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Abstract 

Since distributed stream analytics is treated as a kind of cloud service, there exists a pressing need for its reliability 
and fault-tolerance, to guarantee the streaming data tuples to be processed in the order of their generation in every 
dataflow path, with each tuple processed once and only once. Currently there exist two kind approaches: one treats 
the whole process as a single transaction, and therefore suffers from the loss of intermediate results during failures; 
the other relies on the receipt of acknowledgement (ACK) to decide whether moving forward to emit the next 
resulting tuple or resending the current one after timeout, on the per-tuple basis, thus incurs extremely high latency 
penalty. In contradistinction to the above, we propose the backtrack mechanism for failure recovery, which allows a 
task to process tuples continuously without waiting for ACKs and without resending tuples in the failure-free case, 
but to request (ASK) the source tasks to resend the missing tuples only when it is restored from a failure which is a 
rare case thus has limited impact on the overall performance.  
    The specific hard problem for building a transaction layer on-top of an existing stream processing platform 
consists in how to keep track the physical input/output messaging channels in order to realize re-messaging during 
failure recovery. Our solution is characterized by tracking physical messaging channels logically, for that we 
introduce the notions of virtual channel, task alias and messageId-set in reasoning, recording and communicating 
the channel information. We also provide a designated messaging channel, separated from the regular dataflow 
channel, for signaling ACK/ASK messages and for resending tuples, in order to avoid interrupting the regular order 
of data transfer.  
    We have implemented the proposed mechanisms on Fontainebleau, the distributed stream analytics 
infrastructure we developed on top of Storm. As a principle, we ensure all the transactional properties to be system 
supported and transparent to users. Our experience shows the novelty and efficiency of the proposed mechanisms.  

Keywords: stream processing, fault tolerance, checkpointing, failure recovery. 
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1. Introduction 

1.1 Transactional Stream Processing 

Stream analytics as a cloud service has become a new 
trend in supporting mission-critical, continuous dataflow 
applications. This has given rise to the reliability and 
fault-tolerance of distributed stream processing.  

A stream is an unbounded sequence of events, or 
tuples. Logically a stream processing operation is a 
continuous operation applied to the input stream tuple by 
tuple, deriving a new output stream. In a distributed 
stream processing infrastructure, physically a logical 
operation may have multiple instances running in 
parallel, called tasks. A graph-structured streaming 
process is a continuous dataflow process constructed 
with distributed tasks over multiple server nodes. A task 
runs cycle by cycle for transforming a stream to a new 
stream, where in each cycle it processes an input tuple, 
updates the execution state and emits the resulting tuples, 
carried in messages, to its target tasks. 

The goal of transactional stream processing is to 
ensure that in every dataflow path the tuples are 
processed in the order of their generation, with each 
processed once and only once. With this goal, the failure 
recovery of a task must ensures the possibly missing 
input/output tuples to be re-acquired/re-sent but without 
violating the above “once and only once” semantics. It is 
generally based on checkpointing data processing state 
and messages for redoing. 

1.2.  Prior Art  

The issue of failure recovery of distributed dataflow 
systems has been investigated in different contexts.  
In the context of general distributed computing, an 
application involves multiple mutually dependent tasks 
[5,13] where the transaction semantics is based on the 
instant consistency of the global state. However, in a 
graph-structured streaming process, a task depends on its 
upstream neighbors only; and the states exposed to 
outside world are expressed as the output 
streams[1,8,9,11,12,15]. Therefore, instead of instant 
consistency of global state, the goal of transactional 
stream processing is to keep the eventual consistency 

[3]; this difference raises specific technical challenges. 
In the context of database transactions, the previous work 
on transactional stream processing was mostly based on 
the notion of snapshot isolation [2,4,6,7,10] with the 

motivation to split a stream into a sequence of bounded 
chunks in order to apply the semantics of database 
transaction to each chunk, i.e. put the operation on a data 
chunk in a transaction boundary to yield a state snapshot. 
In this way, processing a sequence of data chunks 
generates a sequence of state snapshots. However, this 
mechanism only deals with the state oriented transaction 
boundary without addressing failure recovery. 
    Around the concepts of checkpoint and message 
logging there exist several approaches. One approach - 
the Storm’s “transactional topology”, treats the whole 
streaming process as a single operation which suffers 
from the loss of intermediate results in the occurrence of 
failures [16]. The other requires a task to wait for 
acknowledgement (ACK) to decide whether to move 
forward to emit the next tuple, or to resend the current 
one, on the per-tuple basis [14,15]; if the task has not 
received the ACK after timeout (e.g. between the target 
task fails and then heals) it will resend the output tuple, 
again and again, until being acknowledged. Although the 
“once and only once” semantics can be enforced by 
identifying the output tuples with their sequence numbers 
the in each dataflow channel and accordingly ignoring 
the duplicate ones, waiting for ACK and re-emitting 
output on the per tuple basis causes extremely high 
latency.   

1.3.  Proposed Backtrack Recovery Mechanism  

To overcome the above drawbacks we developed an 
alternative methodology which allows a transactional 
task to process tuples continuously without waiting for 
ACKs and without resending output in the failure-free 
case; but ask its source task to resend the missing tuple 
only when it is restored from a failure. We refer to it as 
the backtrack or ASK-based recovery mechanism, for 
distinguishing it from the typical ACK-based recovery 
mechanism. Since failures are rare, backtrack the missing 
tuple would not have significant impact to the overall 
efficiency. 
    Based on this methodology we provided the 
algorithms for transactional task execution and failure 
recovery, and implemented them on top of Storm [16], 
the open-sourced distributed stream processing 
infrastructure.   

1.4.  Implementation Problems and Solutions  
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In order to build a transaction layer on top of an existing 
parallel and distributed stream processing system like 
Storm, rather than re-develop a new system from scratch, 
we have to solve some specific problems. 
    In a streaming process topology, a dataflow channel, 
or messaging channel, is identified by a pair of source 
and target tasks; a tuple is carried by a message and 
identified by the message-id composed with the channel 
and the corresponding sequence number. Supporting 
failure recovery based on checkpointing states and 
resending messages requires every task, when sending or 
receiving a message, to recognize the messaging channel; 
and specifically, requires a task to record the message-id 
before sending a message, in order to resend the right 
message to the right target task in case needed. 
    The problem is, however, common to the modern 
component based distributed dataflow infrastructures, the 
data routing between tasks is handled by separate system 
components inaccessible to individual tasks. For 
example, in a Map-Reduce platform, passing a resulted 
tuple from a Map task, Mtask, to a Reduce task, Rtask, is 
handled by the platform but unknown to Mtask before 
emitting. More generally, with a distributed stream 
processing infrastructure such as Storm, when a task 
emits an output tuple, the destination depends on the 
grouping type, the current system state or the data 
content, which is unknown to the task thus cannot be 
record by it before emitting. As a result, the following 
output channel paradox may be caused.  
 If a task T failed after it emitted an output tuple t to a 

target task T1, when T is restored, it would re-emit the 
latest output tuple, t, anyway; however, under certain 
grouping criterion such as shuffle-grouping, the re-
emitted tuple may go to a different target task, say T2, 
since T2 never seen t, it cannot determine whether t is 
duplicate and ignorable.    

 If a task T failed and restored, the current input tuple 
may be missing, thus T would request each of its 
source tasks to resend its latest tuple; however, if a 
source task is unable to record its output channels 
before emitting every tuple, there is no way for it to 
know how to find the right tuple and resent it to the 
right target task.   

    Another hard problem in supporting message 
resending on top of an existing stream processing 
platform is the lack of accessible message re-sorting 
facility [14,15]. Let us consider the following situation, if 

a failed/restored task, T, has multiple source tasks, where 
the possible missing tuple came from is unknown to it 
(which we refer to as the input channel paradox); then T 
has to request all its source tasks to resend the 
corresponding latest tuples, with only one tuple being the 
one really missed. Although duplicate tuples can be 
ignored, resending those tuples through the ordinary 
dataflow channels may interrupt the order of regular 
tuple delivery, and the underlying infrastructure such as 
Storm does not support message re-sorting, or at least 
does not provide such APIs accessible to tasks.   
    In summary, building a transaction layer on top of an 
existing stream processing infrastructure imposes two 
specific hard problems: one is how to keep track the 
physical input/output channels for a task; another is how 
to ensure resending tuples not to disrupt the regular 
order of data delivery. In fact, these are common issues 
found in leveraging modern distributed dataflow systems 
thus worthy deep investigation. 
    Our solution to the output paradox mentioned above is 
to track the physical messaging channel logically by 
reasoning; for that we introduce the notions of virtual 

channel, task alias and messageId-set, and use them in 
reasoning, tracking and communicating the channel 
information logically.  
    Our solution to keeping the regular order of data 
delivery during resending messages is to provide a 
designated messaging channel that is separated from the 
regular dataflow channel, for signaling ACK/ASK and 
resending tuples. With this additional messaging channel 
and the corresponding algorithm, the interruption to the 
regular order of tuple delivery during failure recovery 
can be avoided effectively.  
    We have implemented the proposed mechanisms on 
Fontainebleau, the distributed stream analytics 
infrastructure we developed on top of Storm [16]. As a 
principle, we ensure all the transactional properties to be 
system supported and transparent to users. Our 
experience shows that the novel virtual channel 
mechanism allows us to handle failure recovery correctly 
in elastic streaming processes, and the ASK-based 
recovery mechanism significantly outperforms the ACK-
based one. 
    The rest of this paper is organized as follows: Section 
2 outlines the concept of graph-structured distributed 
streaming process; Section 3 describes the backtrack-
based failure recovery; Section 4 discusses how to track 
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messaging channels intelligently; Section 5 illustrates the 
experiment results; Section 6 concludes. 

2. Distributed Streaming Process 

Real-time stream analytics has increasingly gained 
popularity since enterprises need to capture and update 
business information just-in-time, analyze continuously 
generated “moving data” from sensors, mobile devices, 
social media of all types, and gain live business 
intelligence. 
    We have developed a massively parallel, distributed 
and elastic stream analytics platform, with code name 
Fontainebleau, for executing continuous, real-time 
streaming processes. Our platform is built on top of 
Storm – a modern data stream processing system.  
    Architecturally Fontainebleau is characterized by the 
concept of open-station. In stream processing, data flow 
through stationed operators. Although the operators are 
defined with application logic, many of them have 
common execution patterns in I/O, blocking, data 
grouping, etc, as well as common functionalities such as 
the transactional control to be discussed in this report, 
which can be considered as their “meta-properties” and 
categorized for providing unified system support. This 
treatment allows us to ensure the operational semantics, 
to optimize the execution, as well as to ease user’s effort 
for dealing with these properties manually which can 
lead to fragile code, disappointing performance and 
incorrect results. With the above motivation we introduce 
the notion of open-station as the container of a stream 
operator, and provide an open-executor with related 
system utilities for each open station. In the OO 
programming context, the open-executor is coded by 
invoking certain abstract functions (methods) to be 
implemented by users based on their application logic. 
We support transactional stream processing based on the 
open-station architecture, where a stream processing 
operator, O, is wrapped by a “transaction station”, S, that 
provides designated system support for checkpointing, 
failure recovery, etc, but open for the application logic to 
be plugged-in. Accordingly, a task of O can be viewed as 
the instance of station S. 
    Let us observe a streaming process example for matrix 
data manipulation and analysis. In this streaming process, 
the source tuples are streamed out from “matrix spout” 
with each contains 3 equal-sized float matrices generated 
randomly in size and content (the application background 
is the sensor readings from oil wells). The tuples first 

flow to operation “tr” for transformation, and then to 
operation “gemm” (general matrix multiplication) and 
“blas” (a basic linear algebra operation) with “fields-
grouping” on different hash keys; the output of “gemm” 
is delivered to operation “ana” (analysis) with “all-
groupuing”, and the output of “blas” to operation 
“agg” (aggregation) with “direct-grouping”. The logical 
dataflow of this process is illustrated in Fig 1. 
    The partial specification of the graph structure, or 
topology, of this streaming process is listed below.   
  BlueTopologyBuilder builder = new BlueTopologyBuilder();    
  builder.setSpout("matrix_spout", matrix_spout, 1); 
  builder.setBolt(“tr”, tr, 2).allGrouping("matrix_spout"); 
  builder.setBolt("gemm", gemm, 2).fieldsGrouping(“tr”, new  
      Fields("site", "seg")); 
  builder.setBolt("ana", ana, 2).allGrouping("gemm");   
  builder.setBolt("blas", blas, 2).fieldsGrouping(“tr”, new  
      Fields("site"));       
  builder.setBolt("agg", agg, 2).directGrouping("blas"); 

 

Fig. 1: A logical streaming process with operations, links and 
dataflow grouping types 

Physically, each operation has more than one task 
instances. Given a pair of source and target operations, 
the tuples sent from the tasks of the source operation to 
the tasks of the target operation are grouped with various 
criteria, as illustrated in Fig 2.   

 

Fig. 2: A physical streaming process with each operation 
having multiple instance tasks 

matrix 
spout 

all 
grouping 

fields [site, seg] 

fields [site] 

all 

direct 

Tr.8 

Tr.9 bla
s 

blas.5 

blas.4 

gemm.7 

gemm.6 

ana.12 

ana.11 

agg.2. 

agg.3 

agg 

ana gemm 

blas 

tr 
matrix 
spout 

all 
grouping 

fields [site, seg] 

fields [site] 

all 

direct 

Published by Atlantis Press 
Copyright: the authors 

229



  Fault Tolerant Stream Processing 

To identify the messaging channels and tuples we 
introduce the following notations. 
 A topology-wise unique task# is assigned to each task 

by the underlying infrastructure. 
 A taskId is the composition of the task# and the 

operationId (name) for that the task is an instance, 
denoted by operationId.task#; for instance, taskId 
“agg.2” is a task of operation named “agg”.  

 A message channel is identified by the source and 
target taskIds, denoted by srcTaskId^targetTaskId; for 
instance, a message channel from task tr.8 to 
gemm.6 is expressed as tr.8^gemm.6. 

 A messageId, or mid, is identified by the channel and 
the message sequence number, say seq#, via this 
channel, as expressed by channel-seq#, or more 
exactly by srcTaskId^targetTaskId-seq#; for instance, 
“tr.8^gemm.6-134” identifies the 134th tuple sent 
via the channel from “tr.8” to “gemm.6”. 

    A tuple transmitted through a messaging channel is 
identified by the messge-id (or mid).  
    Given a task, all the possible input and output channels 
can be extracted from the streaming process topology 
statically, but the  input/output mids are resolved 
dynamically during execution since the exact physical 
channel may be data dependent, e.g. depending on the 
hash value of certain fields of a tuple.  
    As mentioned above, to build a reliable transaction 
layer on top of an existing parallel and distributed stream 
processing infrastructure like Storm, rather than re-
develop a new system, we need to track the physical 
dataflow channel logically by reasoning, for that we will 
introduce the notions of virtual channel, task alias and 
mid-set, and use them in reasoning, tracking and 
communicating the channel information.  

3. Backtrack Based Failure Recovery 

We treat failure recoverability as a kind of task execution 
pattern, and provide the canonical open station 
framework to support it automatically and 
systematically.  

3.1.  Architecture Overview 

Before going to details, let us first overview the task 
execution pattern of our platform. The stream processing 
operators are wrapped by station classes; and a 
transactional station is defined as an abstract class 
BasicCkStation with system supported semantics; 

however, as shown in Fig 3, it is open for users to plug-in 
their application logic by implementing the defined 
abstract functions. 

 

Fig. 3: BasicCkStation provides system support to transactional 
streaming task and open for app logic to plug-in 

The BasicCkStation class provides three major system 
methods (as well as the supporting methods for them):  

 prepare(Config, TopologyContext, OutputCollector) 
this  is used to setup the initial system and application 
state for the task. This method is invoked when the 
task is initially setup or restored from a failure, 
therefore the recovery() method discussed below is 
invoked, if necessary, inside the prepare() method.  

 execute(Tuple) that covers the per-tuple processing, 
checkpointing state, acknowledging source task, 
emitting outputs, etc. 

 recovery(byte[]) which implements the recovery steps: 
rollback to the last checkpoint state from the serialized 
byte-array retrieved from disk or database; re-emit 
output to the right target tasks at the downstream, and 
re-acquire the latest input from the source task at the 
upstream. As explained in more detail later, all the 
source tasks will be contacted to ensure the missing 
tuple to be resent; resending tuples is via a specific 
messaging channel separated from the regular 
dataflow channel between tasks; and additional 
mechanisms are provided for a task to ignore duplicate 
inputs.   

 Fields outputFields() that is used to specify the fields 
of the output tuple. 

    These methods invoke certain abstract methods which 
will be implemented based on application specific 
semantics (e.g. how to process each tuple) and resource 
specific properties (e.g. the specific checkpoint engine 
based on files or databases).  

The BasicCkStation class provides two major application 
oriented abstract methods,  

 void initAppState() that is used to specify the initial 
state and variables to be carried on for process each 
input tuple; 

msg handler emit/ack/ask 
handler 

transactional 
task handler 

Impl of abstract methods 
with app logic 
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 List compute(Tuple) that is used to update task state, 
and to derive zero, one or more output tuples from 
each input tuple.  

    The structure of the BasicCkStation class is illustrated 
below. 

public abstract class BasicCkStation extends BasicStation  { 
public void prepare(Config, Context, OutputCollector) { … }; 
public void execute(Tuple) { … }; 
public void recovery(byte[]) { … }; 

    …. 
    public abstract ArrayList<Values> compute(Tuple tuple); 
    public abstract void initAppState(); 

public abstract Fields outputFields(); 
    …. 
} 

    In order to create a transactional operation (tasks are 
instances of operations), the user only needs to define a 
corresponding class that extends the abstract 
BasicCkStation class, and implement the above abstract 
methods (and any inherited abstract methods), as shown 
by the following example.  

public class GemmCkStation extends BasicCkStation { 
    float alpha, beta; 
       public GemmCkStation(float alpha, float beta) { 
        super();   this.alpha = alpha;   this.beta = beta; 
    } 
       @Override  
    public Fields outputFields() { 
        return new Fields("site", "seg", "matrixC"); 
    }   
    @Override  
    public ArrayList<Values> compute(Tuple tuple) { 
       ...  

    } 
@Override  
public void initAppState() { 

         ... 

    } 
}; 

With the open station architecture, the checkpointing and 
failure recovery are completely transparent to users as 
they only need to care about how to process each tuple 
for their applications. 

3.2.  General Algorithms 

A task is a continuous execution instance of an operation 
wrapped by a station where two major methods are 
provided, one is the prepare() method that runs initially 
before processing input tuples; the other is execute() for 
processing an input tuple in the main stream processing 
loop. Failure recovery is handled in prepare() since after 
a failed task is restored it will experience the prepare() 
phase first.  

Task Execution. A task runs cycle by cycle continuously 
for processing inputs tuple by tuple. The tuples 
transmitted via a dataflow channel are sequenced and 
identified by the seq#, and guaranteed to be processed in 
order; a received tuple, t, with seq# earlier than the 
expected will be ignored; later than the expected will 
trigger the resending of the missing ones to be processed 
before t. This ensures each tuple to be processed once 
and only once and in the right order. Further the state and 
data processing results on each tuple are checkpointed 
(serialized and persisted to file) for failure recovery. 
After checkpointing the transaction is committed, 
acknowledged and then the results are emitted. 
    For efficiency, a task does not rely on the receipt of 
“ACK” to move forward; instead, acknowledging is 
asynchronous to task executing and only used to remove 
the buffered tuples already processed by the target tasks. 
Since an ACK triggers the removal of the acknowledged 
tuple and all the tuple prior to that tuple, the ACK is 
allowed to be lost. 
    The algorithm of execution()  is illustrated in Fig 4. 
The follows are worth noting in more detail. 
 The seq# of each input tuple, t, is checked; if t is 

duplicate (with smaller seq# than expected) it will not 
be processed again but will be acknowledged to allow 
the sender to remove t and the ones earlier than t; if t is 
“jumped” (with seq# larger than expected), the 
missing tuples between the expected one and t will be 
requested, resent and processed first before moving to 
t.  

 The checkpointed state consists of a list of objects; 
when check-in, the list is serialized into a byte-array to 
write to a binary file; when checkout, the byte-array 
obtained from reading the file is de-serialized to the 
list of objects representing the state.  

The input/output channels and seq# are recorded before 
checkpointing and emitting. Since each output tuple is 
emitted only once but possibly distributed to multiple 
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destinations which are unknown to the task before 
emitting, the output channels must be “reasoned”, 
recorded and checkpointed, to be used in the possible 
failure-recovery, which is a core investigation of this 
work and to be discussed later.  

 

Fig. 4: Flowchart of task execution 

Task Recovery. Supported by the underlying Storm 
platform, we have the failed task instance re-initiated on 
an available machine node by loading the serialized 
operation class to the node and creating an instance over 
there. As shown in Fig 5, recovery a failed task is a 
triple-folds problem:  
 restore its execution state from checkpoint,  
 request the possible missing input, and  
 re-emit the last output.  

When the failed and then restored task has multiple 
source tasks, it cannot determine where the missing tuple 
came from, therefore it has to ask each source task to 
resend the possible next tuple wrt the latest tuple it 
received from each input channel and recorded in its 
input-map that is a part of the checkpoint content. It in 
turn requires every pair of source and target tasks to have 
a protocol on identifying the “latest tuple”, and this is 

why a task need to identify the physical dataflow channel 
and record the input/output seq#, before an output is 
emitted (i.e. before the output is possibly missing).  The 
algorithm of prepare()  is illustrated in Fig 5. 

 
Fig. 5: Flowchart of task initiation/recovery 

Second Messaging Channel. Another challenge in 
dealing with backtrack recovery is how to ensure the 
order of regular tuple delivery not interrupted by the task 
recovery process. Because the recovered task with 
multiple source tasks may receive more than one resent 
tuples, and besides the one really missing, the others, 
may have been delivered and queued but not yet taken by 
the task; in that case, appending the resent tuple to the 
queue would interrupt the order of the queued tuples. We 
solve this problem in the following way.  
 A second massaging channel, separated from the 

regular dataflow channel, is provided for a task, for 
signaling ACK/ASK and resending tuples (Fig 6).  

 When a task T is restored from a failure, it first 
requests and processes the resent tuples from all input 
channels, before going to the normal execution loop. 
In this way, if a resent tuple has been put in the input 
queue of T previously but not yet taken by T, that tuple 
can be identified as duplicate one and ignored in the 
normal execution loop. 

    For this designated messaging channel each task has a 
distinguish socket address (SA) and an address-book of 
its source and target tasks; the SA is carried with its 
output tuples for the recipient task to ACK/ASK through 
that messaging channel. Due to the change of SA when a 
task is restored from a failure (in that case the task may 
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even be launched to another machine node), and due to 
the unavailability of the SA in the first correspondence, a 
Home Locator Registry (HLR) service is provided. 

 

Fig. 6: The secondary messaging channel for ACK/ASK and  
resending tuples 

4. Tracking Messaging Channels 

As mentioned early, in the execution of a streaming 
process, each tuple is uniquely identified by a messageId, 
or mid. A mid is represented as srcTaskId^targetTaskId-
seq#. For example, the mid “tr. 8^gemm.6-134” 
identifies the 134th tuple sent from task “tr.8” to task 
“gemm.6”.  
    Re-emit an output tuple or request/resend a missing 
input tuple during recovery, requires a task to comply 
with the peer tasks on the mid of the tuple. When a task 
T1 sends a tuple to task T2 through the messaging channel 
between them, T1 must record the seq# via that channel 
before emitting the tuple, and T2 must record the seq# 
upon receipt. This is trivial if the message routing is 
responsible by the underlying infrastructure and the 
sender may or may not know the exact destination before 
emitting. In fact this is the common situation in the 
component-based distributed computing infrastructure.     
    This situation has motivated us to track messaging 
channels logically. The general  idea is for the sender 
task to express and record a mid in such a logical form 
that allows the recipient task to recognize the matched 
logical channel and physical channel, as well as allows 
the sender task to find the right tuple and resend it to the 
right recipient based on the “logical message identifier”, 
in handling acknowledgements and in responding to re-
send requests.   

4.1.   MessageId-Set and Virtual MessageId 

We consider two kinds of “logical message identifiers”, 
one related to a set of recipients, another related to a 
virtual recipient.  
    When an emitted tuple is delivered to multiple 
recipients through multiple message channels, we allow 
the tuple to be identified by a mid-set. A mid-set contains 
multiple individual mids with the same source task but 

with different target tasks. On each recipient side, the 
target task picks up from that mid-set the mid with target 
taskId matching itself, for recording the input channel 
and seq# accordingly. The matched mid will be used for 
identifying both ACK and ASK messages. In the other 
words, mid-sets only appear in the sender task and 
recorded for output tuples; in the recipient side, only the 
matched single mid is recorded and used. On the sender 
side, to find the kept tuple that matches the mid carried 
by an ACK or ASK message is simply based on the set-
membership relationship. As mentioned above, the tuple 
matches an ACK message will be garbage-collected, and 
the tuple matches an ASK message will be resent during 
failure recovery.  A resent tuple is always identified by a 
single, matched mid.   
    Further we introduce the notions of task alias and 
virtual mid to resolve the destination of message sending 
with “fields-grouping”, (or hash partition). In this case an 
output tuple only goes to one instance task of the given 
target operation which is determined by the routing 
component based on a unique number yield from the 
hash and modulo functions. Although the sender task has 
no knowledge about the physical destination before 
emitting a tuple, it can calculate that number, and can 
treat that number as the alias of the corresponding target 
task ID, then create a virtual mid using that alias. A 
virtual mid is directly recorded and used in both the 
source task that sends the tuple, and the target task that 
receives the tuple.  
    Below we illustrate how to use these notions to resolve 
the messaging channels wrt the typical grouping types.  

All-Grouping. With “all-grouping”, a tuple emitted by a 
task, e.g. gemm.6, is distributed to all tasks of the 
recipient operation (e.g. ana.11, ana.12). Since 
there is only one emitted tuple but multiple physical 
output channels, we use mid-set to identify the emitted 
tuple. For instance, a tuple sent from gemm.6 to 
ana.11 and ana.12 is identified by 

{gemm.6^ana.11-96, gemm.6^ana.12-96} 

On the sender site (e.g. gemm.6), this mid-set is 
recorded and checkpointed; in each recipient task (e.g. 
ana.11) only the single mid matching itself (e.g. 
gemm.6^ana.11-96) will be extracted, recorded and 
used in ACK and in ASK messages. In the sender task 
(e.g. gemm.6) the match of the ACK or ASK message 
identified by a single mid and the recorded tuple 

task 
data channel  

EMIT 

task 

signal channel 
ACK/ASK/RESEND 

queue 
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identified by a mid-set is determined by set membership. 
For example, the ACK or ASK message with mid 
gemm.6^ana.11-96 or gemm.6^ana.12-96 

matches the tuple identified by {gemm.6^ana.11-
96, gemm.6^ana.12-96}. 

Fields-Grouping. With “fields-grouping”, the tuples 
output from the source task are hash-partitioned to 
multiple target tasks, with one tuple going to one 
destination task; this situation is similar to have Map 
results distributed to Reduce nodes. With the underlying 
streaming platform (common to most other platforms), 
the target task ID is mapped from the hash partition 
index, a, calculated based on the selected key fields list, 
keyList, over the number of k tasks of the target 
operation, as 

     a = keyList.hashcode() % k  

On the source task, although it is impossible to figure out 
the physical target task and record the physical mid 
before emitting a tuple, it is possible to compute the 
above hash partition index, which allows us to use it as 
the task alias for identifying the target task. A task alias 
is denoted by  

operationName.a@  

such as gemm.1@, where a is the hash partition index.  

In more detail, the output tuples of task “tr.9” to tasks 
“gemm.6” and “gemm.7” are under “fields-grouping” 
with 2 hash-partitioned index values 0 and 1, these 
values, 0 and 1, serve as the aliases of the recipient tasks. 
Then the target tasks “gemm.6” and “gemm.7” can be 
represented by aliases “gemm.0@” and “gemm.1@” 
without ambiguity. Although the task alias (gemm.1@) is 
different from the real target taskId (gemm.6), it is 
unique and all tuples sent to gemm.6 will bear the same 
target task alias under the given field-grouping.  
    Then an output tuple, say, from task tr.9 to gemm.6 
under “fields-grouping” is identified by the virtual mid  

tr.9^gemm.1@-35 

where the target taskId gemm.7 is replaced by the task 
alias “gemm.1@”.  
    A virtual mid, such as tr.9^gemm.1@-2, is directly 
recorded at both source and target tasks and used in both 
ACK and ASK messages. There is no need to resolve the 
mapping between a task-alias and the actual task-Id 
represented by the alias.   

    In case an operation has two or more target operations, 
such as in the above example, the operation “tr” has 2 
target operations, “gemm” and “blast”, an output tuple 
can be identified by a mid-set containing virtual-mids; for 
instance, an output tuple from task “tr.9” is identified 
by the following mid-set 

{tr.9^blas.0@-30, tr.9^gemm.1@-35} 

that expresses that the tuple is the 30th tuple sent from 
“tr.9” to one of the blas task, and the 35th to one of the 
gemm task. The recipient task with the recorded alias 
blas.0@, can extract the matched virtual-mid 
tr.9^blas.0@-30 based on the match of operation 
name “blas”, for recording the seq# 30 for that 
virtual channel.   

Global-Grouping. With global-grouping, tuples emitted 
from a source task are routed to the same instance task of 
the target operation; and the selection of the recipient 
task is made by a separate routing component outside of 
the source task. Our goal is for the source task to record 
the messaging channel before each tuple is emitted. For 
this purpose we do not need to know what the exact task 
is, but create a single alias to represent the recipient task. 
In this case, all tuples go to the same recipient task that is 
represented by the same alias; the latest seq# is recoded 
on both the sender and receiving sides. 

Direct-Grouping. With direct grouping, a tuple is 
emitted using the emitDirect API with the physical taskId 
(more exactly, task#) as one of the parameter. For 
channel specific recovery we extend the Topology 
Builder to turn the rest of the grouping types not 
discussed above, to direct grouping; for each emitted 
tuple, the destination task is selected on-the-fly based on 
load balancing, i.e. the one currently with least load (i.e. 
least seq#) is chosen.     

Shuffle-Grouping. Shuffle grouping is a popular 
grouping type. As mentioned above it is converted to 
direct grouping where a tuple is emitted to a designated 
task selected based on load balancing, i.e. the channel 
with least seq# is selected.  
    In summary, we track and record the message channels 
wrt various grouping types: for “all-grouping” the 
concept of mid-set is adopted; for “fields-grouping”, 
task-alias and virtual-mid are used. We support “direct-
grouping” systematically (rather than letting user to 
decide) based on load-balancing. Further we convert all 
other grouping types, which are random by nature, to our 
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system-supported direct grouping. The combination of 
mid-set and virtual mid allows us to track the messaging 
channels of a task with multiple grouping criteria.  

4.2.   System Support for Channel Tracking 

For guiding channel resolution, we extract the topology 
information from the streaming process definition, and 
create the task specific meta-data objects: Task-Input-
Context, TIC, and Task-Output-Context, TOC, for 
specifying input and output channels, grouping types, etc. 
Multiple TIC and TOC objects are associated with a task. 
    A task, T, has a list of TIC objects; with each 
specifying the input context of one source task of T ; it 
comprises the following: 

 task ID of source task Ts, that is the key field of TIC;  
 operation ID (name) of source operation Os, of that Ts 

is an instance; 
 grouping type (shuffle, field, … etc); 
 channel; 
 stream ID (abstract dataflow between the source 

operation Os, and the operation of this task); 

    A task, T, has a list of TOC objects; with each 
specifying the output context of one target operation 
(with one or more target task instances) of T; it comprises 
the following:   

 operation ID (name) of target operation, Ot, that is the 
key field of TOC; 

 grouping type (shuffle, field, … etc); 
 key indices (int []) indicating the key fields of output 

tuples for hash partitioning in the field-grouping case; 
 channel list comprising the channels from this task to 

all the tasks of the target operation, Ot. 
 stream ID (abstract dataflow between the operation of 

this task and the target operation Ot. 

While the TIC list and the TOC list provide static 
grouping information, the actual input and output 
<channel,  seq#> are recorded in the HashMaps, 
inChannelBook and outChannelBook, of each task. Note 
that the seq# is the latest (largest) sequence number. 

Tracking Output Channel in Sending Task. A single 
tuple emitted from a task may go to one or more target 
tasks. Using TOC, these target messaging channels can 
be traced operation by operation. The messaging 
channels and seq#s are represented with either actual or 
virtual, either single or set, mids, and recorded in the 
outChannelBook of the task.  

    Fig 7 shows an example where operation OP0 has two 
target operations having 3 tasks and 2 tasks respectively, 
and with “all-grouping” and “fields-grouping’ 
respectively. For a task of OP0, its TOC, is illustrated in 
Fig 8. 

 

Fig. 7: A grouping example 

Reasoning with this TOC, each output tuple from a task 
of OP0 will be distributed to 4 target tasks, including 3 
task instances of OP1 (with all-grouping) and 1 of 
OP2(with field-grouping); they are identified by a mid-set 
with 4 mids, with one of them (the one associated with 
field-grouping) is virtual. 

 

Fig. 8: Reason about output channels using TOC for the 
example shown in Fig 7. 

For re-sending a tuple upon request (through a separate 
messaging channel) the task selects the buffered tuple 
with the tuple’s mid matching the requested mid, or the 
tuple’s mid-set containing the requested mid; but resend 
the tuple with the single, logically matched mid.  

Tracking Input Channel in Recipient task. When an 
input tuple is received, its mid or mid-set is extracted and 
an individual mid (possibly virtual) that logically 
matches the recipient task is singled out, that single mid 
is recorded in the inChannelBook, and used in ACK and 
ASK messages.  
    During failure-recovery, the restored task, T, would 
ask each source task to resend the possible next tuple wrt 
the latest one recorded in T’s inputChannelBook, thus 
need to compose a mid for the requested tuple guided by 
its TIC and inChannelBook. 
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5. Experiments 

We have built the Fontainebleau prototype and provided 
the failure recovery capability based on the architecture 
and algorithms explained in the previous sections. In this 
section we briefly overview our experimental results. Our 
testing environment include 4 Linux servers with gcc 
version 4.1.2 20080704 (Red Hat 4.1.2-50), 32G RAM, 
400G disk and 8 Quad-Core AMD Opteron Processor 
2354 (2200.082 MHz, 512 KB cache). One server holds 
the coordinator daemon, other servers hold workers 
daemons, each worker supervises several worker 
processes, and each worker process handles one or more 
tasks. Based on the topology and the parallelism hint for 
each logical operation, one or more task instances of that 
operation will be instantiated by the framework. 

5.1.   Correctness of Channel Reasoning  

We first use the experiment results to verify the 
correctness of channel tracking based on the streaming 
process topology shown in Fig 1. For simplicity we only 
have the spout output 100 tuples, which are delivered to 
“tr” tasks in all-grouping, then to “gemm” and “blas” 
tasks in fields-grouping, and to “ana” and “agg” tasks 
in all-grouping and direct-grouping respectively. Below 
are some logged information showing the input mid-set, 
and the resolved mid at the corresponding tasks.   
 
-- Task: tr.8 
   Received mid: {matrix_spout.10^tr.8-5,matrix_spout.10^tr.9-5} 
   Matched mid: matrix_spout.10^tr.8-5 
 
-- Task: gemm.7  
   Received mid: {tr.8^blas.0@-32,tr.8^gemm.1@-38} 
   Matched mid: tr.8^gemm.1@-38 
 
-- Task: blas.4  
   Received mid: {tr.8^blas.0@-12,tr.8^gemm.0@-11} 
   Matched mid: tr.8^blas.0@-12 
 
-- Task: ana.11  
   Received mid: {gemm.6^ana.11-85,gemm.6^ana.12-85} 
   Matched mid: gemm.6^ana.11-85 
 
-- Task: agg.2  
   Received mid: blas.4^agg.2-40 

Matched mid: blas.4^agg.2-40 
 
After processing 100 initial input tuples produced by the 
matrix-spout, the final states of the tasks, including the 
number of checkpointed tuples (the last ckSeq) as well as 
the content of InChannelBook and the OutChannelBook, 
are listed below, and the number of tuples processed by 
each task is illustrated in Fig. 9. These numbers and 

states are consistent with the defined semantics of steam 
processing with the specified grouping criteria.  
 

 

Fig. 9: With 100 input events, the number of tuples processed at 
each task 

    For example, with all-grouping, tasks tr.8 and tr.9 
each gets 100 input tuples from matrix-spout, then 
the 100 tuples output from tr.8 and the 100 tuples 
output from tr.9 are distributed to tasks gemm.6 and 
gemm.7 with each received 96 and 104 tuples 
respectively, making the total of 200 tuples. Then with 
all-grouping, each of the derived tuple is further 
delivered to both tasks ana.11 and ana.12; therefore 
tasks ana.11 and ana.12 each received 200 tuples.   
 

++ FINAL tr.8:ckSeq = 100 
++ FINAL tr.8:InChannelBook = {matrix_spout.10^tr.8=100} 
++ FINAL tr.8:OutChannelBook = {tr.8^blas.1@=47, 
tr.8^blas.0@=53, tr.8^gemm.1@=52, tr.8^gemm.0@=48} 
 
++ FINAL tr.9:ckSeq = 100 
++ FINAL tr.9:InChannelBook = {matrix_spout.10^tr.9=100} 
++ FINAL tr.9:OutChannelBook = {tr.9^blas.1@=47, 
tr.9^blas.0@=53, tr.9^gemm.0@=48, tr.9^gemm.1@=52} 
 
++ FINAL blas.4:ckSeq = 106 
++ FINAL blas.4:InChannelBook = {tr.9^blas.0@=53, 
tr.8^blas.0@=53} 
++ FINAL blas.4:OutChannelBook = {blas.4^agg.3=53, 
blas.4^agg.2=53} 
 
++ FINAL blas.5:ckSeq = 94 
++ FINAL blas.5:InChannelBook = {tr.9^blas.1@=47, 
tr.8^blas.1@=47} 
++ FINAL blas.5:OutChannelBook = {blas.5^agg.3=53, 
blas.5^agg.2=41} 
 
++ FINAL gemm.6:ckSeq = 96 
++ FINAL gemm.6:InChannelBook = {tr.9^gemm.0@=48, 
tr.8^gemm.0@=48} 
++ FINAL gemm.6:OutChannelBook = {gemm.6^ana.11=96, 
gemm.6^ana.12=96} 
 
++ FINAL gemm.7:ckSeq = 104 
++ FINAL gemm.7:InChannelBook = {tr.8^gemm.1@=52, 
tr.9^gemm.1@=52} 
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++ FINAL gemm.7:OutChannelBook = {gemm.7^ana.12=104, 
gemm.7^ana.11=104} 
 
++ FINAL ana.11:ckSeq = 200 
++ FINAL ana.11:InChannelBook = {gemm.7^ana.11=104, 
gemm.6^ana.11=96} 
++ FINAL ana.11:OutChannelBook = {} 
 
++ FINAL ana.12:ckSeq = 200 
++ FINAL ana.12:InChannelBook = {gemm.7^ana.12=104, 
gemm.6^ana.12=96} 
++ FINAL ana.12:OutChannelBook = {} 
 
++ FINAL agg.2:ckSeq = 94 
++ FINAL agg.2:InChannelBook = {blas.5^agg.2=41, 
blas.4^agg.2=53} 
++ FINAL agg.2:OutChannelBook = {} 
 
++ FINAL agg.3:ckSeq = 106 
++ FINAL agg.3:InChannelBook = {blas.5^agg.3=53, 
blas.4^agg.3=53} 
++ FINAL agg.3:OutChannelBook = {} 

5.2.  Latency Overhead of Checkpointing 

In the streaming process example shown in Fig 1, the 
heaviest computation is conducted by tasks of operations 
“gemm” and “blas” which are similar so let us focus on 
“gemm”. It is the abbreviation for “General Matrix 
Multiply (GEMM)”, a subroutine in the Basic Linear 
Algebra Subprograms (BLAS) that calculates the new 
value of matrix C based on the matrix-product of 
matrices A and B, and the old value of matrix C, as 

C = alpha*AB + beta*C 

where alpha and beta values are scalar coefficients. 
GEMM is often tuned by High Performance Computing 
(HPC) vendors to run as fast as possible, because it is the 
building block for so many other routines. It is also the 
most important routine in the LINPACK benchmark. For 
this reason, implementations of fast BLAS library 
typically focus on GEMM performance first . 
    The purpose of this experiment is to exam the impact 
of checkpoint to the performance of the streaming 
process involving GEMM operations. For this reason we 
focus on the performance ratio with and without 
checkpointing, of a single task. Since multiple tasks may 
have overlapping disk-writing in checkpointing, measure 
their overall performance would not give us a clear 
picture of the above ratio.  

We particularly interested in the turning point on the size 
of input matrices where checkpointing has significant 
impact to the performance before it, and insignificant 
impact after it. As in the tuple by tuple stream processing 
the overall latency is nearly proportional to the number 

of input tuples, and we measure the performance ratio 
with and without checkpointing, the impact of the 
number of input tuples, say from 1K to 1M, is not 
significant.   
    In our testing, each original input tuple has 3 two-
dimensional N × N matrices of float values, and we 
measure the above ratio wrt N. Our results shown in Fig 
10 indicate that when the matrix dimension size N is 
smaller than 600, checkpointing has visible impact to the 
latency of the streaming process; after the matrix 
dimension size N overpasses 600, that impact becomes 
insignificant, since in that case the latency is dominated 
by the computation complexity. 

 

Fig.10: Latency ration with and without checkpoint 

5.3.   ASK vs. ACK based Recovery 

Comparing the performance of the ASK-based 
transactional stream processing with the ACK based one, 
is the essential motivation of this experiment. In our 
testing, the failure rate is set to 1%. The matrix 
dimension size is fixed to 20. With the ACK based 
approach, a task does not move on to process the next 
tuple until the result of processing the current tuple has 
been received, processed and acknowledged by all target 
tasks; otherwise the tuple will be re-sent after timeout. 
Therefore the latency overhead is incurred during 
processing each tuple. Under the proposed ASK based 
approach, a task does not wait for the acknowledgement 
to move forward since the acknowledgement is handled 
asynchronously to the task execution. In this case the 
latency overhead is only incurred during failure recovery 
which is rare. Therefore the ASK based approach can 
significantly improve the overall performance. Our 
comparison result shown in Fig. 11 has verified this 
observation.   
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Fig.11: Performance comparison between ACK based and ASK 
based recovery mechanisms 

6. Conclusions 

In this work we have taken an initial step to advance the 
state of art of transactional stream processing with the 
task-oriented, fine-grinned and backtrack-based failure 
recovery mechanisms. To provide these mechanisms on 
top of an existing stream processing platform where 
message routing is handled by separate system 
components inaccessible to individual tasks, we tackled 
the specific hard problem for enabling tasks to track 
physical messaging channels logically in order to realize 
re-messaging during failure recovery, for that we 
introduced the notions of virtual channel, task alias and 
messageId-set. We also provided a designated messaging 
channel, separated from the regular dataflow channel, for 
signaling ACK/ASK messages and for resending tuples, 
in order to avoid interrupting the regular order of data 
transfer.  
    These mechanisms have been implemented on our 
stream analytics platform, Fontainebleau, which is built 
on top of the open-sourced Storm system. With our open 
station architecture, we ensure all the transactional 
properties to be system supported and transparent to 
users. Our experience shows that the novel virtual 
channel mechanism allows us to handle failure recovery 
correctly in elastic streaming processes, and the ASK-
based recovery mechanism significantly outperforms the 
ACK-based one. 

The proposed solution is integrated to our Live BI 
platform, a component of our Igniting Information 
Insight strategy with a number of target businesses, 
which supports the reliable delivery of quality insights 
and predictive analytics over Big, Fast, Total (BFT) data. 
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