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Abstract

The author develops a strategy for utilizing higher moments and conditioning information

efficiently, and hence improves on the variance bounds computed by Hansen and Jagannathan

(1991, the HJ bound) and Gallant, Hansen, and Tauchen (1990, the GHT bound). The author’s

bound incorporates variance risk premia. It reaches the GHT bound when non-linearities in

returns are not priced. The author also provides an optimally scaled bound with conditioning

information, higher moments, and variance risk premia that improves on the Bekaert and Liu

(2004, the BL bound) optimally scaled bound. This bound reaches the BL bound when non-

linearities in returns are not priced. When the conditional first four moments are misspecified, the

author’s optimally scaled bound remains a lower bound to the variance on pricing kernels,

whereas the BL bound does not. The author empirically illustrates the behaviour of the bounds

using Bekaert and Liu’s (2004) econometric models. He also uses higher moments and

conditioning information to provide distance measures that improve on the Hansen and

Jagannathan distance measures. The author uses these distance measures to evaluate the

performance of asset-pricing models. Some existing pricing kernels are able to describe returns

ignoring the impact of higher moments and variance risk premia. When accounting for the impact

of higher moments and variance risk premia, these same pricing kernels have difficulty in

explaining returns on the assets and are unable to price non-linearities or higher moments.

JEL classification: G12, G13, C61
Bank classification: Financial markets; Market structure and pricing

Résumé

L’auteur conçoit une stratégie pour utiliser avec efficience les moments d’ordre supérieur et

l’ensemble de l’information disponible et, de la sorte, améliorer les bornes de variance calculées

par Hansen et Jagannathan (1991) et par Gallant, Hansen et Tauchen (1990) (appelées ci-après

« borne HJ » et « borne GHT »). La borne qu’il définit intègre les primes du risque de variance et

est égale à la borne GHT lorsque les non-linéarités des rendements ne sont pas prises en

considération. L’auteur calcule aussi une borne optimale qui tient compte de l’ensemble des

informations, des moments d’ordre supérieur ainsi que des primes du risque de variance, et qui

dépasse la borne optimale de Bekaert et Liu (2004) (« borne BL » dans la suite du résumé). En

l’occurrence, la borne de l’auteur est identique à la borne BL (l’hypothèse de linéarité des

rendements étant également maintenue dans ce cas). Mais la borne optimale de l’auteur demeure

la limite inférieure de la variance des facteurs d’actualisation stochastiques même quand les



vi

quatre premiers moments conditionnels sont mal spécifiés. Pour illustrer de façon empirique le

comportement des bornes, l’auteur met à profit les modèles économétriques de Bekaert et Liu

(2004). Par ailleurs, en faisant appel aux moments d’ordre supérieur et à l’ensemble des

informations, il obtient de meilleures mesures de distance que celles auxquelles parviennent

Hansen et Jagannathan. Il se sert de ces mesures pour évaluer les modèles d’équilibre des actifs

financiers. Certains des facteurs d’actualisation stochastiques employés arrivent à rendre compte

des rendements s’il est fait abstraction de l’incidence des moments d’ordre supérieur et des

primes du risque de variance. Or, une fois cette incidence prise en compte, les mêmes facteurs

permettent difficilement d’expliquer les rendements obtenus et ne permettent d’évaluer ni les non-

linéarités ni les moments d’ordre supérieur.

Classification JEL : G12, G13, C61
Classification de la Banque : Marchés financiers; Structure de marché et fixation des prix



1. Introduction

Recent years have witnessed an explosion of research that incorporates conditional skewness and

conditional kurtosis in asset-pricing models (Harvey and Siddique (2000); Dittmar (2002); and

others). As shown in Harvey and Siddique (2000) and Dittmar (2002), the market price of skew-

ness risk and kurtosis risk is a key determinant in explaining the cross-section of returns. These

models perform well empirically using the Hansen and Jagannathan (1991, hereafter HJ) variance

bound and the Hansen and Jagannathan (1997) distance. In addition, the pricing kernels of recent

models such as the non-separable utility model of Heaton (1995), incomplete-markets model of

Constantinides and Du¢ e (1996), or polynomial pricing kernels of Bansal, Hsieh, and Viswanathan

(1993) and Chapman (1997), lie inside the feasible region de�ned by these bounds. Although the

HJ variance bound and distance are useful for asset-pricing models, they incorporate only the �rst

two moments of asset returns. The HJ distance and variance bound use only the �rst two mo-

ments to evaluate the performance of non-linear pricing kernels or pricing kernels that incorporate

higher-order moments. Further, studies such as by Gallant, Hansen, and Tauchen (1990, hereafter

GHT), Ferson and Siegel (2001, 2003), and Bekaert and Liu (2004) suggest that the conditioning

information is useful to improve the performance of asset-pricing models. Although asset-pricing

models perform well empirically using the conditioning information, the GHT bound incorporates

the �rst two conditional moments of asset returns.

In this paper, we study the use of conditioning information and derivatives to e¤ectively increase

the dimension of asset payo¤s space, and hence improve the HJ distance measures and the HJ

variance bound. We provide three variance bounds on pricing kernels. We �rst derive an e¢ cient

variance bound on pricing kernels, which we term the UCHM bound. It incorporates time-varying

higher moments and variance risk premia. A large body of theory and evidence suggests that the

variance risk is priced in the market (see Bakshi and Madan (2000); Bakshi, Kapadia, and Madan

(2003)). Time-varying higher moments and variance risk premia are important to e¤ectively manage

risk and allocate assets, to accurately price and hedge derivative securities, and to understand the

behaviour of �nancial asset prices. The UCHM bound is a sum of two terms. The �rst term is

the GHT bound. The second term is a function of the �rst four conditional moments of asset

returns and the pure variance risk premia. As shown in Bondareko (2004), the variance risk

premia can be decomposed into two components. The �rst component is proportional to the risk

premium on primitive assets. The second component is called the pure variance risk premia. It

represents the part of the variance risk premia that is independent of the risk premia on primitive

assets. Bondareko shows that variance risk premia are a key determinant in explaining returns that

exhibit signi�cant non-linearities (skewness). When non-linearities in returns are not priced, that

1



is, skewness is not priced, we show that the UCHM bound reaches the GHT bound. Second, we

derive a bound with unconditional higher moments and variance risk premia, which we term the

HM bound. When skewness is not priced, we show that this bound reaches the HJ bound. Third,

we use the scaled returns to derive the best (largest) variance bound that incorporates time-varying

higher moments and variance risk premia. We term this variance the OHM bound. When non-

linearities in returns are not priced, we show that the OHM bound reaches the Bekaert and Liu

(2004) optimally scaled variance bound. The OHM bound has some advantageous features. First,

it is e¢ cient. Our approach optimally exploits conditioning information with higher moments,

leading to a sharper bound. Second, the OHM bound is robust to the misspeci�cation of the

conditional mean, conditional variance, conditional skewness, and conditional kurtosis. The OHM

bound provides a bound to the variance of the true pricing kernel even if incorrect proxies to the

conditional �rst four moments are used. Third, we show that the OHM bound can be used to

propose a diagnostic test for the �rst four conditional moments of asset returns if the conditional

prices of derivatives are correctly speci�ed.

Our paper also provides distance measures to evaluate asset-pricing models. We propose two

distance measures. We �rst propose an unconditional distance measure that incorporates higher

moments and variance risk premia. We term this distance the HM distance. It reaches the HJ

distance when skewness is not priced in the market. We use the scaled returns to propose an

optimal distance measure, which we term the OHM distance, to evaluate pricing models. We derive

the best (largest) distance measure with time-varying higher moments and variance risk premia.

When time-varying higher moments and variance risk premia are not important, the OHM distance

reaches the distance measure obtained if we use the Bekaert and Liu (2004) scaling approach.

The remainder of this paper is organized as follows. In section 2, we derive the variance bounds

that incorporate conditioning information, higher moments, and variance risk premia. In section

3, we derive the distance measures. Section 4 contains an empirical illustration of the bounds.

We use Bekaert and Liu (2004) econometric models to illustrate the bounds, and explore the role

of misspeci�cation and robustness in the behaviour of the various bounds. In section 5, we use

various distance measures to evaluate the performance of asset-pricing models with non-linear

pricing kernels. We also investigate time-varying extensions of these pricing kernels. To do this, we

use the volatility index, VIX, which is based on Standard & Poor�s (S&P) 500 index option prices

and di¤erent data sets. We �rst use hedge fund indexes. Agarwal and Naik (2004) show that a large

number of equity-oriented hedge fund strategies exhibit payo¤s that resemble a short position in a

put option on the market index. Second, we use industry portfolios. Industry portfolios have been

used in the empirical asset-pricing literature for tests of candidate asset-pricing models (Dittmar

(2002)). Section 6 concludes the paper.

2



2. Variance Bounds on Pricing Kernels

2.1 Conditional minimum-variance pricing kernel

GHT (1990) assume that economic agents use their information set to form portfolios of risky

assets and derive a variance bound on pricing kernels that incorporates conditioning information.

Their bound is a function of the asset return �rst two moments. In this section, we assume that

there is a relevant information set, It; available to investors and econometricians at a given point

in time, and that investors use this set to form portfolios of asset payo¤s and derivatives in the

same assets. If this is so, investors have a larger set of assets to form their portfolios than in GHT.

Intuitively, we augment the available asset space with derivatives:

We de�ne rt+1 as the set of asset payo¤s with �nite �rst four conditional moments, #t+1 = r
(2)
t+1

the payo¤ of the �volatility contract�with components of the form rit+1rjt+1; i � j; and h (rt+1)
the payo¤ of derivatives. This payo¤ is approximated by its linear regression on asset return and

the volatility contract payo¤:

h (rt+1) ' Eth (rt+1) + at [rt+1 � Etrt+1] + bt [#t+1 � Et#t+1] + �t+1, (1)

with some residual risk, but the residual risk is not priced. The representation (1) states that the

price of the volatility contract su¢ ces to recover the price of derivatives. We consider the set of

admissible pricing kernels that conditionally price the bond, the set of asset payo¤s, and derivatives

with payo¤ h (rt+1). This set can be formulated as follows:

F
�
mt; p

#
t

�
=
n
mt+1 2 L2 : E [mt+1 (1; rt+1; #t+1) jIt] =

�
mt; pt; p

#
t

�o
; (2)

where mt, pt; and p#t represent the conditional price of the bond, asset returns, and the volatility

contract, respectively. L2 represents the set of random variables with a �nite second moment. The

payo¤ rt+1 is a return. Thus, pt = l; where l is a vector column whose components are equal to 1.

However, the price of the volatility contract:

p#t = Et [mt+1#t+1] = mtEt

�
mt+1

mt
#t+1

�
=
E�t #t+1
rft

; (3)

is di¤erent from pt: E
�
t [x] represents the expectation of x with respect to the risk-neutral measure.

For interpretation purposes, assume that there is only one risky asset. If the volatility contract is

not priced, Cov (mt+1; #t+1) = 0; which indicates that Et#t+1 � E�t #t+1 = 0.
There is a large body of theory and evidence which suggests that the volatility contract is priced

in the market. Its price is easy to estimate. Bakshi and Madan (2000) show that the price of the

volatility contract can be recovered from a set of OTM European calls and puts (see also Theorem

1 in Bakshi, Kapadia, and Madan (2003)). Carr and Wu (2004) theoretically and numerically show

3



that the risk-neutral expected value of the return variance can be well approximated by a particular

portfolio of options. Bondareko (2004) �nds that the variance risk is priced and its risk premium is

negative and economically very large. Using a regression-based analysis, he �nds that the variance

risk is a key determinant in explaining the performance of hedge funds. Given the evidence that

the volatility contract is well priced, we consider the optimization problem:

min
m2F(mt;p#t )

�2 (mjIt) ; (4)

which allows us to derive the pricing kernel with minimum variance among the set of pricing kernels

that correctly price returns and the volatility contract. Since this pricing kernel correctly prices

the volatility contract, it should correctly price derivatives.

Denote:

�t = E (rt+1jIt) and �2t = Etrt+1 (rt+1 � Etrt+1)
0
;

s
0
t = Et (#t+1 � Et#t+1) r

0
t+1 and �t = Et#t+1#

0
t+1;

the �rst four conditional moments of asset returns. We show:

Proposition 2.1 Given the information set It, the pricing kernel with minimum variance for its

conditional expectation, mt; is:

mCHM = mGHT + 

0
t"t+1; (5)

with mGHT = �t (rt+1 � �t) +mt representing the GHT pricing kernel and

"t+1 = #t+1 � Et#t+1 � s
0
t

�
�2t
��1

(rt+1 � �t) ; (6)

with:

�t = (pt �mt�t)
0 �
�2t
��1

and 
t =
�
�2#t � s

0
t

�
�2t
��1

st

��1 �
p#t � p#t

�
;

�2#t = �t � (Et#t+1) (Et#t+1)
0
and p#t = mtEt#t+1 + s

0
t

�
�2t
��1

(pt �mtEtrt+1) :

The proof of this proposition is very similar to the proof of the minimum variance pricing kernel

of GHT when using the vector
�
r
0
t+1; "

0
t+1

�
in place of r

0
t+1. Equation (5) says that the pricing kernel

with minimum variance for its conditional expectationmt is the conditional projection ofmt+1 onto

the
n
z
0
1trt+1; z

0
2t"t+1: 8 z1t; z2t

o
space augmented with a constant payo¤. The conditional variance

of the pricing kernel (5) is a function of the conditional �rst four moments
�
�t; �

2
t ; st; �t

�
. The matrix

parameter �t is the fourth moment (co-kurtosis) of asset returns. The matrix st is related to the

notion of co-skewness (see Harvey and Siddique (2000)). The quantity �2#t � s
0
t

�
�2t
��1

st denotes

the variance covariance matrix of the residual "t+1; which we assume is not singular.

4



The parameter 
t is determined by the correlation between the pricing kernel and the non-linear

component of the volatility contract that is not spanned by primitive asset returns. This parameter

is proportional to the value p#t � p#t ; which we interpret as a pure volatility contract risk premium.
It plays an important role in the variance bound (5). The pure volatility contract risk premium is

the di¤erence between two components:

p#t � p#t = mt [E
�
t #t+1 � Et#t+1]� s

0
t

�
�2t
��1

(pt �mtEtrt+1) : (7)

The �rst component of (7) is the risk premium on the volatility contract, while the second com-

ponent is proportional to the risk premium on primitive assets. When non-linearities in returns

are priced, expression (7) is di¤erent from zero, and the di¤erence between the bound derived in

proposition 2.1 and the existing variance bound on pricing kernels is due to the pure variance risk

premia. The parameter 
t incorporates information about how investors deal with the uncertainty

in variance. This information is important to e¤ectively manage risk and allocate assets, to ac-

curately price and hedge derivative securities, and to understand the behaviour of �nancial asset

prices. The parameter 
t can also be interpreted as the price of co-skewness. To understand this,

assume that there are two assets: the risk-free and the market return. The pricing kernel speci�ed

in equation (5) is reduced to a quadratic function of the market return. The quadratic pricing kernel

is used in Harvey and Siddique (2000) and, more recently, in Dittmar (2002) to investigate the role

of co-skewness in asset-pricing models. When there is evidence that skewness is not important in

an investment decision, the parameter 
t is equal to zero. In that case, we say that skewness is not

priced in the market and expression (5) is reduced to the pricing kernel of the capital asset-pricing

model. The next proposition gives conditions under which the conditional variance of the pricing

kernel speci�ed in proposition 2.1 reaches the GHT bound.

Corollary 2.2 Given the information set It, if the pure volatility contract risk premium is null,

the conditional variance of mCHM (see equation (5)) reaches the GHT bound.

GHT also use conditioning information to derive an unconditional variance bound on pricing

kernels. In the next section, we derive an unconditional variance bound on pricing kernels that

incorporates conditioning information.

2.2 Variance bound with higher moments and conditioning information

Our goal in this section is to replicate the analysis in section 2.1 using F
�
m; p#t

�
in place of

F
�
mt; p

#
t

�
and using an unconditional projection in place of the conditional projection. We then

consider the problem:

min
m2F(m;p#t )

�2 (m) : (8)

5



Similarly to proposition 2.1, we show:

Proposition 2.3 The pricing kernel, mUCHM ; solution to (8) is:

mUCHM = m�
GHT + 
t"t+1; (9)

with m�
GHT =

�
pt � !�t

�0 �
�2t
��1

rt+1 + ! and ! = m�b1
1�d1 where:

b1 = Ep
0
t

�
�2t + �

2
t

��1
�t; (10)

d1 = E�
0
t

�
�2t + �

2
t

��1
�t: (11)

Furthermore, the minimum variance bound with conditioning information and higher moments

(hereafter, the UCHM bound) is:

�2UCHM = �2GHT + E

0
t

�
�2#t � s

0
t

�
�2t
��1

st

�

t; (12)

where �2GHT is the GHT variance bound.

Proof. Let Pt be a space of payo¤s at some future date on portfolios of assets and derivatives,

and let P be the space of all random variables in Pt with �nite unconditional second moments.

Since m has a �nite second moment, the unconditional least-squares projection of m onto P is the

same as the conditional projection of m onto Pt . Hence, the solution to (8) is the same as (5), with

mt replaced by m.1

In the case where conditional moments are replaced by unconditional moments:
�
�t; �

2
t ; st; �t

�
=�

�; �2; s; �
�
; and conditional prices are replaced by unconditional prices

�
pt; p

#
t

�
=
�
p; p#

�
, the

pricing kernel (9) is reduced to an unconditional minimum-variance pricing kernel. The variance

of this pricing kernel is denoted the unconditional variance bound with higher moments (hereafter,

HM bound). When the �rst four conditional moments
�
�t; �

2
t ; st; �t

�
and the price of the volatility

contract are correctly calculated, it is easy to compute the UCHM bound. In the case where the

�rst four conditional moments are not correctly speci�ed, the UCHM bound is di¢ cult to estimate.

If one uses the semi-non-parametric method of Gallant, Hansen, and Tauchen (1990) to estimate

conditional moments, it is possible to overestimate the true UCHM bound. In that case, the UCHM

bound fails to be a lower bound for the variance of the pricing kernels.

2.3 Optimally scaled variance bound under higher moments

The conditional higher moments are not easy to compute. In this section, we derive a variance

bound that remains a lower bound to the variance of pricing kernels even if conditional higher

1This argument is similar to the proof of Theorem A.2 in Hansen and Richard (1987).
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moments are misspeci�ed. To do this, we scale the risky asset returns with the conditioning

random variable, z1 2 It, that is believed to capture time variation in expected returns. Thus, the
scaled return is z

0
1trt+1. In addition, we scale the non-linear component of the volatility contract

that is not spanned by primitive assets with the conditioning variable z2t 2 It. Thus, the scaled
payo¤ is z

0
2t"t+1. We then consider the payo¤ z

0
tgt+1 with z

0
t =

�
z
0
1t; z

0
2t

�
and g

0
t+1 =

�
r
0
t+1; "

0
t+1

�
;

where "t+1 is de�ned in (6). There exists an HJ bound based on the scaled payo¤ z
0
tgt+1:

�2
�
m; z

0
tgt+1

�
=

�
E
�
z
0
t�t

�
�mE

�
z
0
tgt+1

��2
V ar

�
z
0
tgt+1

� ; (13)

where �
0
t =

�
p
0
t; p

#0
t � p#t

0�
. We call expression (13) the scaled variance bound with higher-order

moments. The relevant question we ask is: what conditioning variable zt yields the best (largest)

scaled variance bound with higher-order moments? This is a problem of variational calculus. We

call this bound the �Optimally scaled bound under Higher Moments�(hereafter, the OHM bound).

The OHM bound is:

�2OHM = sup
zt2It

�2
�
m; z

0
tgt+1

�
: (14)

This bound is the highest variance bound that incorporates higher moments when the conditioning

information is used. To derive the solution to (14), we consider the following notation:

a1 = E

�
p
0
t

�
�t�

0
t + �

2
t

��1
pt

�
; (15)

a2 = E
�
p#t � s

0
t

�
�2t
��1

pt

�0 �
�2#t � s

0
t

�
�2t
��1

st

��1 �
p#t � s

0
t

�
�2t
��1

pt

�
; (16)

b2 = E
�
Et#t+1 � s

0
t

�
�2t
��1

Etrt+1

�0 �
�2#t � s

0
t

�
�2t
��1

st

��1 �
p#t � s

0
t

�
�2t
��1

pt

�
; (17)

d2 = E
�
Et#t+1 � s

0
t

�
�2t
��1

Etrt+1

�0 �
�2#t � s

0
t

�
�2t
��1

st

��1 �
Et#t+1 � s

0
t

�
�2t
��1

Etrt+1

�
; (18)

and show:

Proposition 2.4 The solution, z�t ; to the maximization problem

�2OHM = sup
zt2It

�2
�
m; z

0
tgt+1

�
is given by:

z�
0
t =

�
z�

0
1t; z

�0
2t

�
;

with

z�
0
1t =

�
�t�

0
t + �

2
t

��1
(pt � !�t) ; (19)
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and

z�
0
2t =

�
�2#t � s

0
t

�
�2t
��1

st

��1 �
p#t � p#t

�
: (20)

So the optimally scaled payo¤ is z�
0
t gt+1 = z�

0
1trt+1 + z

�0
2t"t+1. Furthermore, the maximum bound

with higher moments has two components:

�2OHM =

�
a1 (1� d1) +m2d1 � 2mb1 + b21

1� d1

�
+
�
m2d2 � 2mb2 + a2

�
; (21)

where a1; b1; and d1 are de�ned in (10), (11), (15) and a2; b2; d2 are de�ned in (16), (17), and

(18). Each component of the maximum bound is positive.

Proof. Bekaert and Liu (2004) give the solution to supzt2It �
2
�
m; z

0
1trt+1

�
. Using g

0
t+1 =

�
r
0
t+1; "

0
t+1

�
in place of r

0
t+1 in the proof provided by Bekaert and Liu (2004), we obtain:

z�t =

 
�t�

0
t + �

2
t 0

0 �2#t � s
0
t

�
�2t
��1

st

!�1  
pt

p#t � p#t

!
� !

 
�t

0

!!
:

Substituting the optimally scaled payo¤ z�
0
t gt+1 in �

2
�
m; z

0
tgt+1

�
, we obtain the maximum bound

with higher moments.

The optimal scaling factor z�
0
t =

�
z�

0
1t; z

�0
2t

�
depends on the conditional distribution function

through the �rst four conditional moments
�
�t; �

2
t ; st; �t

�
. When these moments are known to

econometricians or researchers, and if p#t and pt are correctly speci�ed, we show the relation between

the OHM and the UCHM bound.

Proposition 2.5 Consider the payo¤s rt+1 and #t+1 with conditional prices pt and p#t . Assume

that the �rst four conditional moments of asset payo¤s are
�
�t; �

2
t ; st; �t

�
; then the OHM bound is:

�2OHM = �2UCHM . (22)

Proof. The UCHM bound represents the e¢ cient way of using conditional information. Thus, it

follows that:

�2
�
m; z

0
tgt+1

�
� sup

zt
�2
�
m; z

0
tgt+1

�
� �2UCHM :

From proposition 2.4, we know that �2OHM has the form described in (21). The variance of z�
0
t gt+1

is:

V ar
�
z�

0
t gt+1

�
= V ar

�
z�

0
1trt+1

�
+ V ar

�
z�

0
2t"t+1

�
= �2UCHM :

We substitute z�
0
t in this variance and use the de�nition of a1; b1; d1 and a2; b2; d2 to obtain

�2OHM = �2UCHM .
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2.4 Relation to Bekaert and Liu (2004) and Ferson and Siegel (2001, 2003)

This paper is related to the Bekaert and Liu (2004; hereafter the BL bound) article. BL �nd

the scaling factor that yields the largest HJ bound. Their variance bound is a function of the �rst

two moments of asset returns. The BL bound uses only asset payo¤s, whereas in this paper we use

asset payo¤s and derivatives. The BL optimally scaled bound is:

�2OSB =
a1 (1� d1) +m2d1 � 2mb1 + b21

1� d1
; (23)

where a1; b1; and d1 are de�ned in (15), (10), and (11). If the conditional skewness is not priced,

p#t = p#t and the optimally scaled bound with higher moments collapses to the Bekaert and Liu

(2004) optimally scaled bound:

�2OHM = �2OSB:

Ferson and Siegel (2001) use conditioning information e¢ ciently to solve for unconditionally min-

imum variance portfolios. Since there is a duality between HJ frontiers and the mean standard

deviation frontiers, there exists a variance bound that is observationally equivalent to the Ferson

and Siegel mean standard deviation frontiers. As mentioned in Bekaert and Liu (2004), this bound

is not as sharp as the Bekaert and Liu bound because it restricts the portfolio weight to have

a sum of one. Ferson and Siegel (2003) assume correct speci�cation of the conditional moments

and empirically illustrate the variance bound on the pricing kernel. Their bound is often close

to, but lower than, the Gallant, Hansen, and Tauchen (1990) bound. The bounds derived in this

paper are sharper than the Gallant, Hansen, and Tauchen and the Bekaert and Liu (2004) bounds.

Consequently, they are sharper than the Ferson and Siegel bounds.

2.5 Relation to Snow (1991)

The present paper is also related to Snow (1991). Snow assumes that the pricing kernel must be

a positive random variable, and it should correctly price the set of asset returns rt+1 and the call

option
�
!
0
rt+1

�+
with ! 2 Rn. He then uses Holder�s inequality to derive a lower bound on the

�th moments of the pricing kernel m2:�
E
h
m�
i� 1

� � � (�) = sup
p2P

E� (p+)

E [p+�]
1
�

; (24)

where 1
� +

1
� = 1 and � (x) represents the price of the portfolio x; and P represents the setn

p = !
0
rt+1 : ! 2 Rn

o
of asset returns under consideration. From expression (24), it can be seen

2We would like to thank the referee for suggesting that we investigate the relationship between the unconditional

variance bound with higher-order moments and Snow�s (1991) bound.
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that Snow provides a direct link between the �th moments of the pricing kernel and the �th moments

of asset returns. Snow�s bound has some similarities to our unconditional bound with higher

moments. Snow�s variance (2th moments) bound depends on the variance of the option payo¤�
!
0
rt+1

�+
. Therefore, it depends on the higher moments of the asset returns. This paper provides

an unconditional variance bound on pricing kernels that depends on the skewness and kurtosis of

asset returns. However, there are also many di¤erences between our bound and Snow�s bound,

so that our respective papers should be viewed as complements rather than substitutes. First,

our unconditional variance bound has a structural interpretation in terms of asset returns mean,

variance, skewness, and kurtosis, while Snow�s variance bound does not. We relate our bound to the

Hansen and Jagannathan variance bound and show that if skewness is not priced, our bound reaches

the Hansen and Jagannathan variance bound. There is no such interpretation for Snow�s bound.

Second, the computation of Snow�s bound requires knowledge of the option price � (p+), which is

not known. In his empirical implementation, Snow assumes that � (p+) = � (p) and computes the

lower bound on the �th moments of a pricing kernel m using three data sets: small �rms, large

�rms, and small and large �rms. He then shows that the moments of the returns of small �rms

contain information about the pricing kernel that is not contained in the moments of the returns of

large �rms. Even though the results found in Snow (1991) are interesting, it is useful to point out

that the assumption � (p+) = � (p) allows Snow�s bound to depend only on asset-return moments.

This assumption ignores the price of the call option. This price is an interesting component that

can be used to capture the risk premium on the volatility contract p2. As shown in section 2.1, the

price of the volatility contract is closely related to the market price of skewness. Our unconditional

variance bound depends not only on higher-order moments (co-skewness, co-kurtosis), but also on

the volatility contract risk premium. Third, the lower bounds obtained in this paper are derived

without a positivity requirement on pricing kernels, whereas Snow considers positive pricing kernels.

3. Implied Distance Measure

3.1 Distance measures

Consider the set, F
�
m; p#

�
, of admissible pricing kernels that price the bond, the set of assets

payo¤, and the volatility contract. Let ht+1 be the payo¤ of risky assets or derivatives and let

yt+1 be the pricing kernel of a pre-speci�ed asset-pricing model. The price assigned by this pricing

kernel should belong to F
�
m; p#

�
. When the pre-speci�ed asset-pricing model is false, yt+1 =2

F
�
m; p#

�
and there is a strictly positive distance between yt+1 and the set F

�
m; p#

�
. This implies

a positive pricing error of model yt+1 on payo¤ ht+1; that is, jE (yt+1ht+1)� E (mt+1ht+1)j > 0

for all mt+1 2 F
�
m; p#

�
. Similarly to Hansen and Jagannathan (1997), we de�ne the distance
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measure with higher moments, which we call the HM distance:

�HM = min
m2F(m;p#)

ky �mk ; (25)

where kxk =
p
E (x2) is the usual norm. Following Hansen and Jagannathan (1997, hereafter HJ),

we obtain:

�HM =

�
E (yt+1ert+1 � e�)0 �Eert+1er0t+1��1E (yt+1ert+1 � e�)� 12 ; (26)

where ert+1 = (rt+1; #t+1). The value e� = �
p; p#

�
is the price of ert+1. The value �HM is the

maximum pricing error for the set of portfolios based on asset returns and derivatives with the

norm of the portfolio return equal to one. To see the relationship between the distance (26) and

the HJ distance, we rewrite (26) as:

�2HM = �2HJ +
e�2; (27)

where:

�2HJ = E (yt+1rt+1 � p)
0
�
Ert+1r

0
t+1

��1
E (yt+1rt+1 � p) ; (28)

and e�2 = E �yt+1"t+1 � �p#0 � p#0��0 (V ar ("t+1))�1E �yt+1"t+1 � �p#0 � p#0�� :
The value �2HJ is the HJ distance. The value e�2 = �2HM � �2HJ is the deviation of the HM

distance from the HJ distance. This value is a function of the asset return �rst four moments and

the pure volatility contract risk premium. If non-linearities in volatility returns are not priced,e�2 = 0 and the HM distance reaches the HJ distance.

The distance measure �HM is still unconditional. To incorporate conditioning information in

this measure, we use the scaling argument of the previous section. We scale the returns and

the residual "t+1 with conditioning variables and derive the distance measure based on the scaled

payo¤s:

�2
�
yt+1; z

0
tgt+1

�
=

�
E
�
yt+1z

0
tgt+1 � z

0
t�t

��2
E
�
z
0
tgt+1

�2 ; (29)

with z
0
t =

�
z
0
1t; z

0
2t

�
. We then ask the following question: what conditioning variable zt yields the

best (largest) scaled distance measure with higher moments?

�2 = sup
zt2It

�2
�
yt+1; z

0
tgt+1

�
: (30)

The next theorem gives the solution to (30).

Proposition 3.1 The solution z�
0
t =

�
z�

0
1t; z

�0
2t

�
to the maximization problem (30) is given by

z�1t =
�
�t�

0
t + �

2
t

��1
(pt � Etyt+1rt+1) ;

z�2t =
�
�2#t � s

0
t

�
�2t
��1

st

��1 �
p#0t � p#t

0
� Etyt+1"t+1

�
:
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So the optimal distance measure with higher-order moments (hereafter, the OHM distance) is

�2OHM = �2BL +
e�2; (31)

with:

�2BL = E

�
(Etyt+1rt+1 � pt)

0
�
�t�

0
t + �

2
t

��1
(Etyt+1rt+1 � pt)

�
; (32)

and

e�2 = E ��Etyt+1"t+1 � �p#0t � p#t 0��0 ��2#t � s0t ��2t ��1 st��1 �Etyt+1"t+1 � �p#0t � p#t 0��� ;
where yt+1 is the pre-speci�ed pricing kernel. �2BL represents the optimal distance measure using

the Bekaert and Liu (2004) scaling approach. We call this distance the BL distance.

Proof. The proof is similar to the proof of proposition 2.4. Speci�cally, if yt+1 is constant,

propositions 2.4 and 3.1 are identical.3

It is useful to point out that Hansen and Jagannathan (1997) also provide a distance measure

for positive pricing kernels. In their empirical analysis, Hansen and Jagannathan �nd that the

requirement that the pricing kernel must be positive does not make a big di¤erence. Following

their approach, the theoretical set-up provided in this section can be used to derive a distance

measure, for positive pricing kernels, that incorporates higher moments. We intend to address this

issue in future research.

3.2 Estimation of parameters

Assume we have an asset-pricing model with a proxy pricing kernel yt+1. We will examine asset-

pricing models in which the proxy pricing kernel is a linear function of a constant and a vector

of variable factors, ft+1. Let us de�ne F
0
t+1 =

h
1; f

0
t+1

i
; and let the vector of parameters be

b
0
=
h
b
0
0; b

0
1

i
. Thus, the pricing kernel proxy is

yt+1 = b
0
Ft+1;

where Ft+1 is the k � 1 factor vector, and b is the k � 1 coe¢ cient vector. A big advantage of

linear factor models is that they can be solved analytically. Non-zero elements of b indicate the

relevance of a factor as a determinant of the pricing kernel. De�ne also the vector of returns

Rt+1 =
�
rt+1; r

�
t+1

�
with r�t+1 = (#it+1=p

�
it)i=1;:::;n where r

�
t+1 represents the vector of returns on

the volatility contract. Similarly to the Hansen and Jagannathan (1997) framework, the estimate

3The proof is available from the author on request.
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bb of b can be chosen to minimize �HM using the standard generalized method of moments (GMM)

approach.

To estimate b; de�ne the pricing error vector g = E (yt+1Rt+1 � 1N), and its sample counterpart

gT (b) =
1

T

TP
t=1
Rtyt � 1N;

where T represents the number of time-series observations andN the number of assets and volatility

contracts under consideration. LetWT be a sample estimate ofW = E
�
Rt+1R

0
t+1

��1
. By squaring

(25), bb can be chosen as
bb = argmin �2HM = argmin g

0
T (b)WT gT (b) : (33)

Equation (33) is a standard GMM problem, but it is not the optimal GMM of Hansen (1982).

The optimal GMM uses the weighting matrix WT = S�1T , where ST is a consistent estimator of

[TV ar (gT )]. The weighting matrix,W = E
�
Rt+1R

0
t+1

��1
; proposed by Hansen and Jagannathan

(1997), is invariant across asset-pricing models. We prefer the Hansen and Jagannathan (1997)

weighting matrix because it allows us to compare di¤erent asset-pricing models. In this case, our

weighting matrix is:

W =

"
Ert+1r

0
t+1 Ert+1r

�0
t+1

Er
0
t+1r

�
t+1 Er�t+1r

�0
t+1

#�1
: (34)

As shown in expression (34), the matrix WT is a function of the asset-returns covariance, skewness,

and kurtosis matrix. The Hansen and Jagannathan weighting matrix depends only on the asset

returns covariance. Using the �rst-order conditions of (33), it can be shown that the analytical

solution for bb is bb = �D0
TWTDT

��1 �
D

0
TWT p

�
with DT =

1

T

TP
t=1
RtF

0
t :

Following Hansen (1982), the asymptotic variance of bb is given by
var

�bb� = 1

T

�
D

0
TWTDT

��1
D

0
TWTSTWTDT

�
D

0
TWTDT

��1
:

For the optimal GMM, the J-test is obtained with

J = g
0
T

�bb� var hgT �bb�i�1 gT �bb� d! �2 (N� k) :

Note that the distribution of �HM is not standard under the assumption that the true �HM equals

zero. Jagannathan and Wang (1996) show that the distribution of T�2HJ involves a weighted sum of

n�k �2 (1) statistics, where n is the number of assets and k is the number of estimated parameters.
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Similarly to Jagannathan and Wang (1996), it can be shown that the distribution of T�2HM involves

a weighted sum of N� k �2 (1) statistics. The weights are the N� k non-zero eigenvalues of

X = S
1=2
T W

1=2
T

�
IN �W 1=2

T DT

�
D

0
TWTDT

��1
D

0
TW

1=20

T

�
W
1=2
T S

1=20

T ;

where IN is the N dimensional identity matrix. S1=2T and W 1=2
T are the upper-triangular matrices

obtained from the Cholesky decompositions of ST and WT . It can be shown that the matrix X has

exactly N � k non-zero and positive eigenvalues. If we denote �1; :::; �N�k the eigenvalues of X,
then the asymptotic sampling distribution of the HM distance is

T�2HM
d! t� =

N�kP
j=1

�j�i;

where �1,...,�N�k are independent �
2 (1) random variables. To determine the p-values, p (�HM = 0) ;

of the test �HM = 0 under the null hypothesis that the true distance �HM is zero, one needs to

simulate the statistic t�. The standard errors for the estimates of the HM and HJ distance are

calculated under the alternative hypothesis that the true distance is not equal to zero as in equation

(45) of Hansen and Jagannathan (1997). The approach described in this section can be used to

estimate b and compute the p-values when the conditioning information is used. In this case, scaled

returns will be used, instead of returns.

3.3 Economic signi�cance of the distance measures

Hansen and Jagannathan (1997) and Campbell and Cochrane (2000) provide economic interpreta-

tion of the Hansen and Jagannathan distance measure, �HJ . We follow these authors and give two

interpretations of the distance measure with higher moments.

The �rst interpretation is related to the expected return error for a portfolio of basis assets and

derivatives. Consider a portfolio of assets and derivatives, and assume that the payo¤s of these

derivatives can be spanned by the basis asset returns and the volatility contract (see equation (1)).

The return on this portfolio is �
0
Rt+1. The true expected return for this portfolio, when priced

with the true pricing kernel mt+1; is

E�
0
Rt+1 = rf�

0
1N � rfcov

�
mt+1; �

0
Rt+1

�
;

with Emt+1 = r�1f . Assume that the proxy pricing kernel prices correctly asset returns and the

return on the volatility contracts. The expected return computed with the proxy pricing kernel

yt+1 when Eyt+1 = Emt+1 is

Ey�
0
Rt+1 = rf�

0
1N � rfcov

�
yt+1; �

0
Rt+1

�
:
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Hence, the expected return error is

E�
0
Rt+1 � Ey�

0
Rt+1 = rfcov

�
yt+1 �mt+1; �

0
Rt+1

�
:

Using the Cauchy-Schwartz inequality, it can be shown that���E�0Rt+1 � Ey�0Rt+1��� = rf ���cov �yt+1 �mt+1; �
0
Rt+1

���� � rf kyt+1 �mt+1k :



�0Rt+1


 : (35)

The inequality (35) holds as an equality when the portfolio return, �
0
Rt+1, is perfectly correlated

with yt+1�mt+1. From the �rst-order conditions of (25), it can be shown that yt+1�mt+1 = '
0
Rt+1

with ' = Wg. Thus, the portfolio with shares � = '=�HM is the maximally mispriced portfolio

with norm equal to one. Substituting back � into (35) and recognizing that E'
0
Rt+1 = 0 gives:���Ey'0Rt+1���

� ('0Rt+1)
= rf�HM = rf�HJ

vuut
1 +

e�2
�2HJ

: (36)

The left-hand side of (36) is the maximum possible expected return error for a portfolio of basis

assets and derivatives per unit of standard deviation under the assumption that the true pricing

kernel and the proxy pricing kernel have the same mean. The intuition behind (36) is the following.

Assume that two pricing kernels are estimated using the distance measure (25). Among these two

pricing kernels, the one with the lowest value rf�HM is the best, in the sense that it gives the

lowest maximum expected return error for a portfolio of basis assets and derivatives. It is useful

to point out that rf�HJ is the Hansen and Jagannathan (1997) maximum expected return error

for a portfolio of basis assets (only) per unit of standard deviation. If non-linearities contained in

derivatives are not priced, e� = 0, and (36) coincides with the Hansen and Jagannathan maximum
expected return error.

The second interpretation is related to the expected return error for a portfolio of basis assets

only. Assume that, although non-linearities matter, investors are interested in the expected return

error of a portfolio of basis assets only. The expected return error for this portfolio is

E�
0
1rt+1 � Ey�

0
1rt+1 = rfcov

�
yt+1 �mt+1; �

0
1rt+1

�
:

The �rst-order conditions of (25) imply that yt+1�mt+1 = '
0
Rt+1. Partitioning ' as ('1; '2) and

substituting back this equality into the expected return error gives:

E�
0
1rt+1 � Ey�

0
1rt+1 = rfcov

�
'
0
1rt+1; �

0
1rt+1

�
+ rfcov

�
'
0
2r
�
t+1; �

0
1rt+1

�
: (37)

When non-linearities matter, the second component in the right-hand side of equation (37) is a

function of the higher moments of asset returns and the volatility contract risk premium. To
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compare the expected return error, (37), to the Hansen and Jagannathan (1997) maximum expected

return error, we consider the Hansen and Jagannathan (1997) portfolio shares �1 = 
=�HJ with


 =
�
Ert+1r

0
t+1

��1
(Eyt+1rt+1 � 1n) : Using the share �1, Hansen and Jagannathan (1997) show

that the maximum expected return error for a portfolio of basis assets (only) is:

�err =
���Ey
0rt+1���

HJ
= rf�HJ�

�


0
rt+1

�
: (38)

Using the share �1 and substituting back this share into equation (37) gives the expected return

error for a portfolio of basis assets (only) when accounting for non-linearities or higher moments:���Ey
0rt+1��� = ���rfcov �'01rt+1; 
0rt+1�+ rfcov �'02r�t+1; 
0rt+1���� :
Thus, the maximum expected return error for a portfolio of basis assets (only) when accounting

for non-linearities or higher moments is:

�err =
���Ey
0rt+1���

HM
=
���rfcov �'01rt+1; 
0rt+1����+ ���rfcov �'02r�t+1; 
0rt+1���� : (39)

Equation (39) is the maximum expected return error for a portfolio of basis assets (only) when

the distance measure with higher moments is used. It will be useful in the empirical illustration

(see section 5) to compare
���Ey
0rt+1���

HM
and

���Ey
0rt+1���
HJ

and investigate whether higher-order

moments help to have an accurate measure of the expected excess return for a portfolio of basis

assets (only).

4. Illustration of the Variance Bounds: A Simulation Exercise

Do the variance bounds with higher moments contain information about the distribution of

pricing kernels that is not contained in the HJ, GHT, and BL bounds? To shed light on this

question, we use a simulation exercise. The BL econometric models are considered as a benchmark

for comparison purposes. Implementation of these bounds requires knowledge of the conditional

price of the volatility contract and conditional moments. To compute conditional moments, we

consider econometric models estimated by BL. To compute the conditional price of the volatility

contract, we assume that we live in a world with the pricing kernel of the form:

mt+1 = �t

�
Ct+1
Ct

��1
(RMt+1)

�2 ; (40)

where Ct+1
Ct

is the gross consumption growth, RMt+1 is the return on the market portfolio, �1, �2

are constant parameters, and �t may be constant or a time t parameter. Most consumption-based

asset-pricing models produce a pricing kernel of the form (40). Under the assumption that the

16



joint-process asset return and the pricing kernel are conditionally lognormally distributed, it can

be shown that the price of the volatility contract is:

p#t = rft
Et#t+1

Et#t+1 � �2t
; (41)

where rft is the conditional risk-free return.4 We use the same data set and the econometric models

proposed in Bekaert and Liu (2004).5 The results obtained with the several BL econometric models

are similar. We report the results only for the regime-switching model with time-varying transition

probability (hereafter the TP RS model). With a likelihood-ratio test, BL cannot reject the TP

RS at the 5 per cent level. The TP RS model exhibits interesting time-varying non-linearities in

the asset return and consumption process. We use the estimated TP RS parameters as the true

population values for the simulation. The conditional moments derived from the TP RS will be

considered as the true conditional moments. To compute the misspeci�ed conditional moments, we

use the constrained vector autoregression (VAR) model (hereafter CO VAR) estimated in Bekaert

and Liu (2004). With a likelihood-ratio test, BL reject the CO VAR model at the 5 per cent level

with a p-value of 0.0000. To illustrate the variance bounds, we simulate asset returns based on

the econometric model described above. Simulations use 15,500 observations where the �rst 500

observations are discarded. The OHM bound has three interesting properties:

E¢ ciency and predictability with higher moments We explore the e¢ ciency and the

predictability with higher moments. We empirically investigate whether higher-order moments may

account for predictability in asset returns. In Figure 1, Graph A presents the variance bounds when

data are simulated from the TP RS model. Four important results stand out in this graph. First, the

di¤erence between the HJ and the HM bounds reveals little predictability, although the di¤erence

between these bounds is sharper for smallm�s. Second, the di¤erence between the OHM and the BL

bound reveals considerable predictability. In addition, the di¤erence between the UCHM and the

GHT bound is considerable. When the pricing kernel mean is in the neighbourhood of 0.995, the

OHM bound is 40 per cent higher than the BL bound, while the UCHM bound is 25 per cent higher

than the GHT bound. The di¤erence between the bounds that incorporate higher moments and

the HJ bound reveals considerable predictability: the OHM bound is 75 per cent higher than the

HJ bound, while the BL bound is 20 per cent higher than the HJ bound. Additionally, the UCHM

bound is 40 per cent higher than the HJ bound, while the GHT bound is 20 per cent higher than

the HJ bound. This predictability is due to (i) the market return�s conditional higher moments, and

(ii) the market return�s pure volatility contract risk premium. This result shows that conditioning

4The proof of this formula is available from the author on request.
5We would like to thank Bekaert and Liu for providing us with their data set and parameter estimates.
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variables that contain information about higher moments and the volatility contract risk premium

help to better predict future returns. Surprisingly, the di¤erence between the UCHM bound and

the larger OHM bound is huge, with the OHM bound being larger. There are two potential

explanations for this. First, the di¤erence may be due to parameter uncertainty risk. Second, the

lognormality assumption used to compute the conditional price of the volatility contract (41) may

account for this di¤erence. To examine this issue more closely, Graph B in Figure 1 presents the

OHM bound with conditional moments calculated from the TP RS model and the conditional price

of the volatility contract calculated from the CO VAR model. When the conditional price of the

volatility contract is misspeci�ed, Graph B reveals that the OHM bounds are below the bound

calculated with the true conditional price (i.e., the price calculated from the TP RS model using

(40)). The UCHM bound underestimates the true lower bound on the variance of pricing kernels.

The di¤erence between the UCHM bound calculated with the misspeci�ed conditional price and

the true conditional price is quite small. This leads us to conclude that the di¤erence between the

OHM and UCHM bound may be due to uncertainty risk.

Diagnostic We investigate whether the OHM bound can be used as a diagnostic tool for

the speci�cation of the �rst four conditional moments. Results are displayed in Figure 2. Graphs

A and B present the bounds with data simulated according to the TP RS model and conditional

moments calculated from the CO VAR model. Two results stand out. First, as shown in Graph

A, the OHM bound highlights the misspeci�cation of the �rst four conditional moments, while the

BL bound does not. Second, as shown in Graph B, the GHT and UCHM bounds fail to highlight

the misspeci�cation of the �rst four conditional moments.

Robustness Figure 2 presents the bounds with data simulated according to the TP RS

model and conditional moments calculated from the CO VAR model. When the �rst four condi-

tional moments are misspeci�ed, Graph A shows that the OHM bound underestimates the bound

calculated with the true conditional moments. Graph B shows that the UCHM and GHT bounds

calculated with misspeci�ed conditional moments (moments calculated with the CO VAR model)

quite overestimate the bound calculated with the true conditional moments (moments calculated

with the TP RS model).

5. Performance of Asset-Pricing Models

We �rst present asset-pricing models of interest. Second, we provide a simple model-free approach

to compute the price of the volatility contract, since the variance bounds and the distance measures
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depend on the price of the volatility contract. Third, we discuss the performance of these asset-

pricing models and their implications in using two independent data sets. We use hedge fund

returns and industry portfolio returns.6

5.1 Asset-pricing models

We evaluate asset-pricing models with linear and non-linear pricing kernels. We also investigate

time-varying extensions of these models. The linear and non-linear pricing kernels include the

capital asset-pricing model (CAPM), the Fama and French (1993) (hereafter FF) pricing kernel,

and the quadratic pricing kernel of Harvey and Siddique (2000, hereafter HS). A big advantage of

linear factor models is that they can be solved analytically. In the following, we brie�y describe

these models. We �rst consider the pricing kernel implied by the CAPM and its time-varying

extensions:

m
CP (1)
t+1 = b0 + b1rMt+1; (42)

m
CP (2)
t+1 = b0 + b1rMt+1 + c0zt;

m
CP (3)
t+1 = (b0 + c0zt) + (b1 + c1zt) rMt+1;

where rMt+1 is the excess return on the market portfolio, and b0is and c
0
is are constant parameters

in the model. Second, we consider the Harvey and Siddique (2000) model and its time-varying

extensions7:

m
HS(1)
t+1 = b0 + b1rMt+1 + b2r

2
Mt+1; (43)

m
HS(2)
t+1 = (b0 + c0zt) + b1rMt+1 + b2r

2
Mt+1;

m
HS(3)
t+1 = (b0 + c0zt) + (b1 + c1zt) rMt+1 + (b2 + c2zt) r

2
Mt+1:

The third linear model is the Fama and French three-factors model and its time-varying extensions.

We choose this model for its successful performance in cross-sectional stock pricing and mutual fund

pricing:

m
FF (1)
t+1 = b0 + b1rMt+1 + b2rSMBt+1 + b3rHMLt+1; (44)

m
FF (2)
t+1 = (b0 + c0zt) + b1rMt+1 + b2rSMBt+1 + b3rHMLt+1;

m
FF (3)
t+1 = (b0 + c0zt) + (b1 + c1zt) rMt+1 + (b2 + c2zt) rSMBt+1 + (b3 + c3zt) rHMLt+1;

6We also repeat the analysis with the 25 Fama and French portfolio returns. The results are not tabulated and

are available on request. Conclusions are similar.
7We do not investigate the cubic pricing kernel for the following reason. Dittmar (2002) shows that the cubic

market return does not improve the performance of the pricing kernel when the market return is measured without

human capital. The market return used in this paper is measured without human capital.
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where rSMBt+1 (small minus big) is constructed as the di¤erence in returns on small and big stocks.

This factor captures risk related to size; rHMLt+1 (high minus low) is constructed as the di¤erence

in returns between high and low book-to-market stocks. This factor captures the book-to-market

ratio.

5.2 A model-free approach to estimate the price of the volatility contract

It is well known that the volatility contract tends to change unpredictably over time. However, it

is less understood whether investors require compensation for the volatility contract risk and, if

so, to what extent. This issue has a number of important asset-pricing implications. Because the

volatility contract is not a tradable asset and its market price is not observable, it is di¢ cult to

estimate its price. Previous researchers (Bakshi, Kapadia, and Madan (2003), Bondareko (2004),

and Carr and Wu (2004)) relied on di¤erent assumptions in order to infer the volatility contract

risk premium from prices of traded options. We propose a model-free approach to estimate the

price of the volatility contract #t+1. This price is calculated in the following manner. Equation (3)

states that the price of the volatility contract, #t+1, is:

p#it =
��2it
rft

+ rft; (45)

with:

��2it = Et
mt+1

Etmt+1
(rit+1 � rft)2 with Etmt+1 =

1

rft
:

As articulated in Bakshi and Madan (2000), any payo¤ function with a bounded expectation can

be spanned by a set of out-of-money European call and put. Since the payo¤ (rit+1 � rf )2 has
a bounded expectation, it can be spanned by a collection of put and call. We then build on the

Agarwal and Naik (2004), Bakshi and Madan (2000), and Bakshi, Kapadia, and Madan (2003)

frameworks and specify a �exible piecewise linear involving the market return, the square of the

market return, and the call option on the market index:

(rit+1 � rft)2 = �0 + �1RMt+1 + �2R
2
Mt+1 + �3max (RMt+1 � k1; 0) + �t+1;k1 ; (46)

with some residual risk, but that residual risk will not be priced. The coe¢ cients �i�s are con-

stant. RMt+1 represents the market return. We let the data determine the level k1: this level is

chosen to minimize the sum of the squared errors �2t+1;k1 . Since the square of the market return

has a bounded expectation, it can be spanned by a set of put and call. Hence, speci�cation (46)

is consistent with the theoretical �ndings in Bakshi and Madan (2000) and Bakshi, Kapadia, and

Madan (2003). The advandage of this speci�cation is that it allows us to capture the contribution

of linear (covariance), quadratic (co-skewness), and non-linear payo¤s (call option) to the price of
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the volatility contract risk. The coe¢ cient �1 represents the volatility contract beta. Following

the literature, this coe¢ cient is expected to be negative. This should be attributed to the negative

correlation between the volatility contract #t+1 and the market return. The coe¢ cient �2 is closely

related to the covariance between the volatility contract and the square of the market return. Ac-

cording to Harvey and Siddique (2000), this coe¢ cient is the co-skewness of the volatility contract

with the market. If this co-skewness is economically important, it will manifest through �2. Fol-

lowing the empirical evidence provided by Carr and Wu (2004), this coe¢ cient is expected to be

positive. The coe¢ cient �3 captures the covariance between the volatility contract and the call

option payo¤. The sign of this coe¢ cient is determined by the correlation between the volatility

contract return and the call option return. The risks captured by �1; �2, and �3 are important to

e¤ectively manage risk and allocate assets, to accurately price and hedge derivative securities and

understand the behaviour of �nancial asset prices in general. Speci�cation (46) provides a method

to retrieve the price of the volatility risk. Applying the Hansen and Richard (1987) pricing formula

to this speci�cation, we deduce the risk neutral-variance of asset i:

��2it = �� + ���
�2
mt, (47)

with �� = �0 + rft�1 + ��r
2
ft + rft�3Callk1 and �� = �2; where Callk1 represents the price of

the call option with moneyness k1; and ��2mt represents the variance of the market return under

the risk-neutral measure. To compute the price of the call option with moneyness k1, a reasonable

benchmark to start is to assume that RMt+1 is lognormally distributed; then the price of the

European call option is given by the Black-Scholes formula. The risk-neutral variance ��2it can be

substituted back into (45) to obtain a closed-form expression for the price of the volatility contract.

Once the price of the volatility contract is calculated, it is easy to derive the return on the volatility

contract #t+1=p�t .

5.3 Application to hedge funds and options

5.3.1 Data

We use hedge funds obtained from the TASS database.8 It covers over 4,606 funds from February

1977 to March 2004. Our sample starts in January 1996 and ends in March 2004. The data provide

monthly hedge fund returns. We use three types of indexes: 1) the Standard & Poor�s Hedge

Fund Index (SP); 2) the Hedge Fund Research (HFR) indexes, and 3) the Credit Suisse First

Boston/Tremont (TREMONT). The conditioning variable used to proxy z�1t is the yield spread

between 20-year Treasury bonds and 1-month Treasury bills. This variable has been used in the

8We would like to thank the referee for suggesting that we investigate this issue.
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literature as a proxy for the changes of risk in the market. It is shown to be correlated with the

business cycle.9 The conditioning variable used to proxy z�2t is the lag of the volatility index, VIX,

which measures the market expectation of 30-day volatility.10 We also use hedge fund data after

correcting for the back�lling (or instant-history) and the survivorship bias. The results with the

hedge fund indexes are similar. Therefore, we present the results for TREMONT indexes without

bias correction.

5.3.2 Can we explain the pricing of the volatility contract with non-linear risk fac-
tors?

Table 1 presents the piecewise linear �t for the volatility contract. The TREMONT indexes without

bias correction are used. As shown in Table 1, the intercept �0 comes out statistically signi�cant (at

the 5 per cent level) for all categories, except for Equity Market Neutral. The coe¢ cient �1, which

captures the beta of the volatility contract, comes out statistically signi�cant (at the 5 per cent

level) for all categories, except for Fixed Income Arbitrage, Equity Market Neutral, Global Macro,

and Managed Futures. As expected, this coe¢ cient is negative for all categories, except for Equity

Market Neutral. The CAPM argues that the expected excess return on an asset is proportional

to the beta of the asset, or the covariance of the return on the asset with the market portfolio

return. Qualitatively, the negative coe¢ cient �1 is consistent with the CAPM, given the well-

documented negative correlation between the index returns and index volatility. The coe¢ cient

�1 ranges from -10.01 to -0.03. The highest beta is obtained for Dedicated Short Bias, while the

lowest beta is obtained for Fixed-Income Arbitrage. These results indicate that the market return

is an important risk factor for the volatility contract. However, does the market factor matter only

for the volatility contract? To investigate this issue, we look at the contribution of non-linear risk

factors that appears in speci�cation (46). The signi�cance of the coe¢ cients �2 and �3 reveals that

the market return factor cannot fully explain the volatility contract. There are other economically

interesting factors, such as the square of the market return and the call option payo¤. As shown in

Table 1, the coe¢ cient �2, which captures the co-skewness of the volatility contact with the market

return, is positive and statistically signi�cant at the 5 per cent level for most of the hedge fund

categories. To see the economic impact of the squared market return factor, consider the Dedicated

Short Bias category, which has some of the largest �2 by magnitude. For a 1 per cent increase in the

squared market return, the volatility contract based on the Dedicated Short Bias category changes

9For a robustness check, we use the yield on the three-month Treasury bill in excess of the yield on the one-month

Treasury bill to proxy z�1t. The conclusions about our estimation do not change.
10The VIX measure is based on the S&P 500 index option prices and incorporates information from the volatility

�skew�by using a wider range of strike prices, rather than just at the money series.
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by 5.26 per cent. In this case, the squared market return has a larger economic impact on this

volatility contract. The positive coe¢ cient �2 ranges from 0.02 to 5.26 for all hedge fund categories.

Furthermore, the coe¢ cient �3 of the option factor is negative and statistically signi�cant at the

5 per cent level for most of the hedge fund categories. To see the economic impact of the option

return factor, consider again the Dedicated Short Bias category, which has some of the largest �3
by magnitude. For a 1 per cent increase in the option return, the volatility contract based on the

Dedicated Short Bias category changes by -0.99 per cent. This shows that the option return has

a slightly larger economic impact on this volatility contract. The coe¢ cient �3 ranges from -0.99

to -0.01 for all hedge fund categories. This suggests that the non-linear factors, in addition to the

market return, might be useful for explaining the volatility contract, and hence the price of the

volatility contract. In addition, note that the speci�cation (46) provides a reasonable estimate of

the call option moneyness level k1 (they are all signi�cant at the 5 per cent level and they range

from 0.96 to 1.03).11

5.3.3 Performance of asset-pricing models

We discuss the performance of asset-pricing models when the pricing kernel is expressed with con-

stant and time-varying coe¢ cients, as in equations (42), (44), and (43). The results are presented

in Tables 2, 3, and 4. Table 2 presents the Hansen and Jagannathan (1997) distance measure, �HJ ;

the distance measure with higher moments, �HM ; the Bekaert and Liu distance measure, �BL; and

the distance measure with conditioning information and higher moments, �OHM . The standard

errors for the distance measures are labelled se(�). As described in section 3, the standard errors

are calculated under the alternative hypothesis that the true distance is not equal to zero. These

standard errors allow an assessment of the precision with which the distance measure is estimated.

The p-values of the test � = 0 as calculated in section 3 under the null hypothesis that the true

distance is zero are labelled P(� = 0). The p-values of the J-statistics from optimal GMM esti-

mates of the models are labelled P(J). �err is the maximum expected return error for a portfolio

of basis-asset returns only. Tables 3 and 4 present the value and standard errors of constant and

time-varying coe¢ cients of pricing kernels. In the following, we �rst discuss the HJ distance results.

Second, we discuss the HM distance results. We thereafter compare these two distances. Lastly,

we introduce conditioning information into the distance measures and discuss the results.

11As a robustness check, we repeat the analysis for Standard & Poor�s Hedge Fund Index (SP) and Hedge Fund

Research indexes. We also do the analysis using hedge fund indexes after correcting the two well-known biases:

back�lling and survivorship biases. We �nd similar conclusions. The results are untabulated, but are available from

the author on request.
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The HJ distance The p-values of the HJ distance indicate that the linear and quadratic pricing

kernels and their time-varying extensions are all rejected at the 5 per cent signi�cance level. The

HJ distance measure and p-value suggest marginal improvement in moving from a linear pricing

kernel to a quadratic pricing kernel. Interestingly, the HJ distance measure and p-value suggest

signi�cant improvement in moving from pricing kernels with constant coe¢ cients to pricing ker-

nels with time-varying coe¢ cients. The linear pricing kernel with time-varying coe¢ cients CP(3)

reduces the distance measure by 10.10 per cent relative to the linear pricing kernel with constant

coe¢ cients CP(1). The quadratic pricing kernel with time-varying coe¢ cients HS(3) reduces the

distance measure by 13.24 per cent relative to the quadratic pricing kernel with constant coe¢ cients

HS(1). In addition, the quadratic pricing kernel HS(3) reduces the distance measure by 3.55 per

cent relative to the linear pricing kernel CP(3). These results indicate that incorporation of the

quadratic term in the pricing kernel and the use of time-varying coe¢ cients in the pricing kernel

improve the �t of the model. These results are consistent with the �nding of Harvey and Siddique

(2000) and Dittmar (2002). The p-values of the HJ distance indicate that the Fama and French

pricing kernel and its time-varying extensions cannot be rejected at the 5 per cent signi�cance

level. The Fama and French pricing kernel with time-varying coe¢ cients FF(3) reduces the dis-

tance measure from 0.3396 to 0.1571, a drop of 53.74 per cent relative to the Fama and French

pricing kernel with constant coe¢ cients FF(1). Thus, the results suggest that the Fama and French

pricing kernel and its time-varying extensions outperform the linear and quadratic pricing kernel

and their time-varying extensions in pricing the cross-section of hedge fund returns. Furthermore,

Table 3 presents the value and standard errors of the coe¢ cients bi and ci, i = 0; 1; 2; 3. The

coe¢ cients of the linear and quadratic pricing kernels have the right sign and magnitude. Some

coe¢ cients are statistically signi�cant at the 5 per cent level. Moreover, the coe¢ cients bi of the

Fama and French pricing kernel and their time-varying extensions have reasonable magnitude and

are, in majority, statistically signi�cant at the 5 per cent level. Note that there is no sign restriction

on the coe¢ cients of Fama and French pricing kernels.

The HM distance As shown in Table 2, the p-values of the HM distance indicate that the

linear and quadratic pricing kernels and their time-varying extensions are all rejected at the 5 per

cent signi�cance level. The HM distance measure suggests marginal improvement in moving from a

linear speci�cation of the pricing kernel to a non-linear speci�cation. The HM distance measure also

suggests signi�cant improvement in moving from pricing kernels with constant coe¢ cients to pricing

kernels with time-varying coe¢ cients. The linear pricing kernel with time-varying coe¢ cients CP(3)

reduces the distance measure from 2.6280 to 2.4413, a drop of 7.10 per cent relative to the linear

pricing kernel with constant coe¢ cients CP(1). The quadratic pricing kernel with time-varying
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coe¢ cients HS(3) reduces the distance measure from 2.6027 to 1.9132, a drop of 26.49 per cent

relative to the quadratic pricing kernel with constant coe¢ cients HS(1). Moreover, the quadratic

pricing kernel HS(3) reduces the distance measure by 21.63 per cent relative to the linear pricing

kernel CP(3) with time-varying coe¢ cients. These results suggest that the incorporation of the

quadratic term in the pricing kernel, and the use of a time-varying coe¢ cient in the pricing kernel,

improve the �t of the model. Contrary to the HJ distance measure, the p-value of the HM distance

measure indicates that the Fama and French pricing kernel and its time-varying extensions are all

rejected at the 5 per cent signi�cance level. The time-varying extension of the Fama and French

pricing kernel FF(3) reduces the distance measure from 2.5847 to 2.0064, a drop of 22.37 per

cent relative to the Fama and French pricing kernel with constant coe¢ cients FF(1). We further

investigate the sign of the pricing kernel coe¢ cients. Table 3 presents the value and standard

errors of coe¢ cients bi and ci, i = 0; 1; 2; 3. The coe¢ cients bi of the linear and quadratic pricing

kernels have the right sign and magnitude, and are all statistically signi�cant. This is particularly

interesting, since the signs of the coe¢ cients are restricted by preference theory. In addition,

the coe¢ cients of the Fama and French pricing kernels have a reasonable magnitude and are all

statistically signi�cant.

Comparing the HJ with the HM distance As shown by the Fama and French pricing kernel

results (see Table 2), the HJ and HM distances and their p-values lead to di¤erent conclusions about

asset-pricing models. These results show that some existing pricing models are able to describe

returns ignoring the impact of higher-order moments. When accounting for the impact of higher

moments or non-linearities, these same models have di¢ culty in pricing asset non-linearities or

higher moments, or have di¢ culty in explaining returns on the assets. The HM distance measure is

always higher than the HJ distance measure. As pointed out by Hansen and Jagannathan (1997),

rf�HJ can be interpreted as the maximum possible expected return error for a portfolio of basis

assets (only) per unit of standard deviation under the assumption that the true pricing kernel and

the proxy pricing kernel have the same mean. As discussed in section 3, rf�HM represents the

maximum possible expected return error for a portfolio of basis assets and derivatives per unit

of standard deviation under the assumption that the true pricing kernel and the proxy pricing

kernel have the same mean. Table 2 shows that the maximum possible expected return error for

a portfolio of basis assets and derivatives is considerable. This error ranges from 1.9132 to 2.6280

if we assume a risk-free return, rf = 1. When we allow the coe¢ cients of the pricing kernels

to be time varying, the quadratic pricing kernel has the lowest maximum expected return error

(�HM = 1:9132). These results suggest that the existing pricing kernels are unable to correctly

price asset returns and derivatives.
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Table 2 also shows the maximum expected return error for a portfolio of basis-asset returns only

(�err). As shown in this table, when accounting for higher moments, the maximum expected return

error for a portfolio of basis-asset returns only is lower than the one obtained when higher moments

are ignored. For example, when accounting for higher moments, the time-varying quadratic pricing

kernel HS(3) reduces the maximum expected error from 0:0108 to 0:0006, a decline of 94:44 per

cent relative to the case where higher moments are ignored. Indeed, when accounting for higher

moments, the time-varying Fama and French pricing kernel HS(3) reduces the maximum expected

error from 0:0059 to 0:0014, a decline of 76:27 per cent relative to the case where higher moments are

ignored. These results are consistent with the �ndings of Harvey and Siddique (2000), who argue

that the pricing error of a portfolio of basis asset (only) can be partially explained by skewness.

Thus, incorporating higher moments in the distance measure helps provide an accurate measure of

the expected return of a portfolio of basis assets only. This conclusion is reinforced by the implied

variance of the estimated pricing kernels. Recall that both the HJ and HM distance measures can

be express as:

kpk =
q
E (p)2 + V ar (p);

where p is the adjustment to the pricing kernel necessary to reduce the distance to an admissible

pricing kernel to zero. The distance measure has two components: it is a function of the expected

deviation from some admissible pricing kernel and the variance of that deviation. A proxy pricing

kernel with a small distance measure tends to reduce the volatility of the adjustment necessary to

make the proxy admissible. Graphs A and B of Figure 3 present the estimated pricing kernels.

Each pricing kernel is represented by its mean and standard deviation. Graph A shows pricing

kernels estimated with the HJ distance, and Graph B shows pricing kernels estimated with the

HM distance. As shown in Graph B, when accounting for higher moments, the variance of the

estimated pricing kernels is higher than the variance of pricing kernels estimated with the HJ

distance, rendering the pricing kernel admissible to the Hansen and Jagannathan variance bound.

This may explain why higher moments help provide an accurate measure of the expected excess

return.

The BL distance We discuss the performance of asset-pricing models with conditioning infor-

mation. As shown in Table 2, the outcome of the distance measures with conditioning information

di¤ers markedly from the results of the distance measures without conditioning information. All

pricing kernels except the linear one improve substantially relative to the case in which the condi-

tioning information is not included in the distance measure. For example, the BL distance measure

implied by the linear pricing kernel with time-varying coe¢ cients CP(2) falls to 0.4433, a decline

of 11.69 per cent relative to the same pricing kernel estimated with the HJ distance. In addition,
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the BL distance measure implied by the linear pricing kernel with time-varying coe¢ cients CP(3)

falls to 0.4430, a decline of 2.25 per cent relative to the same pricing kernel estimated with the

HJ distance. However, the linear pricing kernels with constant and time-varying coe¢ cients are

all rejected at the 5 per cent signi�cance level. Considerable further improvement is observed in

moving from linear to quadratic pricing kernels. The BL distance measure also indicates that

quadratic pricing kernels result in an additional decrease in the distance measure relative to the

linear pricing kernels. For example, the quadratic pricing kernel HS(3) reduces the BL distance

from 0.4430 to 0.3860, a drop of 12.87 per cent relative to the linear pricing kernel with time-varying

extensions CP(3). However, the quadratic pricing kernel is rejected at the 5 per cent signi�cance

level. We also investigate the ability of the Fama and French pricing kernel and its time-varying

extensions to price the cross-section of hedge fund returns when accounting for conditioning infor-

mation. When accounting for conditioning information in the HJ distance measure (i.e., by using

the BL distance), the Fama and French pricing kernel and its time-varying extensions outperform

the linear and quadratic pricing kernels and their time-varying extensions. For example, the BL

distance measure implied by the Fama and French pricing kernel FF(3) falls to 0.2431, a decline

of 37.02 per cent relative to the quadratic pricing kernel HS(3), and a decline of 45.12 per cent

relative to the linear pricing kernel CP(3). Moreover, the speci�cation test cannot reject the Fama

and French pricing kernels at the 5 per cent signi�cance level. Thus, incorporating conditioning

information in the HJ distance (the BL distance) appears to have a signi�cant impact on the �t

of the pricing kernel. We further investigate the sign of the pricing kernel coe¢ cients. Table 4

presents the value and standard errors of coe¢ cients bi and ci, i = 0; 1; 2; 3. These coe¢ cients have

the right magnitude and most are statistically signi�cant at the 5 per cent level. In addition, the

coe¢ cients bi of the linear and quadratic pricing kernels have the right sign.

The OHM distance We use the OHM distance to estimate the pricing kernels. As shown

in Table 2, the OHM distance measure implied by the linear pricing kernels CP(1), CP(2), and

CP(3) falls to 1.2357, 1.1766, and 1.1762, respectively, a decline of 52.98, 55.22, and 51.82 per cent

relative to the results obtained with the HM distance (i.e., when accounting for higher moments and

ignoring conditioning information). The linear pricing kernels and their time-varying extensions

are all rejected at the 5 per cent signi�cance level. Marginal improvement is observed in moving

from linear to quadratic pricing kernels. The results in Table 2 also indicate that quadratic pricing

kernels slightly reduce the distance measure relative to the linear pricing kernels. For example,

the quadratic pricing kernel HS(3) reduces the distance measure from 1.1762 to 1.1588, a drop of

1.48 per cent. However, the quadratic pricing kernels are rejected at the 5 per cent signi�cance

level. The performance of the Fama and French pricing kernel and its time-varying extensions is
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enhanced by incorporating conditioning information and higher moments in the distance measure

(i.e., by using the OHM distance measure). For example, the time-varying Fama and French

pricing kernel FF(3) falls from 2.0064 to 1.0322, a considerable decline relative to the case in which

conditioning information is not included in the distance measure with higher moments (i.e., using

the HM distance). In addition, the OHM distance implied by the Fama and French pricing kernel

FF(3) falls to 1.0322, a decline of 10.93 per cent relative to the quadratic pricing kernel HS(3) and a

decline of 12.24 per cent relative to the linear pricing kernel CP(3). In contrast to the BL distance,

the speci�cation test rejects the Fama and French pricing kernel and its time-varying extension at

the 5 per cent signi�cance level. These results suggest that the BL and the OHM distances lead to

di¤erent conclusions about asset-pricing models. Further, Table 4 presents the value and standard

errors of the pricing kernel coe¢ cients. These coe¢ cients have the right magnitude and most are

statistically signi�cant at the 5 per cent level. In addition, the coe¢ cients bi of the linear and

quadratic pricing kernels, except CP(2), have the right sign.

Comparing the BL with the OHM distance As shown in Table 2, the p-values of the BL and

OHM distance measures implied by the Fama and French pricing kernel lead to di¤erent conclusions

about asset-pricing models. These results reinforce the conclusion that some existing pricing models

are able to describe returns ignoring the impact of higher-order moments. When accounting for

the impact of conditioning information and higher moments, these same models have di¢ culty in

explaining returns on the assets and are unable to price non-linearities or higher moments. Table

2 also shows that the maximum possible expected return error for a portfolio of basis assets and

derivatives, rf�OHM , is considerable. This error ranges from 1.0322 to 1.2368 if we assume a risk-

free return, rf = 1. Although the existing pricing kernels are unable to correctly price asset returns

and derivatives, these results suggest that conditioning information improves the ability of pricing

kernels to price asset returns and derivatives. Table 2 also shows the maximum expected return

error for a portfolio of basis assets only (�err); considerable improvement is observed in �err when

accounting for higher moments and conditioning information. For example, when accounting for

conditioning information and ignoring higher moments, the maximum expected return error for

a portfolio of basis assets, �err; implied by the Fama and French pricing kernel FF(3) is 0:0059.

When accounting for higher moments and conditioning information, �err reduces from 0:0059 to

0:001271� 10�5.
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5.4 Application to industry portfolios

5.4.1 Data

Industry portfolios have been used in the empirical asset-pricing literature for tests of candidates�

asset-pricing models. We utilize the return on 20 industry-sorted portfolios, where the industry

de�nitions follow the two-digit SIC codes used in Moskowitz and Grinblatt (1999). The sample

starts from January 1990 and ends in December 2005. Industry groupings proxy the investment

opportunity set well. These groupings maximize intragroup and minimize intergroup correlations.

The data used to compute the industry portfolio returns, value-weighted index return, and risk-free

return were obtained from CRSP.

5.4.2 Can we explain the price of the volatility contract with non-linear risk factors?

Table 5 presents the piecewise linear �t for the volatility contract using industry portfolios. As

shown in this table, the intercept �0 is positive and statistically signi�cant at the 5 per cent level

for all industry portfolio returns, except for Electrical Equipment and Utilities. The coe¢ cient �1,

which captures the volatility contract beta, comes out statistically signi�cant (at the 5 per cent

level) for all industries, except for Electrical Equipment and Utilities. The �1�s have the expected

sign and range from -5.41 to -2.05. The signi�cance of �2 and �3 indicates that the market factor

cannot fully explain the price of the volatility contract. As shown in Table 5, the coe¢ cient �2,

which captures the co-skewness of the volatility contract with the market return, is positive and

statistically signi�cant (at the 5 per cent level) for all industry portfolios, except for Electrical

Equipment and Utilities.

To see the economic impact of the squared market return factor, consider the Primary Metals

portfolio, which has some of the largest �2 by magnitude. For a 1 per cent increase in the squared

market return, the volatility contract based on the Primary Metals portfolio changes by 2.75 per

cent. In this case, the squared market return has a larger economic impact on this volatility

contract. The positive coe¢ cient �2 ranges from 1.04 to 2.75. Furthermore, the coe¢ cient �3 is

negative and statistically signi�cant (at the 5 per cent level) for most of the industry portfolios,

except for Electrical Equipment and Utilities, which has a signi�cant (at the 5 per cent level) and

positive coe¢ cient �3. To see the economic impact of the option return factor on the volatility

contract, consider again the Primary Metals portfolio, for which the coe¢ cient �3 is -0.63. For

a 1 per cent increase in the option return factor, the volatility contract based on the Primary

Metals portfolio changes by -0.63 per cent. This shows that the option return has a slightly larger

economic impact on this volatility contract. These results suggest that the non-linear factors such

as the square of the market return and the call option payo¤, in addition to the market return,
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might be useful for explaining the volatility contract, and hence the price of the volatility contract.

Note that the speci�cation (46) provides a reasonable estimate of the call option moneyness level,

k1. They are all signi�cant at the 5 per cent level, and they range from 0.98 to 1.05.

5.4.3 Performance of asset-pricing models

We use industry portfolio returns and discuss the performance of asset-pricing models when the

pricing kernel is expressed with constant and time-varying coe¢ cients, as in equations (42), (43),

and (44). The results are presented in Tables 6, 7, and 8. Table 6 presents the distance measures,

their standard errors, and p-values. It also presents the maximum expected return error for a

portfolio of basis asset returns only, �err. Tables 7 and 8 present the value and standard errors

of the constant and time-varying coe¢ cients of pricing kernels. In the following, we �rst discuss

the HJ distance results. Second, we discuss the HM distance results. We then compare these two

distances. Lastly, we introduce conditioning information into the distance measures and discuss

the results.

The HJ distance The p-values of the HJ distance indicate that the linear and quadratic pricing

kernels and their time-varying extensions are all rejected at the 5 per cent signi�cance level. The

HJ distance measure suggests signi�cant improvement in moving from the linear pricing kernel

to the quadratic pricing kernel. For example, the quadratic time-varying pricing kernel HS(3)

reduces the HJ distance from 0.4533 to 0.4085, a drop of 9.88 per cent relative to the linear

time-varying pricing kernel CP(3). The HJ distance suggests marginal improvement in moving

from the linear pricing kernel to its time-varying extensions. However, the HJ distance suggests

signi�cant improvement in moving from the quadratic pricing kernel HS(1) to its time-varying

extension HS(3). The quadratic pricing kernel with time-varying coe¢ cient HS(3) reduces the HJ

distance from 0.4413 to 0.4085, a decline of 7.43 per cent relative to the quadratic pricing kernel

with constant coe¢ cients HS(1). These results indicate that the use of a time-varying coe¢ cient

and the incorporation of the quadratic term in the pricing kernel improves the �t of the model. We

also investigate the ability of the Fama and French pricing kernel to explain industry returns. As

shown in Table 6, the Fama and French pricing kernel, FF(3), reduces the HJ distance to 0.3784,

a decline of 7.37 per cent relative to the quadratic pricing kernel HS(3), and a decline of 16.52 per

cent relative to the linear pricing kernel CP(3). Thus, these results suggest that the Fama and

French pricing kernel outperforms the linear and the quadratic pricing kernels in pricing the cross-

section of industry returns.12 Furthermore, we investigate the sign, magnitude, and signi�cance

12Dittmar (2002) �nds that the quadratic pricing kernel outperforms the Fama and French pricing kernel in pricing

the cross-section of industry returns. Note that Dittmar (2002) assumes that the coe¢ cients of the quadratic pricing
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of the pricing kernel coe¢ cients. Table 7 presents the value and standard errors of the pricing

kernel coe¢ cients. Most of the coe¢ cients are statistically signi�cant at the 5 per cent level. The

coe¢ cients of the linear and quadratic pricing kernels have the right sign and magnitude.

The HM distance As shown in Table 6, the HM distance and its p-value indicate that the

pricing kernels and their time-varying extensions are all rejected at the 5 per cent signi�cance

level. The HM distance measure and its p-value suggest marginal improvement in moving from the

linear pricing kernels to the quadratic pricing kernels. The HM distance measure and p-value also

suggest signi�cant improvement in moving from pricing kernels with constant coe¢ cients to pricing

kernels with time-varying coe¢ cients. The linear pricing kernel with time-varying coe¢ cients CP(3)

reduces the distance measure from 5.7505 to 5.5374, a decline of 3.71 per cent relative to the linear

pricing kernel with constant coe¢ cients CP(1). The quadratic pricing kernel with time-varying

coe¢ cients HS(3) reduces the distance measure from 5.7276 to 5.4909, a decline of 4.13 per cent

relative to the quadratic pricing kernel with constant coe¢ cients HS(1). Thus, the quadratic pricing

kernel with time-varying coe¢ cients improves the �t of the model.

We also investigate the ability of the Fama and French pricing kernel to price the cross-section of

industry returns. The time-varying extension of the Fama and French pricing kernel FF(3) reduces

the distance measure from 5.7253 to 5.1330, a drop of 10.35 per cent relative to the Fama and French

pricing kernel with constant coe¢ cients FF(1). Furthermore, the Fama and French pricing kernel

FF(3) reduces the HM distance measure from 5.5374 to 5.1330, a drop of 7.30 per cent relative to

the time-varying linear pricing kernel CP(3). Indeed, the Fama and French pricing kernel FF(3)

reduces the HM distance measure from 5.4909 to 5.1330, a drop of 6.52 per cent relative to the time-

varying quadratic pricing kernel HS(3). These results suggest that incorporation of the time-varying

Fama and French pricing kernel improves the �t of the model. The Fama and French pricing kernel

outperforms the linear and quadratic pricing kernels and their time-varying extensions. We further

investigate the sign of the pricing kernel coe¢ cients. Table 7 presents the value and standard errors

of the pricing kernel coe¢ cients. The coe¢ cients are all statistically signi�cant at the 5 per cent

level. It is particularly interesting to see that the linear and quadratic pricing kernels have the

right sign.

kernel are a quadratic function of the conditioning variable while the coe¢ cients of the Fama and French pricing

kernel are a linear function of the conditioning variable. In Table 6, the HJ distance indicates that the quadratic

pricing kernel HS(3), with linear time-varying coe¢ cients, outperforms the Fama and French pricing kernel with

constant coe¢ cients FF(1). We do not investigate the case when the coe¢ cients of the quadratic pricing kernel are

a quadratic function of the conditioning variables.
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Comparing the HJ with the HM distance As shown in Table 6, the maximum possible

expected return error for a portfolio of basis assets and derivatives per unit of standard deviation,

rf�HM , is considerable. This error ranges from 5.1330 to 5.7505 if we assume a risk-free return,

rf = 1. If we allow the coe¢ cients of the pricing kernels to be time varying, the quadratic and

the Fama and French pricing kernel FF(3) has the lowest maximum expected return error (�HM =

5.1330). However, the maximum possible expected return error for a portfolio of basis assets only,

rf�HJ , ranges from 0.3784 to 0.4534 if we assume a risk-free return, rf = 1. These results show that

some existing pricing models are able to describe industry returns ignoring the impact of higher-

order moments. When accounting for the impact of higher moments or non-linearities, these same

models have di¢ culty in explaining returns on the assets and derivatives.

Table 6 also shows the maximum expected return error for a portfolio of basis asset returns

only (�err). As shown in this table, when accounting for higher moments, the maximum expected

return error is lower than the one obtained when higher moments are ignored. For example,

when accounting for higher moments, the time-varying quadratic pricing kernel HS(3) reduces the

maximum expected error from 0:0104 to 0:0004, a decline of 96:15 per cent relative to the case

where higher moments are ignored. Indeed, when accounting for higher moments, the time-varying

Fama and French pricing kernel HS(3) reduces the maximum expected error from 0:0113 to 0:0004,

a drop of 96:46 per cent relative to the case where higher moments are ignored. Thus, incorporating

higher moments in the distance measure helps provide an accurate measure of the expected return

of a portfolio of basis assets only. This conclusion is reinforced by the implied variance of the

estimated pricing kernels. Figure 4 presents the estimated pricing kernels. Each pricing kernel is

represented by its mean and standard deviation. Graph A shows pricing kernels estimated with

the HJ distance, and Graph B shows pricing kernels estimated with the HM distance. As shown

in Graph B, when accounting for higher moments, the variance of the estimated pricing kernels is

higher than the variance of pricing kernels estimated with the HJ distance, rendering the pricing

kernel admissible to the Hansen and Jagannathan variance bound. This supports the argument

that higher moments help provide an accurate measure of the expected excess return.

The BL distance We next discuss the performance of asset-pricing models with conditioning

information. As shown in Table 6, the distance measures with conditioning information di¤er from

the distance measures when the conditioning information is ignored. All pricing kernels with time-

varying coe¢ cients improve substantially relative to the case in which conditioning information

is not included in the distance measure. For example, the BL distance measure implied by the

linear pricing kernel with time-varying coe¢ cient CP(2) falls to 0.2403, a drop of 46.99 per cent

relative to the same pricing kernel estimated without conditioning information (i.e., using the HJ
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distance). In addition, the BL distance measure implied by the linear pricing kernel with time-

varying coe¢ cients CP(3) falls to 0.2392, a decline of 47.23 per cent relative to the same pricing

kernel estimated with the HJ distance. The linear pricing kernels with constant coe¢ cients are

rejected at the 5 per cent signi�cance level. However, the linear pricing kernels with time-varying

coe¢ cients cannot be rejected at the 5 per cent signi�cance level. Further, marginal improvement

is observed in moving from linear to quadratic pricing kernels. The BL distance measure indicates

that quadratic pricing kernels result in an additional decrease in the distance measure relative to

the linear pricing kernels. For example, the quadratic pricing kernel HS(3) reduces the BL distance

from 0.2392 to 0.2268, a drop of 5.18 per cent relative to the linear pricing kernel with time-varying

extensions CP(3). The quadratic pricing kernel with constant coe¢ cient is rejected at the 5 per

cent signi�cance level. However, the quadratic pricing kernel with time-varying coe¢ cients cannot

be rejected at the 5 per cent signi�cance level.

We also investigate the ability of the Fama and French pricing kernel and its time-varying

extensions to price the cross-section of industry returns. The performance of the Fama and French

pricing kernel and its time-varying extensions is improved by incorporating conditioning information

in the distance measure (i.e., by using the BL distance). For example, the Fama and French

pricing kernel FF(3) falls to 0.1974, a drop of 47.83 per cent relative to the same pricing kernel

estimated without conditioning information (i.e., using the HJ distance). In addition, the Fama

and French pricing kernels outperform the linear and quadratic pricing kernels. For example, the

BL distance implied by the Fama and French pricing kernel FF(3) falls to 0.1974, a decline of 12.96

per cent relative to the quadratic pricing kernel HS(3), and a decline of 17.47 per cent relative

to the linear pricing kernel CP(3). Moreover, the speci�cation test cannot reject the Fama and

French pricing kernel with time-varying coe¢ cients at the 5 per cent signi�cance level. Thus,

incorporating conditioning information in the HJ distance (i.e., using the BL distance) appears to

have a signi�cant impact on the �t of the pricing kernel. We also investigate the sign of the pricing

kernel coe¢ cients. Table 8 presents the value and standard errors of the pricing kernel coe¢ cients.

The coe¢ cients bi of the linear and quadratic pricing kernels, except for CP(2) and HS(2), have

the right sign.

The OHM distance We use the OHM distance to estimate the pricing kernels. As shown

in Table 6, the OHM distance measure implied by the linear pricing kernels CP(1), CP(2), and

CP(3) falls to 0.8538, 0.8313, and 0.8265, respectively, a considerable decline relative to the results

obtained with the HM distance (i.e., when accounting for higher moments and ignoring conditioning

information). The linear pricing kernels and its time-varying extensions are all rejected at the 5

per cent signi�cance level. Marginal improvement is observed in moving from linear to quadratic
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pricing kernels. The results in Table 2 also indicate that quadratic pricing kernels cause a small

decrease in the distance measure relative to the linear pricing kernels. For example, the quadratic

pricing kernel HS(3) reduces the distance measure from 0.8265 to 0.7990, a drop of 3.33 per cent

relative to the linear pricing kernel CP(3). However, the quadratic pricing kernels are rejected at

the 5 per cent signi�cance level. The performance of the Fama and French pricing kernel and its

time-varying extensions is improved by incorporating conditioning information and higher moments

in the distance measure (i.e., by using the OHM distance measure). For example, the time-varying

Fama and French pricing kernel FF(3) falls from 5.1330 to 0.7197, a considerable drop relative to

the case in which conditioning information is not included in the distance measure with higher

moments (i.e., using the HM distance). In addition, the OHM distance implied by the Fama and

French pricing kernel FF(3) falls to 0.7197, a decline of 9.92 per cent relative to the quadratic

pricing kernel HS(3), and a decline of 12.92 per cent relative to the linear pricing kernel CP(3).

In contrast to the BL distance, the speci�cation test rejects the linear, the quadratic, and the

Fama and French pricing kernel with time-varying coe¢ cients at the 5 per cent signi�cance level.

These results suggest that the BL and the OHM distances lead to di¤erent conclusions about asset-

pricing models. Furthermore, Table 8 presents the value and standard errors of the pricing kernel

coe¢ cients. Most of the coe¢ cients of the linear and quadratic pricing kernels are statistically

signi�cant at the 5 per cent level. The sign of the coe¢ cients of the linear pricing kernel is wrong.

However, the coe¢ cients bi of the time-varying quadratic pricing kernels HS(3) have the right

sign. The coe¢ cients of the Fama and French pricing kernel and its time-varying extension are all

statistically signi�cant at the 5 per cent level.

Comparing the BL with the OHM distance As shown in Table 6, the p-values of the BL

and OHM distance measures implied by the time-varying extension of the linear, the quadratic, and

the Fama and French pricing kernel lead to di¤erent conclusions about asset-pricing models. These

results show that, when accounting for the impact of conditioning information and higher moments,

existing asset-pricing models have di¢ culty in explaining returns on the assets and are unable to

price non-linearities or higher moments. Table 6 also presents the maximum possible expected

return error for a portfolio of basis assets and derivatives, rf�OHM . This error ranges from 0.7197

to 0.8538 if we assume a risk-free return, rf = 1. In addition, Table 6 presents the maximum

expected return error for a portfolio of basis assets only (�err). As shown in this table, considerable

improvement is observed in �err when accounting for higher moments and conditioning information.

For example, when accounting for conditioning information and ignoring higher moments, the

maximum expected return error for a portfolio of basis assets, �err, implied by the Fama and

French pricing kernel FF(3) is 0:0001. When accounting for higher moments and conditioning
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information, �err reduces from 0:0001 to 0:008� 10�5.

6. Concluding Remarks

The �nance profession is showing an increasing interest in building asset-pricing models that

incorporate time-varying higher moments and variance risk premia. To compare asset-pricing

models, it is critical to optimally incorporate higher moments and variance risk premia in the

variance bound on pricing kernels. To evaluate the performance of asset-pricing models, it is

also important to derive a distance measure that incorporates conditioning information, higher

moments, and time-varying variance risk premia.

Our paper provides three variance bounds on pricing kernels. First, we derive an e¢ cient

variance bound on pricing kernels, which we call the UCHM bound. It incorporates time-varying

higher moments and variance risk premia. Second, we derive a variance bound on pricing kernels,

which we call the HM bound. It incorporates unconditional higher moments and variance risk

premia. Third, we derive the best possible variance bound, which we call the OHM bound. It

incorporates time-varying higher moments and variance risk premia. We show that the OHM bound

is robust to the misspeci�cation of the �rst four conditional moments of asset returns. There are

interesting applications of this work. In a simulation exercise, we use these bounds to examine

the predictability of asset returns when non-linearities in returns are priced. Important results

stand out. First, the di¤erence between the bounds derived in this paper and existing variance

bounds reveals considerable predictability. Moreover, the OHM bound is signi�cantly higher than

the Bekaert and Liu (2004) optimally scaled bound. This result suggests that conditional higher

moments contribute to better predict future returns. Second, while the Bekaert and Liu (2004)

bound is robust to the misspeci�cation of the �rst two moments of asset returns, the OHM bound is

robust to the misspeci�cation of the �rst four conditional moments of asset returns. Third, we show

how the OHM bound can be used to propose a GMM-based speci�cation test for the conditional

�rst four moments.

Our paper also provides distance measures to evaluate asset-pricing models. We propose two

distance measures. First, we propose an unconditional distance measure, which we call the HM

distance. It incorporates higher moments and variance risk premia. When non-linearities in returns

are not priced, the HM distance is reduced to the Hansen and Jagannathan distance (the HJ

distance). We also propose the best (largest) distance measure, which we call the OHM distance,

to evaluate pricing models. The OHM distance is a function of time-varying higher moments

and time-varying variance risk premia. When non-linearities in returns are not priced, the OHM

distance is reduced to the distance measure obtained using the Bekaert and Liu (2004) scaling
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approach (the BL distance).

We test the linear, the quadratic, and the Fama and French pricing kernel, and their time-

varying extensions. To do this, we use hedge fund indexes and industry portfolio returns. When

accounting for the impact of higher moments and variance risk premia (ignoring the conditioning

information), tests of models show that the HM distance rejects all models at the 5 per cent

signi�cance level, while the HJ distance does not. These results indicate that some existing pricing

kernels are able to describe returns ignoring the impact of higher-order moments and variance risk

premia. When accounting for the impact of higher moments and variance risk premia, these same

pricing kernels have di¢ culty in explaining returns on the assets and are unable to price non-

linearities or higher moments. However, the maximum expected return error for a portfolio of basis

assets only is reduced when accounting for higher moments and variance risk premia. This result

is consistent with the �ndings of Harvey and Siddique (2000), who argue that the pricing error of

a portfolio of basis assets (only) can be partially explained by skewness. Our results show that the

pricing error of a portfolio of basis assets (only) can be partially explained by higher moments and

variance risk premia. Moreover, the pricing kernels estimated with HJ distance often lie outside

the region de�ned by the HJ bound. Although the pricing kernels estimated with the HM distance

do not lie inside the HM bound, they generate su¢ cient volatility to be inside the region de�ned

by the HJ bound. These results indicate that the HM distance contains information about the

distribution of the pricing kernels that is not contained in the HJ distance. Further, when using

the HM distance measure, we �nd that the Fama and French pricing kernel and its time-varying

extensions are able to price the cross-section of return better than the linear and quadratic pricing

kernels and their time-varying extensions.

When the conditioning information is used, tests of models show that the OHM and BL distances

also yield di¤erent conclusions about asset-pricing models. The OHM distance rejects all pricing

kernels at the 5 per cent signi�cance level, while the BL distance does not. Further, the pricing

kernels estimated with the OHM distance are able to price the cross-section of returns substantially

better than the pricing kernels estimated with the HM distance. This suggests that time-varying

higher moments and variance risk premia are important to price the cross-section of returns.
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Piecewise Linear Fit: TREMONT indexes

�0 �1 �2 �3 k1 R2

Convertible Arbitrage

Fixed-Income Arbitrage

Event Driven

Equity Market Neutral

Long/Short Equity Hedge

Global Macro

Emerging Markets

Dedicated Short Bias

Managed Futures

Funds of Funds

Other

0.1476 -0.3086 0.1612 -0.0243 0.9988 52.31%
(0.0351) (0.0739) (0.0389) (0.0072) (0.0029)
0.0154 -0.0327 0.0174 -0.0134 1.0535 0.73%
(0.0101) (0.0217) (0.0116) (0.0131) (0.0223)
0.1971 -0.4050 0.2079 -0.0305 1.0317 37.66%
(0.0328) (0.0676) (0.0347) (0.0124) (0.0108)
-0.2671 0.5847 -0.3180 0.0837 0.9988 2.19%
(0.2495 (0.5436) (0.2947) (0.0717) (0.0028)
0.4521 -0.9255 0.4739 -0.0779 1.0317 12.17%
(0.0540) (0.1134) (0.0594) (0.0681) (0.0257)
0.8284 -1.8397 1.0200 -0.2899 0.9767 1.32%
(0.9133) (1.9891) (1.0814) (0.2859) (0.0124)
2.1279 -4.4532 2.3301 -0.3894 0.9988 25.96%
(0.6644) (1.3984) (0.7352) (0.1380) (0.0038)
4.7624 -10.0124 5.2636 -0.9949 0.9988 29.24%
(1.2228) (2.6208) (1.4036) (0.3187) (0.0053)
0.3897 -0.8444 0.4585 -0.1031 0.9771 -0.72%
(0.4064) (0.8835) (0.4785) (0.1238) (0.0160)
0.2761 -0.5759 0.3003 -0.0452 0.9988 44.41%
(0.0754) (0.1596) (0.0843) (0.0162) (0.0037)
1.1324 -2.3747 1.2443 -0.2175 0.9966 71.40%
(0.2756) (0.5788) (0.3037) (0.0560) (0.0016)

Table 1: This table shows the result of the following piecewise linear �t for TREMONT indexes from
January 1996 to March 2004:

(rit+1 � rft)2 = �0 + �1RMt+1 + �2R
2
Mt+1 + �3max (RMt+1 � k1; 0) + �t+1;k1 :

Standard errors in parentheses are computed using Chan and Tsay (1998).
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�HJ �HM �HJ �HM �HJ �HM
CP(1) 0.5041 2.6280 HS(1) 0.5038 2.6027 FF(1) 0.3396 2.5847

se(�) 0.1042 0.2191 0.1044 0.2271 0.1484 0.2213
P(� = 0) 0.0061 0.0001 0.0033 0.0001 0.1843 0.0001
P(J) 0.0055 0.0000 0.0031 0.0000 0.1851 0.0000
�err 0.0097 0.0001 0.0096 0.0001 0.0074 0.0010

CP(2) 0.5020 2.6278 HS(2) 0.5017 2.6018 FF(2) 0.1921 2.5327
se(�) 0.1045 0.2199 0.1049 0.2263 0.1340 0.2354

P(� = 0) 0.0037 0.0001 0.0019 0.0001 0.8289 0.0001
P(J) 0.0033 0.0000 0.0018 0.0000 0.8227 0.0000
�err 0.0092 0.0001 0.0091 0.0001 0.0049 0.0009

CP(3) 0.4532 2.4413 HS(3) 0.4371 1.9132 FF(3) 0.1571 2.0064
se(�) 0.1126 0.2902 0.1133 0.4064 0.1721 0.3218

P(� = 0) 0.0103 0.0001 0.0039 0.0001 0.6600 0.0001
P(J) 0.0099 0.0000 0.0046 0.0000 0.6592 0.0000
�err 0.0112 0.0002 0.0108 0.0006 0.0059 0.0014

�BL �OHM �BL �OHM �BL �OHM
CP(1) 0.5907 1.2357 HS(1) 0.5469 1.2368 FF(1) 0.3021 1.1189

se(�) 0.1002 0.1446 0.1216 0.1421 0.1303 0.1798
P(� = 0) 0.0004 0.0001 0.0006 0.0001 0.3614 0.0001
P(J) 0.0002 0.0000 0.0006 0.0000 0.3550 0.0000
�err 0.0002 0.0000 0.0002 0.0000 0.0001 0.0000

CP(2) 0.4433 1.1766 HS(2) 0.4106 1.1769 FF(2) 0.3010 1.0471
se(�) 0.1064 0.1596 0.1088 0.1606 0.1364 0.1797

P(� = 0) 0.0261 0.0001 0.0385 0.0001 0.2692 0.0001
P(J) 0.0247 0.0000 0.0376 0.0000 0.2682 0.0000
�err 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000

CP(3) 0.4430 1.1762 HS(3) 0.3860 1.1588 FF(3) 0.2431 1.0322
se(�) 0.1069 0.1584 0.1140 0.1411 0.1214 0.1836

P(� = 0) 0.0122 0.0001 0.0254 0.0001 0.2167 0.0001
P(J) 0.0146 0.0000 0.0249 0.0000 0.2201 0.0000
�err 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000

Table 2: This table reports the Hansen and Jagannathan (1997) distance measure (�HJ), the distance
measure implied by the Bekaert and Liu (2004) scaled variance bound (�BL), the distance measure with
higher moments (�HM ), and the distance measure with higher moments that incorporates conditioning
information (�OHM ). The asset returns considered are monthly TREMONT indexes returns and Treasury
bills. The sample size is from January 1996 to March 2004. The standard errors for the distance are labelled
se(�). p (� = 0) is the p-value for the test � = 0 calculated under the null � = 0. The p-value for the
optimal GMM test is p(J). �err is the maximum expected return error for a portfolio of basis assets only.
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�HJ
b0 b1 c0 c1

CP(1) 1.00 -3.09
(0.10) (2.48)

CP(2) 1.00 -3.25 7.63
(0.10) (2.50) (16.71)

CP(3) 1.00 5.24 0.86 -682.21
(0.10) (4.69) (17.01) (319.27)

�HJ
b0 b1 b2 c0 c1 c2

HS(1) 1.00 -12.69 4.85
(0.10) (136.69) (69.27)

HS(2) 1.00 -21.47 9.23 7.65
(0.10) (138.05) (69.94) (16.85)

HS(3) 1.00 -252.52 130.75 34.85 -892.69 -11781.63
(0.10) (217.60) (110.36) (39.69) (366.80) (13089.44)

�HJ
b0 b1 b2 b3 c0 c1 c2 c3

FF(1) 1.00 -23.61 -17.75 -223.34
(0.10) (6.10) (5.79) (185.38)

FF(2) 1.00 -29.88 -23.97 1636.18 188.91
(0.10) (6.50) (6.21) (695.84) (68.14)

FF(3) 0.70 -36.92 -31.08 2658.24 302.38 510.72 427.63 -27151.00
(0.33) (24.55) (23.50) (1205.09) (128.43) (1862.84) (2237.88) (29160.84)

�HM

b0 b1 c0 c1
CP(1) 1.00 -3.72

(0.10) (2.32)
CP(2) 1.00 -3.82 4.07

(0.10) (2.35) (14.47)
CP(3) 1.00 -35.07 20.17 2392.58

(0.10) (4.01) (14.57) (248.58)

�HM
b0 b1 b2 c0 c1 c2

HS(1) 1.00 292.00 -149.48
(0.10) (82.19) (41.53)

HS(2) 1.00 307.72 -157.31 -10.49
(0.10) (85.19) (43.00) (14.95)

HS(3) 1.00 -1241.71 619.94 216.63 31.91 -78772.95
(0.10) (142.37) (72.63) (21.43) (305.84) (5537.63)

�HM
b0 b1 b2 b3 c0 c1 c2 c3

FF(1) 1.00 14.11 19.92 400.41
(0.10) (4.20) (4.28) (145.12)

FF(2) 1.00 9.54 15.32 2852.64 264.23
(0.10) (4.29) (4.37) (501.87) (51.77)

FF(3) 0.42 -79.28 -59.80 6810.17 574.54 7977.63 6262.67 -53662.00
(0.23 (7.35) (8.00) (765.61) (86.11) (598.68) (629.18) (19129.10)

Table 3: This table reports the parameter estimates and standard errors when the HJ and HM
distance measures are used. The sample size of the TREMONT indexes is from January 1996 to
March 2004.
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�BL
b0 b1 c0 c1

CP(1) 1.00 -5.78
(0.10) (2.80)

CP(2) 1.00 -3.89 -49.76
(0.10) (2.84) (12.94)

CP(3) 1.00 -2.87 -49.77 -47.34
(0.10) (7.83) (12.94) (336.24)

�BL
b0 b1 b2 c0 c1 c2

HS(1) 1.00 -480.24 239.19
(0.10) (208.23) (104.91)

HS(2) 1.00 -351.21 174.94 -46.53
(0.10) (211.36) (106.46) (13.08)

HS(3) 1.00 -773.89 390.66 -14.89 -392.54 -10818.92
(0.10) (384.67) (194.61) (28.34) (377.75) (8832.20)

�BL
b0 b1 b2 b3 c0 c1 c2 c3

FF(1) 1.00 -30.83 -24.30 190.31
(0.10) (9.21) (9.15) (145.21)

FF(2) 1.00 -30.88 -24.78 384.50 21.89
(0.10) (9.22) (9.35) (793.63) (87.96)

FF(3) 0.46 -32.31 -19.60 1425.61 146.83 175.46 -186.93 -60472.36
(0.33) (34.66) (21.74) (1086.12) (128.68) (1564.38) (1081.38) (35551.73)

�OHM
b0 b1 c0 c1

CP(1) 1.00 -5.46
(0.10) (2.36)

CP(2) 1.00 -4.85 -41.63
(0.10) (2.37) (11.20)

CP(3) 1.00 -3.98 -41.11 -56.97
(0.10) (3.78) (11.33) (192.59)

�OHM
b0 b1 b2 c0 c1 c2

HS(1) 1.00 -77.63 36.57
(0.10) (148.93) (75.20)

HS(2) 1.00 21.26 -13.16 -42.50
(0.10) (151.25) (76.37) (11.35)

HS(3) 1.00 -379.36 189.76 -11.14 -254.52 -11857.37
(0.10) (249.56) (126.39) (19.19) (225.36) (5905.36)

�OHM
b0 b1 b2 b3 c0 c1 c2 c3

FF(1) 1.00 5.21 10.17 534.02
(0.10) (4.71) (4.59) (100.27)

FF(2) 1.00 1.29 5.88 2015.00 175.97
(0.10) (4.82) (4.72) (394.28) (45.31)

FF(3) 1.13 8.47 13.81 1630.94 140.56 -474.73 -578.26 15178.53
(0.19) (7.55) (6.86) (548.33) (67.04) (462.38) (510.78) (17755.93)

Table 4: This table reports the parameter estimates and standard errors when the BL and OHM
distance measures are used. The sample size of the TREMONT indexes is from January 1996 to
March 2004.
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�0 �1 �2 �3 k1 R2

Mining 2.1842 -4.4598 2.2778 -0.3286 1.0227 26.61%
(0.7988) (1.6375) (0.8387) (0.1400) (0.0045)

Food and Beverage 1.0081 -2.0478 1.0400 -0.1268 1.0231 52.26%
(0.2519) (0.5145) (0.2625) (0.0416) (0.0030)

Textile and Apparel 1.1980 -2.3936 1.1970 -0.1879 1.0447 22.19%
(0.2196) (0.4541) (0.2348) (0.0790) (0.0113)

Paper Products 1.2800 -2.5686 1.2893 -0.2173 1.0490 41.75%
(0.1919) (0.3863) (0.1944) (0.0812) (0.0103)

Chemicals 2.5648 -5.2143 2.6519 -0.32 1.0317 10.43%
(0.3021 (0.6271) (0.3249) (0.2701) (0.0240)

Petroleum 1.0585 -2.1539 1.0963 -0.2479 1.0490 19.03%
(0.2845) (0.5770) (0.2924) (0.1072) (0.0105)

Construction 1.2566 -2.5297 1.2739 -0.2013 1.0490 32.72%
(0.1628) (0.3299) (0.1671) (0.1113) (0.0147)

Primary Metals 2.6698 -5.4139 2.7453 -0.6326 1.0482 28.37%
(0.3736) (0.7784) (0.4052) (0.1607) (0.0072)

Fabricated Metals 1.3071 -2.6421 1.3357 -0.2720 1.0482 31.54%
(0.2168) (0.4381) (0.2212) (0.1054) (0.0099)

Machinery 2.1617 -4.3537 2.1942 -0.3151 1.0490 22.84%
(0.3244) (0.6751) (0.3510) (0.1358) (0.0126)

Electrical Equipment 0.1490 0.1679 -0.3253 0.6987 0.9839 17.40%
(0.8844) (1.9062) (1.0259) (0.2244) (0.0028)

Transport Equipment 1.5201 -3.0518 1.5326 -0.2346 1.0482 34.29%
(0.2288) (0.4636) (0.2350) (0.0884) (0.0083)

Manufacturing 1.7204 -3.4842 1.7659 -0.2948 1.0395 16.52%
(0.2329) (0.4907) (0.2581) (0.1187) (0.0115)

Railroads 1.2273 -2.4802 1.2537 -0.2877 1.049 34.47%
(0.2330) (0.4705) (0.2374) (0.0672) (0.0058)

Other Transportation 1.5542 -3.1209 1.5672 -0.2215 1.0482 41.16%
(0.2704) (0.5429) (0.2725) (0.0794) (0.0082)

Utilities 0.0158 0.0104 -0.0265 0.0674 0.9941 17.42%
(0.1124) (0.2453) (0.1337) (0.0347) (0.0053)

Department Stores 1.4568 -2.9355 1.4806 -0.2607 1.049 17.03%
(0.2768) (0.5708) (0.2943) (0.1005) (0.0107)

Other Retail 1.6882 -3.408 1.7208 -0.264 1.0395 25.39%
(0.2483) (0.5022) (0.2538) (0.1177) (0.0123)

Finance, Real Estate 1.0248 -2.1251 1.1023 -0.1546 0.9988 27.88%
(0.2937) (0.6187) (0.3257) (0.0635) (0.0041)

Other 2.688 -5.4201 2.734 -0.3643 1.0395 19.48%
(0.3677) (0.7516) (0.3840) (0.2289) (0.0177)

Table 5: This table shows the result of the following piecewise linear �t for industry portfolios from January
1990 to December 2005:

(rit+1 � rft)2 = �0 + �1RMt+1 + �2R
2
Mt+1 + �3max (RMt+1 � k1; 0) + �t+1;k1 :

Standard errors in parentheses are computed using Chan and Tsay (1998).
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�HJ �HM �HJ �HM �HJ �HM
CP(1) 0.4534 5.7505 HS(1) 0.4413 5.7276 FF(1) 0.4120 5.7253

se(�) 0.0827 0.4640 0.0897 0.4513 0.0862 0.4669
P(� = 0) 0.0036 0.0001 0.0049 0.0001 0.0150 0.0001
P(J) 0.0043 0.0000 0.0052 0.0000 0.0140 0.0000
�err 0.0135 0.0001 0.0136 0.0004 0.0134 0.0009

CP(2) 0.4533 5.7429 HS(2) 0.4294 5.7261 FF(2) 0.4116 5.7219
se(�) 0.0826 0.4606 0.0973 0.4506 0.0861 0.4649

P(� = 0) 0.0024 0.0001 0.0064 0.0001 0.0095 0.0001
P(J) 0.0028 0.0000 0.0062 0.0000 0.0095 0.0000
�err 0.0135 0.0001 0.0120 0.0002 0.0132 0.0009

CP(3) 0.4533 5.5374 HS(3) 0.4085 5.4909 FF(3) 0.3784 5.1330
se(�) 0.0826 0.4467 0.1170 0.4305 0.0873 0.4733

P(� = 0) 0.0020 0.0001 0.0067 0.0001 0.0132 0.0001
P(J) 0.0018 0.0000 0.0071 0.0000 0.0117 0.0000
�err 0.0135 0.0002 0.0104 0.0004 0.0113 0.0004

�BL �OHM �BL �OHM �BL �OHM
CP(1) 0.4760 0.8538 HS(1) 0.4743 0.8460 FF(1) 0.4056 0.7814

se(�) 0.0670 0.0682 0.0672 0.0682 0.0724 0.0774
P(� = 0) 0.0026 0.0001 0.0012 0.0001 0.0171 0.0001
P(J) 0.0014 0.0000 0.0009 0.0000 0.0195 0.0000
�err 0.0006 0.0000 0.0006 0.0000 0.0002 0.0000

CP(2) 0.2403 0.8313 HS(2) 0.2311 0.8176 FF(2) 0.2082 0.7562
se(�) 0.0508 0.0721 0.0517 0.0711 0.0590 0.0890

P(� = 0) 0.8872 0.0001 0.9039 0.0001 0.9421 0.0001
P(J) 0.8979 0.0000 0.8997 0.0000 0.9429 0.0000
�err 0.0004 0.0000 0.0003 0.0000 0.0001 0.0000

CP(3) 0.2392 0.8265 HS(3) 0.2268 0.7990 FF(3) 0.1974 0.7197
se(�) 0.0522 0.0720 0.0519 0.0799 0.0606 0.1015

P(� = 0) 0.8685 0.0001 0.8337 0.0001 0.8824 0.0001
P(J) 0.8662 0.0000 0.8369 0.0000 0.8823 0.0000
�err 0.0004 0.0000 0.0003 0.0000 0.0001 0.0000

Table 6: This table reports the Hansen and Jagannathan (1997) distance measure (�HJ), the distance
measure implied by the Bekaert and Liu (2004) scaled variance bound (�BL), the distance measure with
higher moments (�HM ), and the distance measure with higher moments that incorporates conditioning
information (�OHM ). The asset returns considered are industry portfolio returns and Treasury bills. The
sample size is from January 1990 to December 2005. The standard errors for the distance are labelled se(�).
p (� = 0) is the p-value for the test � = 0 calculated under the null � = 0. The p-value for the optimal
GMM test is p(J). �err is the maximum expected return error for a portfolio of basis assets only.
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�HJ
b0 b1 c0 c1

CP(1) 1.03 -5.51
(0.07) (1.93)

CP(2) 1.03 -5.53 2.32
(0.07) (1.94) (16.12)

CP(3) 1.03 -5.48 6.32 -4.03
(0.08) (5.15) (382.66) (385.02)

�HJ
b0 b1 b2 c0 c1 c2

HS(1) 1.00 -182.94 89.19
(0.07) (123.82) (62.23)

HS(2) 1.00 -330.11 163.05 29.6
(0.07) (162.33) (81.54) (21.12)

HS(3) 1.00 -729.08 369.66 -10593.6 22236.41 -11589.7
(0.07) (278.99) (142.63) (7665.85) (15652.08) (7980.07)

�HJ
b0 b1 b2 b3 c0 c1 c2 c3

FF(1) 1.00 -9.13 3.67 -7.15
(0.07) (2.41) (3.90) (3.62)

FF(2) 1.00 -9.10 3.05 -7.58 4.93
(0.07) (2.42) (4.60) (3.99) (19.51)

FF(3) 1.00 -17.31 17.55 -3.19 765.63 703.96 -1190.34 -263.1
(0.07) (7.34) (9.63) (7.69) (1172.27) (518.98) (669.26) (698.97)

�HM
b0 b1 c0 c1

CP(1) 1.05 -8.8
(0.07) (1.87)

CP(2) 1.04 -8.05 -49.95
(0.07) (1.88) (12.29)

CP(3) 1.49 -79.38 -5928.13 5914.58
(0.08) (3.88) (280.35) (281.81)

�HM
b0 b1 b2 c0 c1 c2

HS(1) 1.00 -441.4 217.96
(0.07) (61.29) (30.87)

HS(2) 1.00 -401.77 198.17 -23.62
(0.07) (65.08) (32.74) (13.04)

HS(3) 1.00 -586.01 261.28 -41548.6 78304.95 -36704.4
(0.07) (113.55) (58.52) (3898.87) (7974.29) (4073.01)

�HM
b0 b1 b2 b3 c0 c1 c2 c3

FF(1) 1.00 -15.15 -7.65 -23.28
(0.07) (2.17) (3.06) (3.18)

FF(2) 1.00 -14.64 -4.97 -21.11 -35.24
(0.07) (2.18) (3.22) (3.28) (12.99)

FF(3) 0.76 -154.85 27.98 -127.1 -16186 10531.73 -4175.29 9604.98
(0.07) (4.86) (6.03) (5.54) (696.43) (328.21) (433.20) (431.54)

Table 7: This table reports the parameter estimates and standard errors when the HJ and HM
distance measures are used. The sample size of industry portfolio is from January 1990 to December
2005.
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�BL
b0 b1 c0 c1

CP(1) 1.04 -6.49
(0.08) (4.71)

CP(2) 0.99 1.55 -80.60
(0.08) (4.92) (14.27)

CP(3) 1.02 -4.34 -353.91 271.29
(0.14) (18.88) (845.69) (839.31)

�BL
b0 b1 b2 c0 c1 c2

HS(1) 1.00 -83.89 38.38
(0.07) (141.3) (70.02)

HS(2) 1.00 134.29 -65.65 -83.98
(0.07) (146.4) (72.37) (14.75)

HS(3) 1.00 -124.52 61.90 -5999.87 11692.74 -5766.09
(0.07) (669.35) (340.40) (13877.02) (28363.8) (14465.55)

�BL
b0 b1 b2 b3 c0 c1 c2 c3

FF(1) 1.00 -7.15 -4.03 -13.70
(0.07) (3.17) (4.63) (5.03)

FF(2) 1.00 -2.52 0.96 6.34 -88.03
(0.07) (3.31) (4.75) (6.55) (18.40)

FF(3) 0.99 -13.35 11.44 4.67 -213.97 510.21 -488.76 98.57
(0.08) (15.96) (20.30) (27.52) (2066.29) (735.29) (956.3) (1168.52)

�OHM
b0 b1 c0 c1

CP(1) 0.96 6.61
(0.07) (2.70)

CP(2) 0.95 8.02 -31.42
(0.07) (2.75) (11.74)

CP(3) 0.93 11.37 285.62 -314.39
(0.08) (3.88) (259.53) (257.10)

�OHM
b0 b1 b2 c0 c1 c2

HS(1) 1.00 118.83 -57.19
(0.07) (70.83) (36.08)

HS(2) 1.00 156.46 -75.56 -35.55
(0.07) (71.95) (36.60) (11.91)

HS(3) 1.00 -36.28 24.26 -8257.75 16837.57 -8595.71
(0.07) (109.20) (56.30) (3568.55) (7235.26) (3664.82)

�OHM
b0 b1 b2 b3 c0 c1 c2 c3

FF(1) 1.00 -10.07 7.40 -10.18
(0.07) (2.33) (3.19) (3.41)

FF(2) 1.00 -10.02 11.91 -6.46 -35.86
(0.07) (2.33) (3.60) (3.67) (13.25)

FF(3) 1.02 -10.16 26.00 3.33 1356.40 112.08 -989.19 -511.68
(0.07) (4.33) (5.86) (5.82) (591.92) (251.59) (330.44) (322.77)

Table 8: This table reports the parameter estimates and standard errors when the BL and OHM
distance measures are used. The sample size of industry portfolio is from January 1990 to December
2005.
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Figure 1: Graph A presents the variance bounds when data are simulated from the TP RS model,
and when conditional moments and the conditional price of the volatility contract are calculated
with the TP RS model. Graph B presents the OHM bound with conditional moments calculated
from the TP RS model and the conditional price of the volatility contract calculated from the CO
VAR model.
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Figure 2: Graphs A and B present the bounds with data simulated according to the TP RS model
and conditional moments calculated from the CO VAR model.
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Figure 3: Graphs A and B present the HJ and HM bound. In addition, we plot in Graph A the pricing
kernels estimated using the HJ distance. Graph B contains the pricing kernels estimated with the HM
distance. We use TREMONT indexes without bias correction.
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Figure 4: Graphs A and B present the HJ and HM bound. In addition, we plot in Graph A the pricing
kernels estimated using the HJ distance. Graph B contains the pricing kernels estimated with the HM
distance. We use industry portfolios.
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