
the presumed optimal average cost by less than 0.202%.
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6 Appendix: The Calculus of Variations

Our analysis requires us to minimize expressions of the
form

J [r] =

∫ b

a

F (x, r(x), r′(x)) dx (9)
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where F : (a, b)×R
2 → [0,∞) is a given function of class

C2 in (a, b)×Ω where Ω is an open region in R
2. J is the

objective function, otherwise known as a functional. The
goal is to find a minimizing function r : [a, b] → R over
the class of admissible functions. For us, these are the
functions that are piecewise continuously differentiable
in (a, b) with (r(x), r′(x)) ∈ Ω for all x where r′(x) is
defined, and moreover satisfy some boundary condition
r(a) = α for some α ∈ R.
Suppose for now that r is such a minimizer. Assume

furthermore that r is in fact C2 in (a, b). It can be
shown that

∂F

∂r
(x, r(x), r′(x))− d

dx

(
∂F

∂r′
(x, r(x), r′(x))

)
= 0 (10)

holds everywhere in (a, b) (see [8] for example). Equa-
tion (10) is known as the Euler-Lagrange equation. It
is a second order differential equation in r and must be
satisfied by any r which minimizes J subject to the con-
ditions we have imposed. It is important to note that
simply satisfying (10) is not enough to guarantee that
r is a minimizer: the condition is necessary, but not
sufficient.
In the above, we have assumed minimizers for (9)

are of class C2 in (a, b). The following result gives us
conditions on F under which this is justified.

Proposition 3 Regularity of Minimizers Let r be
a piecewise continuously differentiable minimizer for
the above problem, and let F be as in (9). If
∂2F
∂r′2 (x, r(x), r

′(x)) does not vanish anywhere in (a, b),
then r is C2 in (a, b).

A proof of this statement goes along the same lines as
Theorem 1.2.3 and 1.2.3 in [8]. Note that because r is
piecewise continuously differentiable, the above implies
it is C1 in [a, b].


